

JAVASCRIPT™

FOR PROGRAMMERS

DEITEL® DEVELOPER SERIES

Deitel® Ser
How to Program Series

Java How to Program, 7/E

C++ How to Program, 6/E

Visual C++® 2008 How to Program, 2/E

C How to Program, 5/E

Internet & World Wide Web How to Program, 4/E

Visual Basic® 2008 How to Program

Visual C#® 2008 How to Program, 3/E

Small Java™ How to Program, 6/E

Small C++ How to Program, 5/E

Simply Series
Simply C++: An Application-Driven

Tutorial Approach

Simply Java™ Programming: An
Application-Driven Tutorial
Approach

Simply C#: An Application-Driven
Tutorial Approach

Simply Visual Basic® 2008, 3/E: An
Application-Driven Tutorial
Approach

SafariX Web Books
www.deitel.com/books/SafariX.html

C++ How to Program, 5/E & 6/E

Java How to Program, 6/E & 7/E

Simply C++: An Application-Driven
Tutorial Approach

Simply Visual Basic 2008: An
Application-Driven Tutorial
Approach, 3/E

Small C++ How to Program, 5/E

Small Java How to Program, 6/E

Visual Basic 2008 How to Program

Visual C# 2008 How to Program, 3/E

www.deitel.com/books/SafariX.html

ies Page
Deitel® Developer Series
AJAX, Rich Internet Applications and

Web Development for Programmers

C++ for Programmers

C# 2008 for Programmers, 3/E

Java for Programmers

Javascript for Programmers

LiveLessons Video Learning
Products
www.deitel.com/books/LiveLessons/

Java Fundamentals Parts 1 and 2

C# Fundamentals Parts 1 and 2

C++ Fundamentals Parts 1 and 2

JavaScript Fundamentals Parts 1 and 2

To follow the Deitel publishing program, please register for the free Deitel® Buzz
Online e-mail newsletter at:

www.deitel.com/newsletter/subscribe.html

To communicate with the authors, send e-mail to:

deitel@deitel.com

For information on government and corporate Dive-Into® Series on-site seminars
offered by Deitel & Associates, Inc. worldwide, visit:

www.deitel.com/training/

or write to

deitel@deitel.com

For continuing updates on Prentice Hall/Deitel publications visit:

www.deitel.com
www.prenhall.com/deitel

Check out our Resource Centers for valuable web resources that will help you master
Visual C#, other important programming languages, software and Internet- and web-
related topics:

www.deitel.com/ResourceCenters.html

www.deitel.com/books/LiveLessons/
www.deitel.com/newsletter/subscribe.html
www.deitel.com/training/
www.deitel.com
www.prenhall.com/deitel
www.deitel.com/ResourceCenters.html

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.phptr.com

Library of Congress Cataloging-in-Publication Data

On file

© 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458

ISBN 0-13-700131-2

Text printed in the United States on recycled paper at R.R . Donnelley in Crawfordsville, Indiana.
First printing, February 2009

www.phptr.com

JAVASCRIPT™ FOR
PROGRAMMERS
DEITEL® DEVELOPER SERIES

Paul J. Deitel

Deitel & Associates, Inc.

Harvey M. Deitel

Deitel & Associates, Inc.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Trademarks
DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel & Associates,
Inc.

Apache is a trademark of The Apache Software Foundation.

CSS, DOM, XHTML and XML are registered trademarks of the World Wide Web Consortium.

Firefox is a registered trademark of the Mozilla Foundation.

Google is a trademark of Google, Inc.

JavaScript, Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.
in the United States and other countries.

Microsoft, Internet Explorer and the Windows logo are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

MySpace is a registered trademark of MySpace.com.

UNIX is a registered trademark of The Open Group.

Web 2.0 is a service mark of CMP Media.

Wikipedia is a registered trademark of WikiMedia.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

To Brendan Eich:

For creating the JavaScript language while at
Netscape Communications Corporation.

Paul and Harvey Deitel

Deitel Resource Centers
Our Resource Centers focus on the vast amounts of free content available online. Find resources,
downloads, tutorials, documentation, books, e-books, journals, articles, blogs, RSS feeds and more
on many of today’s hottest programming and technology topics. For the most up-to-date list of our
Resource Centers, visit:

 www.deitel.com/ResourceCenters.html

Let us know what other Resource Centers you’d like to see! Also, please register for the free Deitel®
Buzz Online e-mail newsletter at:

 www.deitel.com/newsletter/subscribe.html

Computer Science
Functional Programming
Regular Expressions

Programming
ASP.NET 3.5
Adobe Flex
Ajax
Apex
ASP.NET Ajax
ASP.NET
C
C++
C++ Boost Libraries
C++ Game Programming
C#
Code Search Engines and

Code Sites
Computer Game

Programming
CSS 2.1
Dojo
Facebook Developer Plat-

form
Flash 9
Functional Programming
Java
Java Certification and

Assessment Testing
Java Design Patterns
Java EE 5
Java SE 6
Java SE 7 (Dolphin)

Resource Center
JavaFX
JavaScript
JSON
Microsoft LINQ
Microsoft Popfly
.NET
.NET 3.0
.NET 3.5
OpenGL
Perl
PHP
Programming Projects
Python
Regular Expressions
Ruby
Ruby on Rails

Silverlight
Visual Basic
Visual C++
Visual Studio Team Sys-

tem
Web 3D Technologies
Web Services
Windows Presentation

Foundation
XHTML
XML

Games and Game
Programming

Computer Game Pro-
gramming

Computer Games
Mobile Gaming
Sudoku

Internet Business
Affiliate Programs
Competitive Analysis
Facebook Social Ads
Google AdSense
Google Analytics
Google Services
Internet Advertising
Internet Business

Initiative
Internet Public Relations
Link Building
Location-Based Services
Online Lead Generation
Podcasting
Search Engine Optimiza-

tion
Selling Digital Content
Sitemaps
Web Analytics
Website Monetization
YouTube and AdSense

Java
Java
Java Certification and

Assessment Testing
Java Design Patterns
Java EE 5
Java SE 6

Java SE 7 (Dolphin)
Resource Center

JavaFX

Microsoft
ASP.NET
ASP.NET 3.5
ASP.NET Ajax
C#
DotNetNuke (DNN)
Internet Explorer 7 (IE7)
Microsoft LINQ
.NET
.NET 3.0
.NET 3.5
SharePoint
Silverlight
Visual Basic
Visual C++
Visual Studio Team

System
Windows Presentation

Foundation
Windows Vista
Microsoft Popfly

Open Source &
LAMP Stack

Apache
DotNetNuke (DNN)
Eclipse
Firefox
Linux
MySQL
Open Source
Perl
PHP
Python
Ruby

Software
Apache
DotNetNuke (DNN)
Eclipse
Firefox
Internet Explorer 7 (IE7)
Linux
MySQL
Open Source
Search Engines

SharePoint
Skype
Web Servers
Wikis
Windows Vista

Web 2.0
Alert Services
Attention Economy
Blogging
Building Web

Communities
Community Generated

Content
Facebook Developer

Platform
Facebook Social Ads
Google Base
Google Video
Google Web Toolkit

(GWT)
Internet Video
Joost
Location-Based Services
Mashups
Microformats
Recommender Systems
RSS
Social Graph
Social Media
Social Networking
Software as a Service

(SaaS)
Virtual Worlds
Web 2.0
Web 3.0
Widgets

Dive Into® Web 2.0
eBook

Web 2 eBook

Other Topics
Computer Games
Computing Jobs
Gadgets and Gizmos
Ring Tones
Sudoku

www.deitel.com/ResourceCenters.html
www.deitel.com/newsletter/subscribe.html

Preface xv

Before You Begin xxiii

1 Introduction 1
1.1 Introduction 2
1.2 History of the Internet and World Wide Web 3
1.3 World Wide Web Consortium (W3C) 5
1.4 Web 2.0 5
1.5 Key Software Trend: Object Technology 7
1.6 JavaScript: Object-Based Scripting for the Web 8
1.7 Browser Portability 9
1.8 Web Resources 9

2 Introduction to XHTML 10
2.1 Introduction 11
2.2 Editing XHTML 12
2.3 First XHTML Example 12
2.4 W3C XHTML Validation Service 15
2.5 Headings 15
2.6 Linking 16
2.7 Images 19
2.8 Special Characters and Horizontal Rules 22
2.9 Lists 24
2.10 Tables 27
2.11 Forms 31
2.12 Internal Linking 38
2.13 meta Elements 40
2.14 Web Resources 42

3 Cascading Style Sheets™ (CSS) 43
3.1 Introduction 44
3.2 Inline Styles 45
3.3 Embedded Style Sheets 46
3.4 Conflicting Styles 49

Contents

x Contents

3.5 Linking External Style Sheets 52
3.6 Positioning Elements 54
3.7 Backgrounds 58
3.8 Element Dimensions 59
3.9 Box Model and Text Flow 61
3.10 Media Types 65
3.11 Building a CSS Drop-Down Menu 67
3.12 User Style Sheets 69
3.13 CSS 3 73
3.14 Web Resources 73

4 JavaScript: Introduction to Scripting 74
4.1 Introduction 75
4.2 Simple Program: Displaying a Line of Text in a Web Page 76
4.3 Modifying Our First Program 79
4.4 Obtaining User Input with prompt Dialogs 84

4.4.1 Dynamic Welcome Page 84
4.4.2 Adding Integers 88

4.5 Data Types in JavaScript 90
4.6 Arithmetic 90
4.7 Decision Making: Equality and Relational Operators 91
4.8 Web Resources 95

5 JavaScript: Control Statements I 96
5.1 Introduction 97
5.2 Control Statements 97
5.3 if Selection Statement 98
5.4 if…else Selection Statement 99
5.5 while Repetition Statement 103
5.6 Counter-Controlled Repetition 104
5.7 Formulating Algorithms: Sentinel-Controlled Repetition 106
5.8 Formulating Algorithms: Nested Control Statements 109
5.9 Assignment Operators 112
5.10 Increment and Decrement Operators 113
5.11 Web Resources 116

6 JavaScript: Control Statements II 117
6.1 Introduction 118
6.2 Essentials of Counter-Controlled Repetition 118
6.3 for Repetition Statement 120
6.4 Examples Using the for Statement 124
6.5 switch Multiple-Selection Statement 128
6.6 do…while Repetition Statement 133
6.7 break and continue Statements 135

 Contents xi

6.8 Labeled break and continue Statements 138
6.9 Logical Operators 140

7 JavaScript: Functions 145
7.1 Introduction 146
7.2 Functions 146
7.3 Programmer-Defined Functions 147
7.4 Function Definitions 147
7.5 Random Number Generation 152
7.6 Example: Game of Chance 157
7.7 Another Example: Random Image Generator 163
7.8 Scope Rules 165
7.9 JavaScript Global Functions 167
7.10 Recursion 168
7.11 Recursion vs. Iteration 172

8 JavaScript: Arrays 173
8.1 Introduction 174
8.2 Arrays 174
8.3 Declaring and Allocating Arrays 175
8.4 Examples Using Arrays 176
8.5 Random Image Generator Using Arrays 183
8.6 References and Reference Parameters 184
8.7 Passing Arrays to Functions 185
8.8 Sorting Arrays 188
8.9 Multidimensional Arrays 190
8.10 Building an Online Quiz 194

9 JavaScript: Objects 197
9.1 Introduction 198
9.2 Introduction to Object Technology 198
9.3 Math Object 201
9.4 String Object 202

9.4.1 Fundamentals of Characters and Strings 202
9.4.2 Methods of the String Object 203
9.4.3 Character-Processing Methods 205
9.4.4 Searching Methods 206
9.4.5 Splitting Strings and Obtaining Substrings 209
9.4.6 XHTML Markup Methods 210

9.5 Date Object 213
9.6 Boolean and Number Objects 218
9.7 document Object 219
9.8 window Object 220
9.9 Using Cookies 225

xii Contents

9.10 Multipage HTML and JavaScript Application 229
9.11 Using JSON to Represent Objects 237

10 Document Object Model (DOM):
Objects and Collections 238

10.1 Introduction 239
10.2 Modeling a Document: DOM Nodes and Trees 239
10.3 Traversing and Modifying a DOM Tree 242
10.4 DOM Collections 253
10.5 Dynamic Styles 255
10.6 Summary of the DOM Objects and Collections 261

11 JavaScript: Events 263
11.1 Introduction 264
11.2 Registering Event Handlers 264
11.3 Event onload 267
11.4 Event onmousemove, the event Object and this 268
11.5 Rollovers with onmouseover and onmouseout 273
11.6 Form Processing with onfocus and onblur 277
11.7 Form Processing with onsubmit and onreset 280
11.8 Event Bubbling 282
11.9 More Events 284
11.10 Web Resources 285

12 XML and RSS 286
12.1 Introduction 287
12.2 XML Basics 287
12.3 Structuring Data 290
12.4 XML Namespaces 297
12.5 Document Type Definitions (DTDs) 300
12.6 W3C XML Schema Documents 304
12.7 XML Vocabularies 310

12.7.1 MathML™ 311
12.7.2 Other Markup Languages 314

12.8 Extensible Stylesheet Language and XSL Transformations 314
12.9 Document Object Model (DOM) 324
12.10 RSS 342
12.11 Web Resources 349

13 Ajax-Enabled Rich Internet Applications 350
13.1 Introduction 351
13.2 Traditional Web Applications vs. Ajax Applications 352

 Contents xiii

13.3 Rich Internet Applications (RIAs) with Ajax 353
13.4 History of Ajax 355
13.5 “Raw” Ajax Example Using the XMLHttpRequest Object 356
13.6 Using XML and the DOM 361
13.7 Creating a Full-Scale Ajax-Enabled Application 366
13.8 Dojo Toolkit 379
13.9 Web Resources 388

A XHTML Special Characters 389

B XHTML Colors 390

C JavaScript Operator Precedence Chart 393
C.1 Operator Precedence Chart 393

Index 395

This page intentionally left blank

… the challenges are for the designers of these applications: to forget what we think we know
about the limitations of the Web, and begin to imagine a wider, richer range of possibilities. It’s
going to be fun.

—Jesse James Garrett, Adaptive Path
“Ajax: A New Approach to Web Applications”
(adaptivepath.com/ideas/essays/archives/000385.php)

Introduction
Welcome to JavaScript for Programmers! We’ve worked hard to create what we hope you’ll
find to be an informative, entertaining and challenging learning experience. At Deitel & As-
sociates, we write programming language professional books and textbooks for Prentice
Hall, deliver corporate training at organizations worldwide and develop Internet businesses.

This book reflects the client side of today’s Web 2.0, Ajax-based, Rich Internet Appli-
cation-development methodologies. The technologies you’ll learn here are appropriate for
experienced professionals who build substantial web-based applications. You’ll find “indus-
trial-strength” code examples that are clear, straightforward and promote best practices.

Today’s users are accustomed to desktop applications with rich graphical user inter-
faces (GUIs), such as those used on Apple’s Mac OS X systems, Microsoft Windows sys-
tems, various Linux systems and others. Users want applications that can run on the
Internet and the web and communicate with other applications. Users want to apply data-
base technologies for storing and manipulating their business and personal data. They
want applications that are not limited to the desktop or even to some local computer net-
work, but that can integrate Internet and web components, and remote databases. Pro-
grammers want to use all these capabilities in a truly portable manner so that applications
will run without modification on a variety of platforms.

We focus on the client side of web-based applications (i.e., the portions that typically
run in web browsers such as Mozilla’s Firefox, Microsoft’s Internet Explorer, Apple’s
Safari, Opera, Google’s Chrome and other web browsers), using technologies such as
XHTML, JavaScript, CSS, Extensible Markup Language (XML) the DOM (Document
Object Model) and Ajax (Asynchronous JavaScript and XML).

This book was extracted from the front half our Prentice Hall textbook Internet &
World Wide Web How to Program, 4/e. That book also provides substantial treatments of
key Rich Internet Applications development server-side technologies, including web
servers, database, PHP, Ruby on Rails, ASP.NET/ASP.NET Ajax, JavaServer Faces and
web services.

Perhaps most important, this book presents over 100 working code examples and
shows the outputs produced when these examples are rendered in browsers. We present all

Preface

xvi Preface

concepts in the context of complete working programs. We call this the “live-code
approach.” All of the source code is available for download from

 www.deitel.com/books/jsfp/

Please see the Before You Begin section following the Preface for details on downloading
these examples.

If you have questions as you read this book, send an e-mail to deitel@deitel.com—
we’ll respond promptly. For updates on the book and the status of all supporting software,
and for the latest news on Deitel publications and services, visit www.deitel.com. Sign up
at www.deitel.com/newsletter/subscribe.html for the free Deitel® Buzz Online e-mail
newsletter and check out www.deitel.com/ResourceCenters.html for our growing list of
Internet and web programming, Internet business, Web 2.0 and related Resource Centers.
Each week we announce our latest Resource Centers in the newsletter.

Key Features
Here’s some of the key features of JavaScript for Programmers:

• Reflects the client side of today’s Web 2.0, Ajax-based, Rich Internet Applica-
tion-development methodologies in which you create web applications with the
interactivity of desktop applications.

• Covers the two leading web browsers—Internet Explorer and Firefox. All client-
side applications in the book run correctly on both browsers.

• Focuses on Web 2.0 technologies and concepts.

• Chapter on building Ajax-enabled web applications with “raw” Ajax and with the
Dojo JavaScript libraries. Applications in this chapter demonstrate core Web 2.0
capabilities—partial-page updates and type-ahead.

• Significant treatment of client-side scripting with JavaScript.

• Significant treatments of XHTML DOM manipulation and JavaScript events.

• Significant treatment of XML DOM manipulation with JavaScript.

• Client-side case studies that enable you to interact with preimplemented server-
side applications and web services that we host at test.deitel.com.

• Case studies including Deitel Cover Viewer (JavaScript/DOM), Address Book
(Ajax) and Calendar (Ajax with the Dojo Toolkit).

All of this has been carefully reviewed distinguished industry developers and academics.

JavaScript for Programmers Achitecture
Figure 1 shows the architecture of JavaScript for Programmers. The book is divided into
five parts. The first part, Chapter 1, introduces the Internet, the web and Web 2.0.

The second part, Chapters 2–3, focuses on the markup (XHTML) and presentation
(CSS) technologies that enable you to build web pages. You’ll want to test your web appli-
cations across many browsers and platforms. The examples for the book execute correctly
on both Microsoft’s Internet Explorer 7 and Mozilla’s Firefox 3 browsers. Most of the
examples will also work in other browsers such as Opera, Apple’s Safari and Google’s

www.deitel.com/books/jsfp/
www.deitel.com
www.deitel.com/newsletter/subscribe.html
www.deitel.com/ResourceCenters.html

 Teaching Approach xvii

Chrome, but may not work on earlier browsers. Microsoft Windows users of this book
should use Internet Explorer 7 or Firefox 3; readers who have other operating systems
should install Firefox 3. Firefox 2 will also work with this book.

The third part of the book, Chapters 4–11, presents an eight-chapter treatment of
JavaScript, including an introduction followed by control statements, functions, arrays
and objects. Chapter 10 focuses on the objects and collections that enable you to manip-
ulate web page elements from JavaScript. Chapter 11 demonstrates event handling in
JavaScript, which enables you to respond to user interaction with web page elements.
Chapters 4–11 depend on the XHTML and CSS concepts presented in Chapters 2–3.

The fourth part of the book, Chapter 12, presents XML and RSS—two technologies
used frequently in Web 2.0 applications to transmit data between servers and clients.
Finally, our presentation concludes with Chapter 13’s treatment of Ajax development.
Ajax is not a new technology—we’ve been writing about all but one of its component tech-
nologies since the first edition of our book Internet & World Wide Web How to Program in
1999, and many of the technologies existed before that. However, Ajax is one of the key
technologies of Web 2.0 and RIAs. The chapter starts with “raw” Ajax development then
discusses “encapsulated” Ajax development with the Dojo libraries. Chapters 12–13
depend on the concepts presented in Chapters 2–11.

Teaching Approach
JavaScript for Programmers contains a rich collection of examples. The book concentrates
on the principles of good software engineering and stresses program clarity. We are edu-
cators who teach leading-edge topics in industry classrooms worldwide. The Deitels have
taught courses at all levels to government, industry, military and academic clients of Deitel
& Associates, Inc.

Fig. 1 | Architecture of JavaScript for Programmers

In
tr

o
M

ar
ku

p
Ja

va
Sc

ri
pt

1. Introduction

2. Introduction to XHTML
3. Cascading Style Sheets™ (CSS)

4. JavaScript: Introduction to Scripting
5. JavaScript: Control Statements 1
6. JavaScript: Control Statements 2
7. JavaScript: Functions
8. JavaScript: Arrays
9. JavaScript: Objects
10. DOM: Objects and Collections
11. JavaScript: Events

12. XML and RSS

13. Ajax-Enabled Rich Internet Applications

X
M

L
A

ja
x

xviii Preface

Live-Code Approach. JavaScript for Programmers is loaded with “live-code” examples—
each new concept is presented in the context of a complete working web application that
is immediately followed by one or more screen captures showing the application’s func-
tionality. This style exemplifies the way we teach and write about programming; we call
this the “live-code approach.”

Syntax Shading. We syntax shade all the code, similar to the way most integrated-devel-
opment environments and code editors syntax color code. This improves code readabili-
ty—an important goal, given that this book contains about 6,000 lines of code in
complete, working programs. Our syntax-shading conventions are as follows:

comments appear in italic
keywords appear in bold italic

errors appear in bold black

constants and literal values appear in bold gray

all other code appears in black

Code Highlighting. We place white rectangles around each program’s key code segments.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold italic text for easier reference. We emphasize on-screen com-
ponents in the bold Helvetica font (e.g., the File menu) and emphasize program text in the
Lucida font (e.g., int x = 5).

Web Access. All of the source-code examples for JavaScript for Programmers are available for
download from:

www.deitel.com/books/jsfp/

Site registration is quick, easy and free. Download all the examples, then run each program
in a browser as you read the corresponding text discussions. Making changes to the exam-
ples and seeing the effects of those changes is a great way to enhance your Internet and web
programming learning experience.

Objectives. Each chapter begins with a statement of objectives. This lets you know what
to expect and gives you an opportunity to determine if you have met these goals after read-
ing the chapter.

Quotations. The objectives are followed by quotations. Some are humorous, some are
philosophical, others offer interesting insights. We hope that you enjoy relating the quo-
tations to the chapter material.

Outline. The chapter outline helps you approach the material in a top-down fashion, so
you can anticipate what is to come and set a comfortable learning pace.

Illustrations/Figures. Abundant charts, tables, line drawings, programs and program out-
put are included.

Programming Tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we have gleaned from
a combined seven decades of programming and teaching experience. One of our readers
told us that she feels this approach is like the highlighting of axioms, theorems and corol-
laries in mathematics books—it provides a basis on which to build good software.

www.deitel.com/books/jsfp/

 Deitel® Buzz Online Free E-mail Newsletter xix

Good Programming Practices
Good Programming Practices call attention to techniques that will help you produce programs
that are clearer, more understandable and more maintainable.

Common Programming Errors
Pointing out these Common Programming Errors reduces the likelihood that you’ll make the
same mistakes.

Error-Prevention Tips
These tips contain suggestions for exposing bugs and removing them from your programs; many
describe techniques for preventing bugs in the first place.

Performance Tips
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tips
We include Portability Tips to help you write code that will run on a variety of platforms, and
to explain how to achieve a high degree of portability.

Software Engineering Observations
The Software Engineering Observations highlight architectural and design issues that affect
the construction of software systems, especially large-scale systems.

Thousands of Index Entries. We’ve included an extensive index which is especially useful
when you use the book as a reference.

Deitel® Buzz Online Free E-mail Newsletter
Each week, the free Deitel® Buzz Online newsletter announces our latest Resource Cen-
ter(s) and includes commentary on industry trends and developments, links to free articles
and resources from our published books and upcoming publications, product-release
schedules, errata, challenges, anecdotes, information on our corporate instructor-led train-
ing courses and more. It’s also a good way for you to keep posted about issues related to
JavaScript for Programmers. To subscribe, visit:

www.deitel.com/newsletter/subscribe.html

Deitel Online Resource Centers
Our website, www.deitel.com, provides scores of Resource Centers on various topics in-
cluding programming languages, software, Web 2.0, Internet business and open source
projects. You can view the complete list of Resource Centers in the first few pages of this
book or at www.deitel.com/ResourceCenters.html. These Resource Centers evolve out
of the research we do to support our books and business endeavors. We list many excep-
tional (mostly free) resources including tutorials, documentation, software downloads, ar-
ticles, blogs, podcasts, videos, code samples, books, e-books and more. We announce our
latest Resource Centers in the Deitel® Buzz Online.Acknowledgments
It is a great pleasure to acknowledge the efforts of many people whose names may not ap-
pear on the cover, but whose hard work, cooperation, friendship and understanding were

www.deitel.com/newsletter/subscribe.html
www.deitel.com
www.deitel.com/ResourceCenters.html

xx Preface

crucial to the production of the book. Many people at Deitel & Associates, Inc. devoted
long hours to this project—thanks especially to Abbey Deitel and Barbara Deitel.

We’d also like to thank the participants in our Honors Internship program who con-
tributed to this publication—Ilana Segall, a mathematical and computational science
major at Stanford University; Scott Wehrwein, a computer science major at Middlebury
College; and Mark Kagan, a computer science, economics and math major at Brandeis
University.

We are fortunate to have worked on this project with the talented and dedicated team
of publishing professionals at Prentice Hall. We appreciate the extraordinary efforts of
Mark Taub, Editor-in-Chief of Prentice Hall Professional; John Fuller, Managing Editor
of Prentice Hall Professional and Marcia Horton, Editorial Director of Prentice Hall’s
Engineering and Computer Science Division. Carole Snyder and Dolores Mars did a
remarkable job recruiting the book’s review team and managing the review process. Sandra
Schroeder and Chuti Prasertsith did a wonderful job designing the book’s cover. Bob
Engelhardt and Scott Disanno did a marvelous job managing the book’s production.

This book was adapted from our book Internet & World Wide Web How to Program,
4/e. We wish to acknowledge the efforts of our reviewers on that book who worked on the
corresponding chapters. Adhering to a tight time schedule, they scrutinized the text and
the programs, providing countless suggestions for improving the accuracy and complete-
ness of the presentation.

Reviewers
Umachitra Damodaran (Sun Microsystems), Vadiraj Deshpande (Sun Microsystems),
Molly E. Holtzschlag (W3C), Ralph Hooper (University of Alabama, Tuscaloosa), John-
vey Hwang (Splunk, Inc.), Eric Lawrence (Microsoft), Billy B. L. Lim (Illinois State Uni-
versity), Shobana Mahadevan (Sun Microsystems), Anand Narayanaswamy (Microsoft),
John Peterson (Insync and V.I.O., Inc.), Jennifer Powers (University of Albany), José An-
tonio González Seco (Parlamento de Andalucia), Dr. George Semeczko (Royal & SunAl-
liance Insurance Canada), Steven Shaffer (Penn State University), Karen Tegtmeyer
(Model Technologies, Inc.), Eric M. Wendelin (Auto-trol Technology Corporation), Ray-
mond F. Wisman (Indiana University) and Daniel Zappala (Brigham Young University).

We hope you enjoy this look at the exciting world of JavaScript-based, client-side web
applications development. As you read the book, we’d sincerely appreciate your com-
ments, criticisms, corrections and suggestions for improving the text. Please address all
correspondence to deitel@deitel.com. We’ll respond promptly, and post corrections
and clarifications at www.deitel.com/books/jsfp/. We hope you enjoy reading
JavaScript for Programmers as much as we enjoyed writing it!

Paul J. Deitel
Dr. Harvey M. Deitel
Maynard, Massachusetts

About the Authors
Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., has almost
three decades of experience in the computer field. Paul is a graduate of MIT’s Sloan School
of Management, where he studied Information Technology. Through Deitel & Associ-

www.deitel.com/books/jsfp/

 About Deitel & Associates, Inc. xxi

ates, Inc., he has delivered web programming, Java, C#, Visual Basic, C++ and C courses
to industry clients, including Cisco, IBM, Sun Microsystems, Dell, Lucent Technologies,
Fidelity, NASA at the Kennedy Space Center, White Sands Missile Range, the National
Severe Storm Laboratory, Rogue Wave Software, Boeing, Stratus, Hyperion Software,
Adra Systems, Entergy, CableData Systems, Nortel Networks, Puma, iRobot, Invensys
and many more. He holds the Sun Certified Java Programmer and Java Developer certifi-
cations and has been designated by Sun Microsystems as a Java Champion. He has lec-
tured on Java and C++ for the Boston Chapter of the Association for Computing
Machinery. He and his father, Dr. Harvey M. Deitel, are the world’s best-selling program-
ming-language textbook authors.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., earned B.S. and M.S. degrees from MIT and a Ph.D. from Boston University. He
earned tenure and served as the Chairman of the Computer Science Department at Boston
College before founding Deitel & Associates, Inc., with his son, Paul J. Deitel. Harvey and
Paul are the co-authors of dozens of books and multimedia packages and they are writing
many more. The Deitels’ texts have earned international recognition with translations
published in Japanese, German, Russian, Spanish, Traditional Chinese, Simplified Chi-
nese, Korean, French, Polish, Italian, Portuguese, Greek, Urdu and Turkish. Dr. Deitel
has delivered hundreds of professional seminars to major corporations, academic institu-
tions, government organizations and the military.

About Deitel & Associates, Inc.
Deitel & Associates, Inc., is an internationally recognized corporate training and author-
ing organization specializing in computer programming languages, Internet and web soft-
ware technology, object technology education and Internet business development through
its Web 2.0 Internet Business Initiative. The company provides instructor-led courses on
major programming languages and platforms, such as C++, Java, C, C#, Visual C++, Vi-
sual Basic, XML, object technology and Internet and web programming. The founders of
Deitel & Associates, Inc. are Paul J. Deitel and Dr. Harvey M. Deitel. The company’s cli-
ents include many of the world’s largest companies, government agencies, branches of the
military, and academic institutions. Through its 32-year publishing partnership with
Prentice Hall, Deitel & Associates, Inc. publishes leading-edge programming professional
books, textbooks, interactive multimedia Cyber Classrooms and online and offline LiveLes-
sons video courses. Deitel & Associates, Inc., and the authors can be reached via e-mail at:

deitel@deitel.com

To learn more about Deitel & Associates, Inc., its publications and its worldwide
Dive Into® Series Corporate Training curriculum, visit:

www.deitel.com/training/

and subscribe to the free Deitel® Buzz Online e-mail newsletter at:

www.deitel.com/newsletter/subscribe.html

Check out the growing list of online Resource Centers at:

www.deitel.com/ResourceCenters.html

www.deitel.com/training/
www.deitel.com/newsletter/subscribe.html
www.deitel.com/ResourceCenters.html

xxii Preface

Individuals wishing to purchase Deitel publications can do so through:

www.deitel.com/books/index.html

The publisher offers discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding inter-
ests. For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit the publisher at www.phptr.com.

www.deitel.com/books/index.html
www.phptr.com

Please follow these instructions to download the book’s examples and ensure you have a
current web browser before you begin using this book.

Downloading the JavaScript for Programmers Source Code
The source code in JavaScript for Programmers can be downloaded as a ZIP archive file
from www.deitel.com/books/jsfp/. After you register and log in, click the link for the
examples under Download Code Examples and Other Premium Content for Registered Us-
ers. Extract the example files to your hard disk using a ZIP file extractor program, such as
WinZip (www.winzip.com). On Windows, we suggest that you extract the files to a folder
such as C:\jsfp_examples. On Mac OS X and Linux, we suggest that you extract the files
to a folder named jsfp_examples in your home folder.

Web Browsers Used in This Book
We’ve tested every example in this book using Mozilla’s Firefox 2 and 3, and Microsoft’s
Internet Explorer 7 web browsers. Before you begin, ensure that you have one or both of
these browsers installed on your computer. Internet Explorer 7 is available only for
Microsoft Windows operating systems. If you are a Windows user and do not have Inter-
net Explorer 7, you can download it from www.update.microsoft.com using Microsoft’s
Windows Update service. Firefox is available for most platforms. You can download Fire-
fox 3 from www.firefox.com.

Many of the book’s examples will not work in Internet Explorer 6. Though most or
all of the examples in this book might run on other recent web browsers, such as Opera
(www.opera.com), Apple’s Safari (www.apple.com/safari/) and Google’s Chrome
(www.google.com/chrome/), we haven’t tested the examples on these or any other
browsers.

You are now ready to begin reading JavaScript for Programmers. We hope you enjoy
the book! If you have any questions, please e-mail us at deitel@deitel.com. We’ll
respond promptly.

Before You Begin

www.deitel.com/books/jsfp/
www.winzip.com
www.update.microsoft.com
www.firefox.com
www.opera.com
www.apple.com/safari/
www.google.com/chrome/

This page intentionally left blank

1
Introduction

O B J E C T I V E S
In this chapter you’ll learn:

■ The evolution of the Internet and the World Wide Web.

■ What Web 2.0 is and why it’s having such an impact
among Internet-based and traditional businesses.

■ What Rich Internet Applications (RIAs) are and the key
software technologies used to build RIAs.

■ How object technology is improving the software
development process.

■ The importance of JavaScript as the universal client
scripting language.

The renaissance of interest in
the web that we call Web 2.0
has reached the mainstream.
—Tim O’Reilly

Billions of queries stream
across the servers of these
Internet services—the
aggregate thoughtstream of
humankind, online.
—John Battelle, The Search

People are using the web to
build things they have not
built or written or drawn or
communicated anywhere else.
—Tim Berners-Lee

Some people take what we
contribute and extend it and
contribute it back. That's
really the basic open source
success story.
—David Heinemeier Hansson,
interviewed by Chris Karr at
www.Chicagoist.com

www.Chicagoist.com

2 Chapter 1 Introduction

O
u

tl
in

e

1.1 Introduction
Welcome to Internet and World Wide Web programming and Web 2.0! We’ve worked
hard to create what we hope you’ll find to be an informative, entertaining and challenging
learning experience. As you read this book, you may want to refer to

www.deitel.com/books/jsfp/

for updates and additional information.
The technologies you’ll learn in this book are appropriate for experienced profes-

sionals who build substantial information systems. You’ll find “industrial-strength” code
examples. We have attempted to write in a clear and straightforward manner using best
programming and documentation practices.

Perhaps most important, the book includes over 100 working code examples and
shows the outputs produced when these examples are rendered in browsers or run on com-
puters. We present all concepts in the context of complete working programs. We call this
the “live-code approach.” All of the source code is available for download from
www.deitel.com/books/jsfp/.

We present a carefully paced introduction to “client-side” web programming, using
the popular JavaScript language and the closely related technologies of XHTML (Exten-
sible HyperText Markup Language), CSS (Cascading Style Sheets) and the DOM (Doc-
ument Object Model). We often refer to “programming” as scripting—for reasons that
will soon become clear.

 JavaScript is among today’s most popular software development languages for web-
based applications. In this book, we present a number of powerful software technologies
that will enable you to build such applications. We concentrate on using technologies such
as the Extensible HyperText Markup Language (XHTML), JavaScript, CSS, and Exten-
sible Markup Language (XML) to build the portions of web-based applications that reside
on the client side (i.e., the portions of applications that typically run in your web browsers
such as Mozilla’s Firefox, Microsoft’s Internet Explorer, Opera, Google’s Chrome or
Apple’s Safari). The server side of web-based applications typically runs on “heavy-duty”
computer systems on which organizations’ business-critical websites reside. By mastering
the technologies in this book, you’ll be able to build the client side of substantial web-
based, client/server, database-intensive, “multitier” applications. Our sister book, Internet
& World Wide Web How to Program, 4/e, contains both the client-side programming mate-
rial from JavaScript for Programmers, and also presents a variety of server-side program-
ming technologies.

1.1 Introduction
1.2 History of the Internet and World Wide Web
1.3 World Wide Web Consortium (W3C)
1.4 Web 2.0
1.5 Key Software Trend: Object Technology
1.6 JavaScript: Object-Based Scripting for the Web
1.7 Browser Portability
1.8 Web Resources

www.deitel.com/books/jsfp/
www.deitel.com/books/jsfp/

1.2 History of the Internet and World Wide Web 3

To keep up to date with Internet and web programming developments, and the latest
information on JavaScript for Programmers at Deitel & Associates, please register for our
free e-mail newsletter, the Deitel® Buzz Online, at

www.deitel.com/newsletter/subscribe.html

Please check out our growing list of Internet and web programming, and Internet business
Resource Centers at

www.deitel.com/resourcecenters.html

Each week, we announce our latest Resource Centers in the newsletter. A list of Deitel Re-
source Centers at the time of this writing is located in the first few pages of the book. The
Resource Centers include links to, and descriptions of, key tutorials, demos, free software
tools, articles, e-books, white papers, videos, podcasts, blogs, RSS feeds and more that will
help you deepen your knowledge of most of the subjects we discuss in this book.

Errata and updates for the book are posted at

www.deitel.com/books/jsfp/

You’re embarking on a challenging and rewarding path. We hope that you’ll enjoy
JavaScript for Programmers. As you proceed, if you have any questions, send e-mail to

deitel@deitel.com

and we’ll respond promptly.

1.2 History of the Internet and World Wide Web
In the late 1960s, one of the authors (HMD) was a graduate student at MIT. His research
at MIT’s Project MAC (now the Laboratory for Computer Science—the home of the
World Wide Web Consortium) was funded by ARPA—the Advanced Research Projects
Agency of the Department of Defense. ARPA sponsored a conference at which several doz-
en ARPA-funded graduate students were brought together at the University of Illinois at
Urbana-Champaign to meet and share ideas. During this conference, ARPA rolled out the
blueprints for networking the main computer systems of about a dozen ARPA-funded uni-
versities and research institutions. They were to be connected with communications lines
operating at a then-stunning 56 Kbps (i.e., 56,000 bits per second)—this at a time when
most people (of the few who could) were connecting over telephone lines to computers at
a rate of 110 bits per second. There was great excitement at the conference. Researchers at
Harvard talked about communicating with the Univac 1108 “supercomputer” at the Uni-
versity of Utah to handle calculations related to their computer graphics research. Many
other intriguing possibilities were raised. Academic research was about to take a giant leap
forward. Shortly after this conference, ARPA proceeded to implement the ARPANET,
which eventually evolved into today’s Internet.

Communicating Quickly and Easily
Things worked out differently from what was originally planned. Rather than enabling re-
searchers to share each other’s computers, it rapidly became clear that enabling researchers
to communicate quickly and easily via what became known as electronic mail (e-mail, for

www.deitel.com/newsletter/subscribe.html
www.deitel.com/resourcecenters.html
www.deitel.com/books/jsfp/

4 Chapter 1 Introduction

short) was the key early benefit of the ARPANET. This is true even today on the Internet,
as e-mail and instant messaging facilitates communications of all kinds among more than
a billion people worldwide.

Mutiple Users Sending and Receiving Information Simultaneously
One of the primary goals for ARPANET was to allow multiple users to send and receive
information simultaneously over the same communications paths (e.g., phone lines). The
network operated with a technique called packet switching, in which digital data was sent
in small bundles called packets. The packets contained address, error-control and sequenc-
ing information. The address information allowed packets to be routed to their destina-
tions. The sequencing information helped in reassembling the packets—which, because of
complex routing mechanisms, could actually arrive out of order—into their original order
for presentation to the recipient. Packets from different senders were intermixed on the
same lines. This packet-switching technique greatly reduced transmission costs, as com-
pared with the cost of dedicated communications lines.

The network was designed to operate without centralized control. If a portion of the
network failed, the remaining working portions would still route packets from senders to
receivers over alternative paths for reliability.

Protocols for Communication
The protocol for communicating over the ARPANET became known as TCP—the
Transmission Control Protocol. TCP ensured that messages were properly routed from
sender to receiver and that they arrived intact.

As the Internet evolved, organizations worldwide implemented their own networks
for both intraorganization (i.e., within the organization) and interorganization (i.e.,
between organizations) communications. A wide variety of networking hardware and soft-
ware appeared. One challenge was to get these different networks to communicate. ARPA
accomplished this with the development of IP—the Internet Protocol—truly creating a
“network of networks,” the current architecture of the Internet. The combined set of pro-
tocols is now commonly called TCP/IP.

Commercial Internet Use
Initially, Internet use was limited to universities and research institutions; then the mili-
tary began using the Internet. Eventually, the government decided to allow access to the
Internet for commercial purposes. Initially, there was resentment in the research and mil-
itary communities—these groups were concerned that response times would become poor
as “the Net” became saturated with users.

In fact, the exact opposite has occurred. Businesses rapidly realized that they could
tune their operations and offer new and better services to their clients, so they started
spending vast amounts of money to develop and enhance the Internet. This generated
fierce competition among communications carriers and hardware and software suppliers
to meet this demand. The result is that bandwidth (i.e., the information-carrying capacity)
of the Internet has increased tremendously and costs have plummeted.

World Wide Web
The World Wide Web allows computer users to locate and view multimedia-based docu-
ments on almost any subject over the Internet. Though the Internet was developed de-

1.3 World Wide Web Consortium (W3C) 5

cades ago, the web is a relatively recent creation. In 1989, Tim Berners-Lee of CERN (the
European Organization for Nuclear Research) began to develop a technology for sharing
information via hyperlinked text documents. Berners-Lee called his invention the Hyper-
Text Markup Language (HTML). He also wrote communication protocols to form the
backbone of his new information system, which he called the World Wide Web. In par-
ticular, he wrote the Hypertext Transfer Protocol (HTTP)—a communications protocol
for sending information over the web. Web use exploded with the availability in 1993 of
the Mosaic browser, which featured a user-friendly graphical interface. Marc Andreessen,
whose team at NCSA (the University of Illinois’ National Center for Supercomputing Ap-
plications) developed Mosaic, went on to found Netscape®, the company that many peo-
ple credit with initiating the explosive Internet economy of the late 1990s. Netscape’s
version of the Mosaic browser has been evolved by the Mozilla Corporation into the enor-
mously popular open source Mozilla Firefox browser.

Making Our Work and Lives Easier
In the past, most computer applications ran on computers that were not connected to one
another, whereas today’s applications can be written to communicate among the world’s
computers. The Internet mixes computing and communications technologies. It makes
our work easier. It makes information instantly and conveniently accessible worldwide. It
enables individuals and small businesses to get worldwide exposure. It is changing the way
business is done. People can search for the best prices on virtually any product or service.
Special-interest communities can stay in touch with one another. Researchers can be made
instantly aware of the latest breakthroughs. The Internet and the web are surely among
humankind’s most profound creations.

1.3 World Wide Web Consortium (W3C)
In October 1994, Tim Berners-Lee founded an organization—called the World Wide
Web Consortium (W3C)—devoted to developing nonproprietary, interoperable technol-
ogies for the World Wide Web. One of the W3C’s primary goals is to make the web uni-
versally accessible—regardless of ability, language or culture. The W3C (www.w3.org)
provides extensive resources on Internet and web technologies.

The W3C is also a standardization organization. Web technologies standardized by
the W3C are called Recommendations. W3C Recommendations include the Extensible
HyperText Markup Language (XHTML), Cascading Style Sheets (CSS), HyperText
Markup Language (HTML—now considered a “legacy” technology) and the Extensible
Markup Language (XML). A recommendation is not an actual software product, but a
document that specifies a technology’s role, syntax rules and so forth.

1.4 Web 2.0
In 2003 there was a noticeable shift in how people and businesses were using the web and
developing web-based applications. The term Web 2.0 was coined by Dale Dougherty of
O’Reilly® Media1 in 2003 to describe this trend. Although it became a major media buzz-

1. O’Reilly, T. “What is Web 2.0: Design Patterns and Business Models for the Next Generation
of Software.” September 2005 <http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/
09/30/what-is-web-20.html?page=1>.

www.w3.org
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1

6 Chapter 1 Introduction

word, few people really know what Web 2.0 means. Generally, Web 2.0 companies use
the web as a platform to create collaborative, community-based sites (e.g., social network-
ing sites, blogs, wikis, etc.).

Web 1.0
Web 1.0 (the state of the web through the 1990s and early 2000s) was focused on a rela-
tively small number of companies and advertisers producing content for users to access
(some people called it the “brochure web”). Web 2.0 involves the user—not only is the
content often created by the users, but users help organize it, share it, remix it, critique it,
update it, etc. One way to look at Web 1.0 is as a lecture, a small number of professors
informing a large audience of students. In comparison, Web 2.0 is a conversation, with ev-
eryone having the opportunity to speak and share views.

Architecture of Participation
Web 2.0 is providing new opportunities and connecting people and content in unique
ways. Web 2.0 embraces an architecture of participation—a design that encourages user
interaction and community contributions. You, the user, are the most important aspect of
Web 2.0—so important, in fact, that in 2006, TIME Magazine’s “Person of the Year” was
“you.”2 The article recognized the social phenomenon of Web 2.0—the shift away from
a powerful few to an empowered many. Several popular blogs now compete with tradi-
tional media powerhouses, and many Web 2.0 companies are built almost entirely on user-
generated content. For websites like MySpace®, Facebook®, Flickr™, YouTube, eBay®

and Wikipedia®, users create the content, while the companies provide the platforms.
These companies trust their users—without such trust, users cannot make significant con-
tributions to the sites.

Collective Intelligence
The architecture of participation has influenced software development as well. Open
source software is available for anyone to use and modify with few or no restrictions. Using
collective intelligence—the concept that a large diverse group of people will create smart
ideas—communities collaborate to develop software that many people believe is better and
more robust than proprietary software. Rich Internet Applications (RIAs) are being devel-
oped using technologies (such as Ajax) that have the look and feel of desktop software, en-
hancing a user’s overall experience. Software as a Service (SaaS)—software that runs on a
server instead of a local computer—has also gained prominence because of sophisticated
new technologies and increased broadband Internet access.

Search engines, including Google™, Yahoo!®, MSN®, Ask™, and many more, have
become essential to sorting through the massive amount of content on the web. Social
bookmarking sites such as del.icio.us and Ma.gnolia allow users to share their favorite sites
with others. Social media sites such as Digg™, Spotplex™ and Netscape enable the com-
munity to decide which news articles are the most significant. The way we find the infor-
mation on these sites is also changing—people are tagging (i.e., labeling) web content by
subject or keyword in a way that helps anyone locate information more effectively.

2. Grossman, L. “TIME’s Person of the Year: You.” TIME, December 2006 <http://
www.time.com/time/magazine/article/0,9171,1569514,00.html>.

http://www.time.com/time/magazine/article/0,9171,1569514,00.html
http://www.time.com/time/magazine/article/0,9171,1569514,00.html

1.5 Key Software Trend: Object Technology 7

Web Services
Web services have emerged and, in the process, have inspired the creation of many Web
2.0 businesses. Web services allow you to incorporate functionality from existing applica-
tions and websites into your own web applications quickly and easily. For example, using
Amazon Web Services™, you can create a specialty bookstore to run your website and
earn revenues through the Amazon Associates Program; or, using Google™ Maps web ser-
vices with eBay web services, you can build location-based “mashup” applications to find
auction items in certain geographical areas. Web services, inexpensive computers, abun-
dant high-speed Internet access, open source software and many other elements have in-
spired new, exciting, lightweight business models that people can launch with only a
small investment. Some types of websites with rich and robust functionality that might
have required hundreds of thousands or even millions of dollars to build in the 1990s can
now be built for nominal amounts of money.

Semantic Web
In the future, we’ll see computers learn to understand the meaning of the data on the
web—the beginnings of the Semantic Web are already appearing. Continual improve-
ments in hardware, software and communications technologies will enable exciting new
types of applications.

See our Web 2.0 Resource Center at www.deitel.com/web2.0/ for more information
on the major characteristics and technologies of Web 2.0, key Web 2.0 companies and
Web 2.0 Internet business and monetization models. The Resource Center also includes
information on user-generated content, blogging, content networks, social networking,
location-based services and more. We have separate Resource Centers on many Web 2.0
concepts and technologies. You can view a list of our Resource Centers in the first few
pages of this book and at www.deitel.com/ResourceCenters.html.

1.5 Key Software Trend: Object Technology
One of the authors, HMD, remembers the great frustration felt in the 1960s by software
development organizations, especially those working on large-scale projects. During his
undergraduate years, he had the privilege of working summers at a leading computer ven-
dor on the teams developing timesharing, virtual-memory operating systems. This was a
great experience for a college student. But, in the summer of 1967, reality set in when the
company “decommitted” from producing as a commercial product the particular system
on which hundreds of people had been working for many years. It was difficult to get this
thing called software right—software is “complex stuff.”

Improvements to software technology did emerge, with the benefits of structured pro-
gramming and the related disciplines of structured systems analysis and design being real-
ized in the 1970s. Not until the technology of object-oriented programming became
widely used in the 1990s, though, did software developers feel they had the necessary tools
for making major strides in the software development process.

What are objects and why are they special? Actually, object technology is a packaging
scheme that helps us create meaningful software units. These can be large and are highly
focused on particular applications areas. There are date objects, time objects, paycheck
objects, invoice objects, audio objects, video objects, file objects, record objects and so on.
In fact, almost any noun can be reasonably represented as an object.

www.deitel.com/web2.0/
www.deitel.com/ResourceCenters.html

8 Chapter 1 Introduction

We live in a world of objects. Just look around you. There are cars, planes, people,
animals, buildings, traffic lights, elevators and the like. Before object-oriented languages
appeared, procedural programming languages (such as Fortran, COBOL, Pascal, BASIC
and C) were focused on actions (verbs) rather than on things or objects (nouns). Program-
mers living in a world of objects programmed primarily using verbs. This made it awkward
to write programs. Now, with the availability of popular object-oriented languages, such
as C++, Java, Visual Basic and C#, programmers continue to live in an object-oriented
world and can program in an object-oriented manner. This is a more natural process than
procedural programming and has resulted in significant productivity gains.

A key problem with procedural programming is that the program units do not effec-
tively mirror real-world entities, so these units are not particularly reusable. It’s not
unusual for programmers to “start fresh” on each new project and have to write similar
software “from scratch.” This wastes time and money, as people repeatedly “reinvent the
wheel.” With object technology, the software entities created (called classes), if properly
designed, tend to be reusable on future projects. Using libraries of reusable componentry
can greatly reduce effort required to implement certain kinds of systems (compared to the
effort that would be required to reinvent these capabilities on new projects).

Software Engineering Observation 1.1
Extensive class libraries of reusable software components are available on the Internet. Many of
these libraries are free.

Software Engineering Observation 1.2
Some organizations report that the key benefit object-oriented programming gives them is not
software that is reusable but, rather, software that is more understandable, better organized and
easier to maintain, modify and debug. This can be significant, because perhaps as much as 80
percent of software cost is associated not with the original efforts to develop the software, but with
the continued evolution and maintenance of that software throughout its lifetime.

1.6 JavaScript: Object-Based Scripting for the Web
JavaScript is a powerful object-based scripting language with strong support for proper
software engineering techniques. You’ll create and manipulate objects from the start in
JavaScript. JavaScript is available free in today’s popular web browsers.

You’ll see that JavaScript is a portable scripting language and that programs written
in JavaScript can run in many web browsers. Actually, portability is an elusive goal.
\

Portability Tip 1.1
Although it is easier to write portable programs in JavaScript than in many other programming
languages, differences among interpreters and browsers make portability difficult to achieve.
Simply writing programs in JavaScript does not guarantee portability. You’ll occasionally need
to research platform variations and write your code accordingly.

Portability Tip 1.2
When writing JavaScript programs, you need to deal directly with cross-browser portability is-
sues. Such issues are hidden by JavaScript libraries, such as Dojo (discussed in Chapter 13), Pro-
totype, Script.aculo.us and ASP.NET Ajax, which provide powerful, ready-to-use capabilities
that simplify JavaScript coding by making it cross-browser compatible.

1.7 Browser Portability 9

Error-Prevention Tip 1.1
Always test your JavaScript programs on all systems and in all web browsers for which they are
intended.

JavaScript was created by Netscape, which created the first widely successful web
browser. Both Netscape and Microsoft have been instrumental in standardizing JavaScript
through ECMA International (formerly the European Computer Manufacturers Associa-
tion) as ECMAScript. Adobe Flash uses another scripting language named ActionScript.
ActionScript and JavaScript are converging in the JavaScript standard’s next version
(JavaScript 2/ECMA Script version 4) currently under development. This will result in a
universal client scripting language, greatly simplifying web application development.

1.7 Browser Portability
Ensuring a consistent look and feel on client-side browsers is one of the great challenges
of developing web-based applications. Currently, a standard does not exist to which soft-
ware developers must adhere when creating web browsers. Although browsers share a com-
mon set of features, each browser might render pages differently. Browsers are available in
many versions and on many different platforms (Microsoft Windows, Apple Macintosh,
Linux, UNIX, etc.). Vendors add features to each new version that sometimes cause cross-
platform incompatibility issues. Clearly it is difficult to develop web pages that render cor-
rectly on all versions of all browsers. In this book we develop web applications that execute
on the Internet Explorer 7 and Firefox 2 (and higher) browsers. Most examples will oper-
ate correctly in other recent browsers such as Opera, Apple’s Safari and Google’s Chrome,
but we have not explicitly tested the applications on these other browsers.

Portability Tip 1.3
The web is populated with many different browsers, which makes it difficult for authors and
web application developers to create universal solutions. The W3C is working toward the goal
of a universal client-side platform.

1.8 Web Resources
www.deitel.com/

Check this site frequently for updates, corrections and additional resources for all Deitel & Associ-
ates, Inc., publications.
www.deitel.com/ResourceCenters.html

Check out the complete list of Deitel Resource Centers, including numerous programming, open
source, Web 2.0 and Internet business topics.
www.w3.org

The World Wide Web Consortium (W3C) website offers a comprehensive description of web tech-
nologies. For each Internet technology with which the W3C is involved, the site provides a descrip-
tion of the technology, its benefits to web designers, the history of the technology and the future
goals of the W3C in developing the technology.
www.deitel.com/Ajax/
www.deitel.com/XML/
www.deitel.com/XHTML/
www.deitel.com/CSS21/
www.deitel.com/Dojo/

www.deitel.com/
www.deitel.com/ResourceCenters.html
www.w3.org
www.deitel.com/Ajax/
www.deitel.com/XML/
www.deitel.com/XHTML/
www.deitel.com/CSS21/
www.deitel.com/Dojo/

2
Introduction to
XHTML

O B J E C T I V E S
In this chapter you’ll learn:

■ Important components of XHTML documents.

■ To use XHTML to create web pages.

■ To add images to web pages.

■ To create and use hyperlinks to navigate web pages.

■ To mark up lists of information.

■ To create tables with rows and columns of data and
control table formatting.

■ To create and use forms to get user input.

■ To make web pages accessible to search engines using
<meta> tags.

To read between the lines
was easier than to follow the
text.
—Henry James

High thoughts must have
high language.
—Aristophanes

Yea, from the table of my
memory
I’ll wipe away all trivial
fond records.
—William Shakespeare

He had a wonderful talent
for packing thought close,
and rendering it portable.
—Thomas Babington
Macaulay

2.1 Introduction 11

O
u

tl
in

e

2.1 Introduction
Welcome to the world of opportunity created by the World Wide Web. The Internet is
almost four decades old, but it wasn’t until the web’s growth in popularity in the 1990s
and the recent start of the Web 2.0 era that the explosion of opportunity we are experienc-
ing began. Exciting new developments occur almost daily—the pace of innovation is un-
precedented. In this chapter, you’ll develop your own web pages. As the book proceeds,
you’ll create increasingly appealing and powerful web pages.

This chapter begins unlocking the power of web-based application development with
XHTML—the Extensible HyperText Markup Language. Later in the chapter, we intro-
duce more sophisticated XHTML techniques such as internal linking for easier page nav-
igation, forms for collecting information from a web-page visitor and tables, which are
particularly useful for structuring information from databases (i.e., software that stores
structured sets of data). In the next chapter, we discuss a technology called Cascading Style
Sheets™ (CSS), a technology that makes web pages more visually appealing.

Unlike procedural programming languages such as C, C++, or Java, XHTML is a
markup language that specifies the format of the text that is displayed in a web browser
such as Microsoft’s Internet Explorer or Mozilla Firefox.

One key issue when using XHTML is the separation of the presentation of a docu-
ment (i.e., the document’s appearance when rendered by a browser) from the structure of
the document’s information. XHTML is based on HTML (HyperText Markup Lan-
guage)—a legacy technology of the World Wide Web Consortium (W3C). In HTML, it
was common to specify both the document’s structure and its formatting. Formatting
might specify where the browser placed an element in a web page or the fonts and colors
used to display an element. The XHTML 1.0 Strict recommendation (the version of
XHTML that we use in this book) allows only a document’s structure to appear in a valid
XHTML document, and not its formatting. Normally, such formatting is specified with
Cascading Style Sheets (Chapter 3). All our examples in this chapter are based on the
XHTML 1.0 Strict Recommendation.

2.1 Introduction
2.2 Editing XHTML
2.3 First XHTML Example
2.4 W3C XHTML Validation Service
2.5 Headings
2.6 Linking
2.7 Images
2.8 Special Characters and Horizontal Rules
2.9 Lists

2.10 Tables
2.11 Forms
2.12 Internal Linking
2.13 meta Elements
2.14 Web Resources

12 Chapter 2 Introduction to XHTML

2.2 Editing XHTML
In this chapter, we write XHTML in its source-code form. We create XHTML documents
by typing them in a text editor (e.g., Notepad, TextEdit, vi, emacs) and saving them with
either an .html or an .htm filename extension.

Good Programming Practice 2.1
Assign filenames to documents that describe their functionality. This practice can help you iden-
tify documents faster. It also helps people who want to link to a page, by giving them an easy-to-
remember name. For example, if you are writing an XHTML document that contains product
information, you might want to call it products.html.

Computers called web servers running specialized software store XHTML docu-
ments. Clients (e.g., web browsers) request specific resources such as the XHTML docu-
ments from web servers. For example, typing www.deitel.com/books/downloads.html
into a web browser’s address field requests downloads.html from the books directory on
the web server running at www.deitel.com. For now, we simply place the XHTML doc-
uments on our computer and render them by opening them locally with a web browser
such as Internet Explorer or Firefox.

2.3 First XHTML Example
This chapter presents XHTML markup and provides screen captures that show how a
browser renders (i.e., displays) the XHTML. You can download the examples from
www.deitel.com/books/jsfp/. Every XHTML document we show has line numbers for
your convenience—these line numbers are not part of the XHTML documents. As you
read this book, open each XHTML document in your web browser so you can view and
interact with it as it was originally intended.

Figure 2.1 is an XHTML document named main.html. This first example displays
the message “Welcome to XHTML!” in the browser. The key line in the program is line
13, which tells the browser to display “Welcome to XHTML!” Now let us consider each
line of the program.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 2.1: main.html -->
6 <!-- First XHTML example. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Welcome</title>
10 </head>

11
12 <body>

13 <p>Welcome to XHTML!</p>
14 </body>

15 </html>

Fig. 2.1 | First XHTML example. (Part 1 of 2.)

www.deitel.com/books/downloads.html
www.deitel.com
www.deitel.com/books/jsfp/

2.3 First XHTML Example 13

Lines 1–3 are required in XHTML documents to conform with proper XHTML
syntax. For now, copy and paste these lines into each XHTML document you create. The
meaning of these lines is discussed in detail in Chapter 12.

Lines 5–6 are XHTML comments. XHTML document creators insert comments to
improve markup readability and describe the content of a document. Comments also help
other people read and understand an XHTML document’s markup and content. Com-
ments do not cause the browser to perform any action when the user loads the XHTML
document into the web browser to view it. XHTML comments always start with <!-- and
end with -->. Each of our XHTML examples includes comments that specify the figure
number and filename and provide a brief description of the example’s purpose. Subse-
quent examples include comments in the markup, especially to highlight new features.

Good Programming Practice 2.2
Place comments throughout your markup. Comments help other programmers understand the
markup, assist in debugging and list useful information that you do not want the browser to ren-
der. Comments also help you understand your own markup when you revisit a document to mod-
ify or update it in the future.

XHTML markup contains text that represents the content of a document and ele-
ments that specify a document’s structure. Some important elements of an XHTML doc-
ument are the html element, the head element and the body element. The html element
encloses the head section (represented by the head element) and the body section (repre-
sented by the body element). The head section contains information about the XHTML
document, such as its title. The head section also can contain special document formatting
instructions called style sheets and client-side programs called scripts for creating dynamic
web pages. (We introduce style sheets in Chapter 3 and scripting with JavaScript in
Chapter 4.) The body section contains the page’s content that the browser displays when
the user visits the web page.

XHTML documents delimit an element with start and end tags. A start tag consists
of the element name in angle brackets (e.g., <html>). An end tag consists of the element
name preceded by a forward slash (/) in angle brackets (e.g., </html>). In this example,
lines 7 and 15 define the start and end of the html element. Note that the end tag in line
15 has the same name as the start tag, but is preceded by a / inside the angle brackets.
Many start tags have attributes that provide additional information about an element.
Browsers can use this additional information to determine how to process the element.
Each attribute has a name and a value separated by an equals sign (=). Line 7 specifies a
required attribute (xmlns) and value (http://www.w3.org/1999/xhtml) for the html ele-

Fig. 2.1 | First XHTML example. (Part 2 of 2.)

Title bar shows
contents of title

element

http://www.w3.org/1999/xhtml

14 Chapter 2 Introduction to XHTML

ment in an XHTML document. For now, simply copy and paste the html element start
tag in line 7 into your XHTML documents. We discuss the details of the xmlns attribute
in Chapter 12.

Common Programming Error 2.1
Not enclosing attribute values in either single or double quotes is a syntax error. However, some
web browsers may still render the element correctly.

Common Programming Error 2.2
Using uppercase letters in an XHTML element or attribute name is a syntax error. However,
some web browsers may still render the element correctly.

An XHTML document divides the html element into two sections—head and body.
Lines 8–10 define the page’s head section with a head element. Line 9 specifies a title
element. This is called a nested element because it is enclosed in the head element’s start
and end tags. The head element is also a nested element because it is enclosed in the html
element’s start and end tags. The title element describes the web page. Titles usually
appear in the title bar at the top of the browser window, in the browser tab that the page
is displayed on, and also as the text identifying a page when users add the page to their list
of Favorites or Bookmarks that enables them to return to their favorite sites. Search engines
(i.e., sites that allow users to search the web) also use the title for indexing purposes.

Good Programming Practice 2.3
Indenting nested elements emphasizes a document’s structure and promotes readability.

Common Programming Error 2.3
XHTML does not permit tags to overlap—a nested element’s end tag must appear in the docu-
ment before the enclosing element’s end tag. For example, the nested XHTML tags
<head><title>hello</head></title> cause a syntax error, because the enclosing head ele-
ment’s ending </head> tag appears before the nested title element’s ending </title> tag.

Good Programming Practice 2.4
Use a consistent title-naming convention for all pages on a site. For example, if a site is named
“Bailey’s Website,” then the title of the contact page might be “Bailey’s Website—Contact.”
This practice can help users better understand the website’s structure.

Line 12 begins the document’s body element. The body section of an XHTML doc-
ument specifies the document’s content, which may include text and elements.

Some elements, such as the paragraph element (denoted with <p> and </p>) in line
13, mark up text for display in a browser. All the text placed between the <p> and </p>
tags forms one paragraph. When the browser renders a paragraph, a blank line usually pre-
cedes and follows paragraph text.

This document ends with two end tags (lines 14–15). These tags close the body and
html elements, respectively. The </html> tag in an XHTML document informs the
browser that the XHTML markup is complete.

To open an XHTML example from this chapter, open the folder where you saved the
book’s examples, browse to the ch04 folder and double click the file to open it in your

2.4 W3C XHTML Validation Service 15

default web browser. At this point your browser window should appear similar to the
sample screen capture shown in Fig. 2.1. (Note that we resized the browser window to save
space in the book.)

2.4 W3C XHTML Validation Service
Programming web-based applications can be complex, and XHTML documents must be
written correctly to ensure that browsers process them properly. To promote correctly
written documents, the World Wide Web Consortium (W3C) provides a validation ser-
vice (validator.w3.org) for checking a document’s syntax. Documents can be validated
by providing a URL that specifies the file’s location, by uploading a file to valida-
tor.w3.org/file-upload.html or by pasting code directly into a text area. Uploading a
file copies the file from the user’s computer to another computer on the Internet. The
W3C’s web page indicates that the service name is MarkUp Validation Service and that the
validation service is able to validate the syntax of XHTML documents. All the XHTML
examples in this book have been validated successfully using validator.w3.org.

By clicking Choose…, users can select files on their own computers for upload. After
selecting a file, clicking the Check button uploads and validates the file. If a document con-
tains syntax errors, the validation service displays error messages describing the errors.

Error-Prevention Tip 2.1
Most current browsers attempt to render XHTML documents even if they are invalid. This often
leads to unexpected and possibly undesirable results. Use a validation service, such as the W3C
MarkUp Validation Service, to confirm that an XHTML document is syntactically correct.

2.5 Headings
Some text in an XHTML document may be more important than other text. For example,
the text in this section is considered more important than a footnote. XHTML provides
six headings, called heading elements, for specifying the relative importance of informa-
tion. Figure 2.2 demonstrates these elements (h1 through h6). Heading element h1 (line
13) is considered the most significant heading and is typically rendered in a larger font
than the other five headings (lines 14–18). Each successive heading element (i.e., h2, h3,
etc.) is typically rendered in a progressively smaller font.

Portability Tip 2.1
The text size used to display each heading element can vary significantly between browsers. In
Chapter 3, we discuss how to control the text size and other text properties.

Look-and-Feel Observation 2.1
Placing a heading at the top of every XHTML page helps viewers understand the purpose of each
page.

Look-and-Feel Observation 2.2
Use larger headings to emphasize more important sections of a web page.

16 Chapter 2 Introduction to XHTML

2.6 Linking
One of the most important XHTML features is the hyperlink, which references (or links
to) other resources, such as XHTML documents and images. When a user clicks a hyper-
link, the browser tries to execute an action associated with it (e.g., navigate to a URL, open
an e-mail client, etc.). In XHTML, both text and images can act as hyperlinks. Web
browsers typically underline text hyperlinks and color their text blue by default, so that
users can distinguish hyperlinks from plain text. In Fig. 2.3, we create text hyperlinks to
four different websites.

Line 14 introduces the strong element, which indicates that its contents has high
importance. Browsers typically display such text in a bold font.

Links are created using the a (anchor) element. Line 17 defines a hyperlink to the
URL assigned to attribute href, which specifies the location of a linked resource, such as

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 2.2: heading.html -->
6 <!-- Heading elements h1 through h6. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Headings</title>
10 </head>

11
12 <body>

13
14
15
16
17
18
19 </body>

20 </html>

Fig. 2.2 | Heading elements h1 through h6.

<h1>Level 1 Heading</h1>
<h2>Level 2 heading</h2>
<h3>Level 3 heading</h3>
<h4>Level 4 heading</h4>
<h5>Level 5 heading</h5>
<h6>Level 6 heading</h6>

2.6 Linking 17

a web page, a file or an e-mail address. This particular anchor element links the text Deitel
to a web page located at http://www.deitel.com. When a URL does not indicate a spe-
cific document on the website, the web server returns a default web page. This page is often
called index.html; however, most web servers can be configured to use any file as the
default web page for the site. If the web server cannot locate a requested document, it
returns an error indication to the web browser, and the browser displays a web page con-
taining an error message to the user.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 2.3: links.html -->
6 <!-- Linking to other web pages. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Links</title>
10 </head>

11
12 <body>

13 <h1>Here are my favorite sites</h1>
14 <p>Click a name to go to that page.</p>
15
16 <!-- Create four text hyperlinks -->
17
18
19
20
21 </body>

22 </html>

Fig. 2.3 | Linking to other web pages.

<p>Deitel</p>
<p>Prentice Hall</p>
<p>Yahoo!</p>
<p>USA Today</p>

http://www.deitel.com

18 Chapter 2 Introduction to XHTML

Hyperlinking to an E-Mail Address
Anchors can link to e-mail addresses using a mailto: URL. When someone clicks this type
of anchored link, most browsers launch the default e-mail program (e.g., Microsoft Out-
look or Mozilla Thunderbird) to enable the user to write an e-mail message to the linked
address. Figure 2.4 demonstrates this type of anchor. Lines 15–17 contain an e-mail link.
The form of an e-mail anchor is …. In this case,
we link to the e-mail address deitel@deitel.com.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 2.4: contact.html -->
6 <!-- Linking to an e-mail address. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Contact Page</title>
10 </head>

11
12 <body>

13 <p>
14 My email address is
15
16
17
18 . Click the address and your default email client
19 will open an e-mail message and address it to me.
20 </p>

21 </body>

22 </html>

Fig. 2.4 | Linking to an e-mail address.

 deitel@deitel.com

2.7 Images 19

2.7 Images
The examples discussed so far demonstrate how to mark up documents that contain only
text. However, most web pages contain both text and images. In fact, images are an equally
important, if not essential, part of web-page design. The three most popular image formats
used by web developers are Graphics Interchange Format (GIF), Joint Photographic Ex-
perts Group (JPEG) and Portable Network Graphics (PNG) images. Users can create im-
ages using specialized software, such as Adobe Photoshop Elements (www.adobe.com),
G.I.M.P. (http://www.gimp.org) and Inkscape (http://www.inkscape.org). Images
may also be acquired from various websites. Figure 2.5 demonstrates how to incorporate
images into web pages.

Lines 14–15 use an img element to insert an image in the document. The image file’s
location is specified with the img element’s src attribute. This image is located in the same
directory as the XHTML document, so only the image’s filename is required. Optional
attributes width and height specify the image’s width and height, respectively. You can

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 2.5: picture.html -->
6 <!-- Images in XHTML files. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Images</title>
10 </head>

11
12 <body>

13 <p>
14
15
16

17

18 </p>

19 </body>

20 </html>

Fig. 2.5 | Images in XHTML files.

<img src = "cpphtp6.jpg" width = "92" height = "120"

alt = "C++ How to Program book cover" />

<img src = "jhtp.jpg" width = "92" height = "120"

 alt = "Java How to Program book cover" />

www.adobe.com
http://www.gimp.org
http://www.inkscape.org

20 Chapter 2 Introduction to XHTML

scale an image by increasing or decreasing the values of the image width and height attri-
butes. If these attributes are omitted, the browser uses the image’s actual width and height.
Images are measured in pixels (“picture elements”), which represent dots of color on the
screen. Any image-editing program will have a feature that displays the dimensions, in
pixels, of an image. The image in Fig. 2.5 is 92 pixels wide and 120 pixels high.

Good Programming Practice 2.5
Always include the width and the height of an image inside the tag. When the browser
loads the XHTML file, it will know immediately from these attributes how much screen space
to provide for the image and will lay out the page properly, even before it downloads the image.

Performance Tip 2.1
Including the width and height attributes in an tag can help the browser load and render
pages faster.

Common Programming Error 2.4
Entering new dimensions for an image that change its inherent width-to-height ratio distorts the
appearance of the image. For example, if your image is 200 pixels wide and 100 pixels high, you
should ensure that any new dimensions have a 2:1 width-to-height ratio.

Every img element in an XHTML document must have an alt attribute. If a browser
cannot render an image, the browser displays the alt attribute’s value. A browser may not
be able to render an image for several reasons. It may not support images—as is the case
with a text-based browser (i.e., a browser that can display only text)—or the client may
have disabled image viewing to reduce download time. Figure 2.5 shows Internet Explorer
7 rendering an X symbol and displaying the alt attribute’s value, signifying that the image
(jhtp.jpg) cannot be found.

The alt attribute helps you create accessible web pages for users with disabilities,
especially those with vision impairments who use text-based browsers. Specialized software
called a speech synthesizer can “speak” the alt attribute’s value so that a user with a visual
impairment knows what the browser is displaying.

Some XHTML elements (called empty elements) contain only attributes and do not
mark up text (i.e., text is not placed between the start and end tags). Empty elements (e.g.,
img) must be terminated, either by using the forward slash character (/) inside the closing
right angle bracket (>) of the start tag or by explicitly including the end tag. When using
the forward slash character, we add a space before it to improve readability (as shown at
the ends of lines 15 and 17). Rather than using the forward slash character, lines 16–17
could be written with a closing tag as follows:

<img src = "jhtp.jpg" width = "92" height = "120"

 alt = "Java How to Program book cover">

Using Images as Hyperlinks
By using images as hyperlinks, web developers can create graphical web pages that link to
other resources. In Fig. 2.6, we create six different image hyperlinks.

Lines 14–17 create an image hyperlink by nesting an img element in an anchor (a)
element. The value of the img element’s src attribute value specifies that this image
(links.jpg) resides in a directory named buttons. The buttons directory and the

2.7 Images 21

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 2.6: nav.html -->
6 <!-- Images as link anchors. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Navigation Bar</title>
10 </head>

11
12 <body>

13 <p>
14
15
16
17

18
19
20 <img src = "buttons/list.jpg" width = "65"

21 height = "50" alt = "List Example Page" />

22

23
24
25 <img src = "buttons/contact.jpg" width = "65"

26 height = "50" alt = "Contact Page" />

27

28
29
30 <img src = "buttons/table.jpg" width = "65"

31 height = "50" alt = "Table Page" />

32

33
34
35 <img src = "buttons/form.jpg" width = "65"

36 height = "50" alt = "Feedback Form" />

37

38 </p>
39 </body>

40 </html>

Fig. 2.6 | Images as link anchors. (Part 1 of 2.)

<img src = "buttons/links.jpg" width = "65"

 height = "50" alt = "Links Page" />

22 Chapter 2 Introduction to XHTML

XHTML document are in the same directory. Images from other web documents also can
be referenced by setting the src attribute to the name and location of the image. Note that
if you’re hosting a publicly available web page that uses an image from another site, you
should get permission to use the image and host a copy of image on your own website. If
you refer to an image on another website, the browser has to request the image resource
from the other site’s server. Clicking an image hyperlink takes a user to the web page spec-
ified by the surrounding anchor element’s href attribute. Notice that when the mouse
hovers over a link of any kind, the URL that the link points to is displayed in the status
bar at the bottom of the browser window.

2.8 Special Characters and Horizontal Rules
When marking up text, certain characters or symbols (e.g., <) may be difficult to embed
directly into an XHTML document. Some keyboards do not provide these symbols, or the
presence of these symbols may cause syntax errors. For example, the markup

<p>if x < 10 then increment x by 1</p>

results in a syntax error because it uses the less-than character (<), which is reserved for start
tags and end tags such as <p> and </p>. XHTML provides character entity references (in
the form &code;) for representing special characters. We could correct the previous line by
writing

<p>if x < 10 then increment x by 1</p>

which uses the character entity reference < for the less-than symbol (<).
Figure 2.7 demonstrates how to use special characters in an XHTML document.

Lines 24–25 contain other special characters, which can be expressed as either character
entity references (coded using word abbreviations such as & for ampersand and

Fig. 2.6 | Images as link anchors. (Part 2 of 2.)

2.8 Special Characters and Horizontal Rules 23

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 2.7: contact2.html -->
6 <!-- Inserting special characters. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Contact Page</title>
10 </head>

11
12 <body>

13 <p>
14 Click
15 here
16 to open an email message addressed to
17 deitel@deitel.com.
18 </p>
19
20
21
22 <!-- special characters are entered -->
23 <!-- using the form &code; -->
24
25
26
27 <!-- to strike through text use tags -->
28 <!-- to subscript text use <sub> tags -->
29 <!-- to superscript text use <sup> tags -->
30 <!-- these tags are nested inside other tags -->
31
32
33
34
35
36 </body>

37 </html>

Fig. 2.7 | Inserting special characters.

<hr /> <!-- inserts a horizontal rule -->

<p>All information on this site is ©
 Deitel & Associates, Inc. 2007.</p>

<p>You may download 3.14 x 10²
 characters worth of information from this site.
 Only _{one} download per hour is permitted.</p>
<p>Note: < ¼ of the information
 presented here is updated daily.</p>

24 Chapter 2 Introduction to XHTML

© for copyright) or numeric character references—decimal or hexadecimal (hex)
values representing special characters. For example, the & character is represented in dec-
imal and hexadecimal notation as & and &, respectively. Hexadecimal numbers
are base 16 numbers—digits in a hexadecimal number have values from 0 to 15 (a total of
16 different values). The letters A–F represent the hexadecimal digits corresponding to
decimal values 10–15. Thus in hexadecimal notation we can have numbers like 876 con-
sisting solely of decimal-like digits, numbers like DA19F consisting of digits and letters,
and numbers like DCB consisting solely of letters.

In lines 31–33, we introduce four new elements. Most browsers render the del ele-
ment as strike-through text. With this format users can easily indicate document revisions.
To superscript text (i.e., raise text above the baseline and decreased font size) or subscript
text (i.e., lower text below the baseline and decreased font size), use the sup or sub element,
respectively. The paragraph in lines 34–35 contains an em element, which indicates that
its contents should be emphasized. Browsers usually render em elements in an italic font.
We also use character entity reference < for a less-than sign and ¼ for the frac-
tion 1/4 (line 34).

In addition to special characters, this document introduces a horizontal rule, indi-
cated by the <hr /> tag in line 22. Most browsers render a horizontal rule as a horizontal
line with a blank line above and below it.

2.9 Lists
Up to this point, we have presented basic XHTML elements and attributes for linking to
resources, creating headings, using special characters and incorporating images. In this sec-
tion, we discuss how to organize information on a web page using lists. In the next section,
we introduce another feature for organizing information, called a table. Figure 2.8 displays
text in an unordered list (i.e., a list that does not order its items by letter or number). The
unordered list element ul creates a list in which each item begins with a bullet symbol
(called a disc). Each entry in an unordered list (element ul in line 17) is an li (list item)
element (lines 19–22). Most web browsers render each li element on a new line with a
bullet symbol indented from the beginning of the line.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 2.8: links2.html -->
6 <!-- Unordered list containing hyperlinks. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Links</title>
10 </head>

11
12 <body>

13 <h1>Here are my favorite sites</h1>
14 <p>Click on a name to go to that page.</p>
15

Fig. 2.8 | Unordered list containing hyperlinks. (Part 1 of 2.)

2.9 Lists 25

Nested Lists
Lists may be nested to represent hierarchical relationships, as in an outline format.
Figure 2.9 demonstrates nested lists and ordered lists. The ordered list element ol creates
a list in which each item begins with a number.

 A web browser indents each nested list to indicate a hierarchical relationship. The first
ordered list begins at line 30. Items in an ordered list are enumerated one, two, three and
so on. Nested ordered lists are enumerated in the same manner. The items in the outer-
most unordered list (line 16) are preceded by discs. List items nested inside the unordered
list of line 16 are preceded by circular bullets. Although not demonstrated in this example,
subsequent nested list items are preceded by square bullets.

16 <!-- create an unordered list -->
17
18 <!-- add four list items -->
19
20
21
22
23

24 </body>

25 </html>

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 2.9: list.html -->
6 <!-- Nested and ordered lists. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

Fig. 2.9 | Nested and ordered lists. (Part 1 of 3.)

Fig. 2.8 | Unordered list containing hyperlinks. (Part 2 of 2.)

Deitel
W3C
Yahoo!
CNN

26 Chapter 2 Introduction to XHTML

8 <head>

9 <title>Lists</title>
10 </head>

11
12 <body>

13 <h1>The Best Features of the Internet</h1>
14
15 <!-- create an unordered list -->
16
17 You can meet new people from countries around
18 the world.
19
20 You have access to new media as it becomes public:
21
22 <!-- this starts a nested list, which uses a -->
23 <!-- modified bullet. The list ends when you -->
24 <!-- close the tag. -->
25
26 New games
27
28
29
30
31
32
33
34
35
36 Around the clock news
37 Search engines
38 Shopping
39
40
41
42
43
44
45
46
47
48
49
50 <!-- ends the nested list of line 25 -->
51
52
53 Links
54 Keeping in touch with old friends
55 It is the technology of the future!
56 <!-- ends the unordered list of line 16 -->
57 </body>

58 </html>

Fig. 2.9 | Nested and ordered lists. (Part 2 of 3.)

New applications

<!-- nested ordered list -->

 For business
 For pleasure

 <!-- ends line 27 new applications li -->

Programming

<!-- another nested ordered list -->

 XML
 Java
 XHTML
 Scripts
 New languages

 <!-- ends programming li of line 39 -->

2.10 Tables 27

2.10 Tables
Tables are frequently used to organize data into rows and columns. Our first example
(Fig. 2.10) creates a table with six rows and two columns to display price information for
fruit.

Tables are defined with the table element (lines 15–62). Lines 15–17 specify the start
tag for a table element that has several attributes. The border attribute specifies the table’s
border width in pixels. To create a table without a border, set border to "0". This example
assigns attribute width the value "40%" to set the table’s width to 40 percent of the
browser’s width. A developer can also set attribute width to a specified number of pixels.
Try resizing the browser window to see how the width of the window affects the width of
the table.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 2.10: table1.html -->
6 <!-- Creating a basic table. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>A simple XHTML table</title>
10 </head>

11

Fig. 2.10 | Creating a basic table. (Part 1 of 3.)

Fig. 2.9 | Nested and ordered lists. (Part 3 of 3.)

28 Chapter 2 Introduction to XHTML

12 <body>

13
14 <!-- the <table> tag opens a table -->
15

16

17

18
19 <!-- the <caption> tag summarizes the table's -->
20 <!-- contents (this helps the visually impaired) -->
21
22
23 <!-- the <thead> section appears first in the table -->
24 <!-- it formats the table header area -->
25

26

27
28
29

30

31
32 <!-- the <tfoot> section appears last in the table -->
33 <!-- it formats the table footer -->
34

35

36
37
38

39

40
41 <!-- all table content is enclosed -->
42 <!-- within the <tbody> -->
43

44

45 <!-- insert a data cell -->
46
47

48 <tr>

49 <td>Orange</td>
50 <td>$0.50</td>
51 </tr>

52 <tr>

53 <td>Banana</td>
54 <td>$1.00</td>
55 </tr>

56 <tr>

57 <td>Pineapple</td>
58 <td>$2.00</td>
59 </tr>

60

61

62
63 </body>

64 </html>

Fig. 2.10 | Creating a basic table. (Part 2 of 3.)

<table border = "1" width = "40%"

 summary = "This table provides information about

 the price of fruit">

<caption>Price of Fruit</caption>

<thead>

 <tr> <!-- <tr> inserts a table row -->
 <th>Fruit</th> <!-- insert a heading cell -->
 <th>Price</th>
 </tr>

</thead>

<tfoot>

 <tr>

 <th>Total</th>
 <th>$3.75</th>
 </tr>

</tfoot>

<tbody>

 <tr>

 <td>Apple</td>
 <td>$0.25</td>
 </tr>

 </tbody>

</table>

2.10 Tables 29

As its name implies, attribute summary (lines 16–17) describes the table’s contents.
Speech devices use this attribute to make the table more accessible to users with visual
impairments. The caption element (line 21) describes the table’s content and helps text-
based browsers interpret the table data. Text inside the <caption> tag is rendered above
the table by most browsers. Attribute summary and element caption are two of the many
XHTML features that make web pages more accessible to users with disabilities.

A table has three distinct sections—head, body and foot. The head section (or header
cell) is defined with a thead element (lines 25–30), which contains header information
such as column names. Each tr element (lines 26–29) defines an individual table row.
The columns in the head section are defined with th elements. Most browsers center text
formatted by th (table header column) elements and display them in bold. Table header
elements are nested inside table row elements (lines 27–28).

The body section, or table body, contains the table’s primary data. The table body
(lines 43–60) is defined in a tbody element. In the body, each tr element specifies one
row. Data cells contain individual pieces of data and are defined with td (table data) ele-
ments in each row.

The foot section (lines 34–39) is defined with a tfoot (table foot) element. The text
placed in the footer commonly includes calculation results and footnotes. Like other sec-
tions, the foot section can contain table rows, and each row can contain cells. As in the
head section, cells in the foot section are created using th elements, instead of the td ele-
ments used in the table body. Note that the table foot section must be above the body sec-
tion in the code, but the table foot displays at the bottom of the table.

Using rowspan and colspan
Figure 2.10 explored a basic table’s structure. Figure 2.11 presents another table example
and introduces two new attributes that allow you to build more complex tables.

The table begins in line 15. Table cells are sized to fit the data they contain. Docu-
ment authors can create larger data cells using the attributes rowspan and colspan. The
values assigned to these attributes specify the number of rows or columns occupied by a
cell. The th element at lines 23–26 uses the attribute rowspan = "2" to allow the cell con-

Fig. 2.10 | Creating a basic table. (Part 3 of 3.)

Table border

Table header

Table footer

Table body

Table caption

30 Chapter 2 Introduction to XHTML

taining the picture of the camel to use two vertically adjacent cells (thus the cell spans two
rows). The th element in lines 29–32 uses the attribute colspan = "4" to widen the header
cell (containing Camelid comparison and Approximate as of 6/2007) to span four cells.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 2.11: table2.html -->
6 <!-- Complex XHTML table. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Tables</title>
10 </head>

11
12 <body>

13 <h1>Table Example Page</h1>
14
15 <table border = "1">
16 <caption>Here is a more complex sample table.</caption>
17
18 <thead>
19 <!-- rowspans and colspans merge the specified -->
20 <!-- number of cells vertically or horizontally -->
21 <tr>
22 <!-- merge two rows -->
23 <th rowspan = "2">
24 <img src = "camel.gif" width = "205"

25 height = "167" alt = "Picture of a camel" />
26 </th>
27
28 <!-- merge four columns -->
29
30
31
32
33 </tr>
34 <tr>
35 <th># of Humps</th>
36 <th>Indigenous region</th>
37 <th>Spits?</th>
38 <th>Produces Wool?</th>
39 </tr>
40 </thead>
41 <tbody>
42 <tr>
43 <th>Camels (bactrian)</th>
44 <td>2</td>
45 <td>Africa/Asia</td>
46 <td>Yes</td>
47 <td>Yes</td>
48 </tr>

Fig. 2.11 | Complex XHTML table. (Part 1 of 2.)

<th colspan = "4">
<h1>Camelid comparison</h1>
<p>Approximate as of 6/2007</p>

</th>

2.11 Forms 31

2.11 Forms
When browsing websites, users often need to provide such information as search key-
words, e-mail addresses and zip codes. XHTML provides a mechanism, called a form, for
collecting data from a user.

Data that users enter on a web page is normally sent to a web server that provides
access to a site’s resources (e.g., XHTML documents, images). These resources are located
either on the same machine as the web server or on a machine that the web server can
access through the network. When a browser requests a web page or file that is located on
a server, the server processes the request and returns the requested resource. A request con-
tains the name and path of the desired resource and the method of communication (called
a protocol). XHTML documents use the Hypertext Transfer Protocol (HTTP).

Figure 2.12 is a simple form that sends data to the web server, which passes the form
data to a program. The program processes the data received from the web server and typ-
ically returns information to the web server. The web server then sends the information as
an XHTML document to the web browser. [Note: This example demonstrates client-side

49 <tr>
50 <th>Llamas</th>
51 <td>1</td>
52 <td>Andes Mountains</td>
53 <td>Yes</td>
54 <td>Yes</td>
55 </tr>
56 </tbody>
57 </table>
58 </body>

59 </html>

Fig. 2.11 | Complex XHTML table. (Part 2 of 2.)

32 Chapter 2 Introduction to XHTML

functionality. If the form is submitted (by clicking Submit), nothing will happen, because
we don’t yet know how to process the form data. In Chapter 13, we’ll invoke a server-side
form handler to process data in a form.]

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 2.12: form.html -->
6 <!-- Form with hidden fields and a text box. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Forms</title>
10 </head>

11
12 <body>

13 <h1>Feedback Form</h1>
14
15 <p>Please fill out this form to help
16 us improve our site.</p>
17
18 <!-- this tag starts the form, gives the -->
19 <!-- method of sending information and the -->
20 <!-- location of form script -->
21
22 <p>
23 <!-- hidden inputs contain non-visual -->
24 <!-- information -->
25
26
27
28
29
30
31 </p>
32
33 <!-- <input type = "text"> inserts a text box -->
34
35
36
37
38
39 <p>
40 <!-- input types "submit" and "reset" insert -->
41 <!-- buttons for submitting and clearing the -->
42 <!-- form's contents -->
43
44
45 </p>
46
47 </body>

48 </html>

Fig. 2.12 | Form with hidden fields and a text box. (Part 1 of 2.)

<form method = "post" action = "">

<input type = "hidden" name = "recipient"

 value = "deitel@deitel.com" />

<input type = "hidden" name = "subject"

 value = "Feedback Form" />

<input type = "hidden" name = "redirect"

 value = "main.html" />

<p><label>Name:
 <input name = "name" type = "text" size = "25"

 maxlength = "30" />

 </label></p>

<input type = "submit" value = "Submit" />

<input type = "reset" value = "Clear" />

</form>

2.11 Forms 33

Forms can contain visual and nonvisual components. Visual components include
clickable buttons and other graphical user interface components with which users interact.
Nonvisual components, called hidden inputs, store any data that you specify, such as e-
mail addresses and XHTML document filenames that act as links. The form is defined in
lines 21–46 by a form element.

Attribute method (line 21) specifies how the form’s data is sent to the web server.
Using method = "post" appends form data to the browser request, which contains the pro-
tocol (HTTP) and the requested resource’s URL. This method of passing data to the server
is transparent—the user doesn’t see the data after the form is submitted. The other pos-
sible value, method = "get", appends the form data directly to the end of the URL of the
script, where it is visible in the browser’s Address field.

The action attribute in the <form> tag in line 21 specifies the URL of a script on the
web server that will be invoked to process the form’s data. Since we haven’t introduced
server-side programming yet, we leave this attribute empty for now.

Lines 25–44 define six input elements that specify data to provide to the script that
processes the form (also called the form handler). There are several types of input ele-
ments. An input’s type is determined by its type attribute. This form uses a text input, a
submit input, a reset input and three hidden inputs.

The text input in lines 35–36 inserts a text box in the form. Users can type data in
text boxes. The label element (lines 34–37) provides users with information about the
input element’s purpose. The input element’s size attribute specifies the number of char-
acters visible in the text box. Optional attribute maxlength limits the number of characters
input into the text box—in this case, the user is not permitted to type more than 30 char-
acters.

Look-and-Feel Observation 2.3
Include a label element for each form element to help users determine the purpose of each form
element.

Two input elements in lines 43–44 create two buttons. The submit input element is
a button. When the submit button is pressed, the user is sent to the location specified in
the form’s action attribute. The value attribute sets the text displayed on the button. The
reset input element allows a user to reset all form elements to their default values. The

Fig. 2.12 | Form with hidden fields and a text box. (Part 2 of 2.)

34 Chapter 2 Introduction to XHTML

value attribute of the reset input element sets the text displayed on the button (the
default value is Reset if you omit the value attribute).

The three input elements in lines 25–30 have the type attribute hidden, which allows
you to send form data that is not input by a user. The three hidden inputs are an e-mail
address to which the data will be sent, the e-mail’s subject line and a URL for the browser
to open after submission of the form. Two other input attributes are name, which identi-
fies the input element, and value, which provides the value that will be sent (or posted)
to the web server.

Good Programming Practice 2.6
Place hidden input elements at the beginning of a form, immediately after the opening <form>
tag. This placement allows document authors to locate hidden input elements quickly.

Additional Form Elements
In the previous example, you saw basic elements of XHTML forms. Now that you know
the general structure of a form, we introduce elements and attributes for creating more
complex forms. Figure 2.13 contains a form that solicits user feedback about a website.

In line 32, we introduce the br element, which most browsers render as a =line break.
Any markup or text following a br element is rendered on the next line. Like the img ele-
ment, br is an example of an empty element terminated with a forward slash. We add a
space before the forward slash to enhance readability.

The textarea element (lines 33–34) inserts a multiline text box, called a text area,
into the form. The number of rows is specified with the rows attribute, and the number
of columns (i.e., characters per line) is specified with the cols attribute. In this example,
the textarea is four rows high and 36 characters wide. To display default text in the text
area, place the text between the <textarea> and </textarea> tags. Default text can be
specified in other input types, such as text boxes, by using the value attribute.

The password input in line 41 inserts a password box with the specified size (max-
imum number of characters allowed). A password box allows users to enter sensitive infor-
mation, such as credit card numbers and passwords, by “masking” the information input
with asterisks (*). The actual value input is sent to the web server, not the characters that
mask the input.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 2.13: form2.html -->
6 <!-- Form using a variety of components. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>More Forms</title>
10 </head>

11
12 <body>

13 <h1>Feedback Form</h1>

Fig. 2.13 | Form using a variety of components. (Part 1 of 4.)

2.11 Forms 35

14 <p>Please fill out this form to help
15 us improve our site.</p>
16
17 <form method = "post" action = "">

18 <p>
19 <input type = "hidden" name = "recipient"

20 value = "deitel@deitel.com" />
21 <input type = "hidden" name = "subject"

22 value = "Feedback Form" />
23 <input type = "hidden" name = "redirect"

24 value = "main.html" />
25 </p>
26
27 <p><label>Name:
28 <input name = "name" type = "text" size = "25" />

29 </label></p>
30
31 <!-- <textarea> creates a multiline textbox -->
32 <p><label>Comments:
33
34
35 </label></p>
36
37 <!-- <input type = "password"> inserts a -->
38 <!-- textbox whose display is masked with -->
39 <!-- asterisk characters -->
40 <p><label>E-mail Address:
41
42 </label></p>
43
44 <p>
45 Things you liked:

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 </p>
63
64 <!-- <input type = "radio" /> creates a radio -->
65 <!-- button. The difference between radio buttons -->

Fig. 2.13 | Form using a variety of components. (Part 2 of 4.)

<textarea name = "comments"

rows = "4" cols = "36">Enter comments here.</textarea>

<input name = "email" type = "password" size = "25" />

<label>Site design
 <input name = "thingsliked" type = "checkbox"

 value = "Design" /></label>

<label>Links
 <input name = "thingsliked" type = "checkbox"

 value = "Links" /></label>

<label>Ease of use
 <input name = "thingsliked" type = "checkbox"

 value = "Ease" /></label>
<label>Images
 <input name = "thingsliked" type = "checkbox"

 value = "Images" /></label>

<label>Source code
 <input name = "thingsliked" type = "checkbox"

 value = "Code" /></label>

36 Chapter 2 Introduction to XHTML

66 <!-- and checkboxes is that only one radio button -->
67 <!-- in a group can be selected. -->
68 <p>
69 How did you get to our site?:

70
71 <label>Search engine
72
73
74 <label>Links from another site
75 <input name = "howtosite" type = "radio"

76 value = "link" /></label>
77 <label>Deitel.com Website
78 <input name = "howtosite" type = "radio"
79 value = "deitel.com" /></label>

80 <label>Reference in a book
81 <input name = "howtosite" type = "radio"
82 value = "book" /></label>

83 <label>Other
84 <input name = "howtosite" type = "radio"

85 value = "other" /></label>

86 </p>
87
88 <p>
89 <label>Rate our site:
90
91 <!-- the <select> tag presents a drop-down -->
92 <!-- list with choices indicated by the -->
93 <!-- <option> tags -->
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108 </label>
109 </p>
110
111 <p>
112 <input type = "submit" value = "Submit" />

113 <input type = "reset" value = "Clear" />

114 </p>
115 </form>
116 </body>

117 </html>

Fig. 2.13 | Form using a variety of components. (Part 3 of 4.)

<input name = "howtosite" type = "radio"

value = "search engine" checked = "checked" /></label>

<select name = "rating">

 <option selected = "selected">Amazing</option>
 <option>10</option>
 <option>9</option>
 <option>8</option>
 <option>7</option>
 <option>6</option>
 <option>5</option>
 <option>4</option>
 <option>3</option>
 <option>2</option>
 <option>1</option>
 <option>Awful</option>
</select>

2.11 Forms 37

Lines 47–61 introduce the checkbox form element. Checkboxes enable users to select
from a set of options. When a user selects a checkbox, a check mark appears in the check-
box. Otherwise, the checkbox remains empty. Each "checkbox" input creates a new
checkbox. Checkboxes can be used individually or in groups. Checkboxes that belong to
a group are assigned the same name (in this case, "thingsliked").

Common Programming Error 2.5
When your form has several checkboxes with the same name, you must make sure that they have
different values, or the scripts running on the web server will not be able to distinguish them.

After the checkboxes, we present two more ways to allow the user to make choices. In
this example, we introduce two new input types. The first type is the radio button (lines
71–85) specified with type "radio". Radio buttons are similar to checkboxes, except that
only one radio button in a group of radio buttons may be selected at any time. The radio
buttons in a group all have the same name attributes and are distinguished by their different
value attributes. The attribute–value pair checked = "checked" (line 73) indicates which
radio button, if any, is selected initially. The checked attribute also applies to checkboxes.

Common Programming Error 2.6
Not setting the name attributes of the radio buttons in a form to the same name is a logic error
because it lets the user select all of them at the same time.

Fig. 2.13 | Form using a variety of components. (Part 4 of 4.)

38 Chapter 2 Introduction to XHTML

The select element (lines 94–107) provides a drop-down list from which the user
can select an item. The name attribute identifies the drop-down list. The option elements
(lines 95–106) add items to the drop-down list. The option element’s selected attribute
specifies which item initially is displayed as the selected item in the select element. If no
option element is marked as selected, the browser selects the first option by default.

2.12 Internal Linking
Earlier in the chapter, we discussed how to hyperlink one web page to another. Figure 2.14
introduces internal linking—a mechanism that enables the user to jump between loca-
tions in the same document. Internal linking is useful for long documents that contain
many sections. Clicking an internal link enables users to find a section without scrolling
through the entire document.

Line 14 contains a tag with the id attribute (set to "features") for an internal hyper-
link. To link to a tag with this attribute inside the same web page, the href attribute of an
anchor element includes the id attribute value preceded by a pound sign (as in #fea-
tures). Line 56 contains a hyperlink with the id features as its target. Selecting this
hyperlink in a web browser scrolls the browser window to the h1 tag in line 14. Note that
you may have to resize your browser to a small window and scroll down before clicking
the link to see the browser scroll to the h1 element.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 2.14: internal.html -->
6 <!-- Internal hyperlinks to make pages more navigable. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Internal Links</title>
10 </head>

11
12 <body>

13 <!-- id attribute creates an internal hyperlink destination -->
14

15
16 <!-- an internal link's address is "#id" -->
17
18
19
20 You can meet people from countries
21 around the world.
22 You have access to new media as it becomes public:
23
24 New games
25 New applications
26
27 For Business
28 For Pleasure

Fig. 2.14 | Internal hyperlinks to make pages more navigable. (Part 1 of 3.)

<h1 id = "features">The Best Features of the Internet</h1>

<p>Go to Favorite Bugs</p>

2.12 Internal Linking 39

29
30
31
32 Around the clock news
33 Search Engines
34 Shopping
35 Programming
36
37 XHTML
38 Java
39 Dynamic HTML
40 Scripts
41 New languages
42
43
44
45
46
47 Links
48 Keeping in touch with old friends
49 It is the technology of the future!
50
51
52 <!-- id attribute creates an internal hyperlink destination -->
53

54 <p>
55 <!-- internal hyperlink to features -->
56
57 </p>
58
59 Fire Fly
60 Gal Ant
61 Roman Tic
62
63 </body>

64 </html>

Fig. 2.14 | Internal hyperlinks to make pages more navigable. (Part 2 of 3.)

<h1 id = "bugs">My 3 Favorite Bugs</h1>

Go to Favorite Features

40 Chapter 2 Introduction to XHTML

Look-and-Feel Observation 2.4
Internal hyperlinks are useful in XHTML documents that contain large amounts of informa-
tion. Internal links to different parts of the page make it easier for users to navigate the page—
they do not have to scroll to find the section they want.

Although not demonstrated in this example, a hyperlink can specify an internal link
in another document by specifying the document name followed by a pound sign and the
id value, as in:

href = "filename.html#id"

For example, to link to a tag with the id attribute called booklist in books.html, href is
assigned "books.html#booklist". You can also send the browser to an internal link on
another site by appending the pound sign and id value of an element to any URL, as in:

href = "URL/filename.html#id"

2.13 meta Elements
Search engines usually catalog sites by following links from page to page (often known as
spidering or crawling) and saving identification and classification information for each
page. One way that search engines catalog pages is by reading the content in each page’s
meta elements, which specify information about a document.

Two important attributes of the meta element are name, which identifies the type of
meta element, and content, which provides the information search engines use to catalog
pages. Figure 2.15 introduces the meta element.

Fig. 2.14 | Internal hyperlinks to make pages more navigable. (Part 3 of 3.)

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4

Fig. 2.15 | meta elements provide keywords and a description of a page. (Part 1 of 2.)

2.13 meta Elements 41

Lines 13–15 demonstrate a "keywords" meta element. The content attribute of such
a meta element provides search engines with a list of words that describe a page. These
words are compared with words in search requests. Thus, including meta elements and
their content information can draw more viewers to your site.

Lines 16–19 demonstrate a "description" meta element. The content attribute of
such a meta element provides a three- to four-line description of a site, written in sentence

5 <!-- Fig. 2.15: meta.html -->
6 <!-- meta elements provide keywords and a description of a page. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Welcome</title>
10
11 <!-- <meta> tags provide search engines with -->
12 <!-- information used to catalog a site -->
13
14
15
16
17
18
19

20 </head>

21 <body>

22 <h1>Welcome to Our Website!</h1>
23
24 <p>We have designed this site to teach about the wonders
25 of XHTML. XHTML is
26 better equipped than HTML to represent complex
27 data on the Internet. XHTML takes advantage of
28 XML’s strict syntax to ensure well-formedness. Soon you
29 will know about many of the great features of
30 XHTML.</p>
31
32 <p>Have Fun With the Site!</p>
33 </body>

34 </html>

Fig. 2.15 | meta elements provide keywords and a description of a page. (Part 2 of 2.)

<meta name = "keywords" content = "web page, design,

XHTML, tutorial, personal, help, index, form,

contact, feedback, list, links, deitel" />

<meta name = "description" content = "This website will

help you learn the basics of XHTML and web page design

through the use of interactive examples and

 instruction." />

42 Chapter 2 Introduction to XHTML

form. Search engines also use this description to catalog your site and sometimes display
this information as part of the search results. Note that this use of the meta element is one
of many methods of search engine optimization (SEO). For more information on SEO,
visit Deitel’s SEO Resource Center at www.deitel.com/searchengineoptimization.

Software Engineering Observation 2.1
meta elements are not visible to users and must be placed inside the head section of your XHTML
document. If meta elements are not placed in this section, they will not be read by search engines.

2.14 Web Resources
www.deitel.com/xhtml

Visit our online XHTML Resource Center for links to some of the best XHTML information on
the web. There you’ll find categorized links to introductions, tutorials, books, blogs, forums, sample
chapters, and more. Also check out links about XHTML 2, the upcoming version of the XHTML
standard.

www.deitel.com/searchengineoptimization
www.deitel.com/xhtml

3
Cascading
Style Sheets™

(CSS)

O B J E C T I V E S
In this chapter you’ll learn:

■ To control the appearance of a website by creating style
sheets.

■ To use a style sheet to give all the pages of a website the
same look and feel.

■ To use the class attribute to apply styles.

■ To specify the precise font, size, color and other
properties of displayed text.

■ To specify element backgrounds and colors.

■ To understand the box model and how to control
margins, borders and padding.

■ To use style sheets to separate presentation from
content.

Fashions fade, style is
eternal.
—Yves Saint Laurent

A style does not go out of style
as long as it adapts itself to
its period. When there is an
incompatibility between the
style and a certain state of
mind, it is never the style
that triumphs.
—Coco Chanel

How liberating to work in
the margins, outside a
central perception.
—Don DeLillo

I’ve gradually risen from
lower-class background to
lower-class foreground.
—Marvin Cohen

44 Chapter 3 Cascading Style Sheets™ (CSS)

O
u

tl
in

e

3.1 Introduction
In Chapter 2, we introduced the Extensible HyperText Markup Language (XHTML) for
marking up information to be rendered in a browser. In this chapter, we shift our focus to
formatting and presenting information. To do this, we use a W3C technology called Cas-
cading Style Sheets™ (CSS) that allows document authors to specify the presentation of
elements on a web page (e.g., fonts, spacing, colors) separately from the structure of the
document (section headers, body text, links, etc.). This separation of structure from pre-
sentation simplifies maintaining and modifying a web page.

XHTML was designed to specify the content and structure of a document. Though
it has some attributes that control presentation, it is better not to mix presentation with
content. If a website’s presentation is determined entirely by a style sheet, a web designer
can simply swap in a new style sheet to completely change the appearance of the site. CSS
provides a way to apply style outside of XHTML, allowing the XHTML to dictate the
content while the CSS dictates how it’s presented.

As with XHTML, the W3C provides a CSS code validator located at jigsaw.w3.org/
css-validator/. It is a good idea to validate all CSS code with this tool to make sure that
your code is correct and works on as many browsers as possible.

CSS is a large topic. As such, we can introduce only the basic knowledge of CSS that
you’ll need to understand the examples in the rest of the book. For more CSS references
and resources, check out our CSS Resource Center at www.deitel.com/css21.

The W3C’s CSS specification is currently in its second major version, with a third in
development. The current versions of most major browsers support much of the function-
ality in CSS 2. This allows programmers to make full use of its features. In this chapter,
we introduce CSS, demonstrate some of the features introduced in CSS 2 and discuss
some of the upcoming CSS 3 features. As you read this book, open each XHTML docu-
ment in your web browser so you can view and interact with it in a web browser, as it was
originally intended.

Remember that the examples in this book have been tested in Internet Explorer 7 and
Firefox 2 (and higher). The latest versions of many other browsers (e.g., Safari, Opera,

3.1 Introduction
3.2 Inline Styles
3.3 Embedded Style Sheets
3.4 Conflicting Styles
3.5 Linking External Style Sheets
3.6 Positioning Elements
3.7 Backgrounds
3.8 Element Dimensions
3.9 Box Model and Text Flow

3.10 Media Types
3.11 Building a CSS Drop-Down Menu
3.12 User Style Sheets
3.13 CSS 3
3.14 Web Resources

www.deitel.com/css21

3.2 Inline Styles 45

Konqueror, Chrome) should render this chapter’s examples properly, but we have not
tested them. Some examples in this chapter will not work in older browsers, such as
Internet Explorer 6 and earlier. Make sure you have either Internet Explorer 7 (Windows
only) or Firefox (available for all major platforms) installed before running the examples
in this chapter.

3.2 Inline Styles
You can declare document styles in several ways. This section presents inline styles that
declare an individual element’s format using the XHTML attribute style. Inline styles
override any other styles applied using the techniques we discuss later in the chapter.
Figure 3.1 applies inline styles to p elements to alter their font size and color.

Good Programming Practice 3.1
Inline styles do not truly separate presentation from content. To apply similar styles to multiple
elements, use embedded stylesheets or external style sheets, introduced later in this chapter.

The first inline style declaration appears in line 17. Attribute style specifies an ele-
ment’s style. Each CSS property (font-size in this case) is followed by a colon and a
value. In line 17, we declare this particular p element to use 20-point font size.

Line 21 specifies the two properties, font-size and color, separated by a semicolon.
In this line, we set the given paragraph’s color to light blue, using the hexadecimal code
#6666ff. Color names may be used in place of hexadecimal codes.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 3.1: inline.html -->
6 <!-- Using inline styles -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Inline Styles</title>
10 </head>

11 <body>

12 <p>This text does not have any style applied to it.</p>
13
14 <!-- The style attribute allows you to declare -->
15 <!-- inline styles. Separate multiple style properties -->
16 <!-- with a semicolon. -->
17 This text has the
18 font-size style applied to it, making it 20pt.
19 </p>
20
21
22 This text has the font-size and
23 color styles applied to it, making it
24 20pt. and light blue.</p>
25 </body>

26 </html>

Fig. 3.1 | Using inline styles. (Part 1 of 2.)

<p style = "font-size: 20pt">

<p style = "font-size: 20pt; color: #6666ff">

46 Chapter 3 Cascading Style Sheets™ (CSS)

3.3 Embedded Style Sheets
A second technique for using style sheets is embedded style sheets. Embedded style sheets
enable a you to embed an entire CSS document in an XHTML document’s head section.
To achieve this separation between the CSS code and the XHTML that it styles, we’ll use
CSS selectors. Figure 3.2 creates an embedded style sheet containing four styles.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 3.2: embedded.html -->
6 <!-- Embedded style sheets. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Style Sheets</title>
10
11 <!-- this begins the style sheet section -->
12
13
14
15
16
17
18
19
20 </head>

21 <body>

22 <!-- this class attribute applies the .special style -->
23
24
25 <p>Deitel & Associates, Inc. is an internationally
26 recognized corporate training and publishing organization

Fig. 3.2 | Embedded style sheets. (Part 1 of 2.)

Fig. 3.1 | Using inline styles. (Part 2 of 2.)

<style type = "text/css">

em { font-weight: bold;
 color: black }

h1 { font-family: tahoma, helvetica, sans-serif }
p { font-size: 12pt;

 font-family: arial, sans-serif }
.special { color: #6666ff }

</style>

<h1 class = "special">Deitel & Associates, Inc.</h1>

3.3 Embedded Style Sheets 47

The style element (lines 12–19) defines the embedded style sheet. Styles placed in
the head apply to matching elements wherever they appear in the entire document. The
style element’s type attribute specifies the Multipurpose Internet Mail Extensions
(MIME) type that describes a file’s content. CSS documents use the MIME type text/
css. Other MIME types include image/gif (for GIF images), text/javascript (for the
JavaScript scripting language, which we discuss in Chapters 4–9), and more.

The body of the style sheet (lines 13–18) declares the CSS rules for the style sheet. A
CSS selector determines which elements will be styled according to a rule. Our first rule
begins with the selector em (line 13) to select all em elements in the document. The font-
weight property in line 13 specifies the “boldness” of text. Possible values are bold, normal
(the default), bolder (bolder than bold text) and lighter (lighter than normal text). Bold-

27 specializing in programming languages, Internet/World
28 Wide Web technology and object technology education.
29 The company provides courses on Java, C++, Visual Basic,
30 C#, C, Internet and World Wide Web programming, Object
31 Technology, and more.</p>
32
33 <h1>Clients</h1>
34 <p class = "special"> The company's clients include many
35 Fortune 1000 companies, government agencies,
36 branches of the military and business organizations.
37 Through its publishing partnership with Prentice Hall,
38 Deitel & Associates, Inc. publishes leading-edge
39 programming textbooks, professional books, interactive
40 web-based multimedia Cyber Classrooms, satellite
41 courses and World Wide Web courses.</p>
42 </body>

43 </html>

Fig. 3.2 | Embedded style sheets. (Part 2 of 2.)

48 Chapter 3 Cascading Style Sheets™ (CSS)

ness also can be specified with multiples of 100, from 100 to 900 (e.g., 100, 200, …, 900).
Text specified as normal is equivalent to 400, and bold text is equivalent to 700. However,
many systems do not have fonts that can scale with this level of precision, so using the
values from 100 to 900 might not display the desired effect.

In this example, all em elements will be displayed in a bold font. We also apply styles
to all h1 (line 15) and p (lines 16–17) elements. The body of each rule is enclosed in curly
braces ({ and }).

Line 18 uses a new kind of selector to declare a style class named special. Style classes
define styles that can be applied to any element. In this example, we declare class special,
which sets color to blue. We can apply this style to any element type, whereas the other
rules in this style sheet apply only to specific element types defined in the style sheet (i.e.,
em, h1 or p). Style-class declarations are preceded by a period. We’ll discuss how to apply
a style class momentarily.

CSS rules in embedded style sheets use the same syntax as inline styles; the property
name is followed by a colon (:) and the value of the property. Multiple properties are sep-
arated by semicolons (;). In the rule for em elements, the color property specifies the color
of the text, and property font-weight makes the font bold.

The font-family property (line 15) specifies the name of the font to use. Not all users
have the same fonts installed on their computers, so CSS allows you to specify a comma-
separated list of fonts to use for a particular style. The browser attempts to use the fonts in
the order they appear in the list. It’s advisable to end a font list with a generic font family
name in case the other fonts are not installed on the user’s computer. In this example, if
the tahoma font is not found on the system, the browser will look for the helvetica font.
If neither is found, the browser will display its default sans-serif font. Other generic font
families include serif (e.g., times new roman, Georgia), cursive (e.g., script), fantasy
(e.g., critter) and monospace (e.g., courier, fixedsys).

The font-size property (line 16) specifies a 12-point font. Other possible measure-
ments in addition to pt (point) are introduced later in the chapter. Relative values— xx-
small, x-small, small, smaller, medium, large, larger, x-large and xx-large—also
can be used. Generally, relative values for font-size are preferred over point sizes because
an author does not know the specific measurements of the display for each client. Relative
font-size values permit more flexible viewing of web pages.

For example, a user may wish to view a web page on a handheld device with a small
screen. Specifying an 18-point font size in a style sheet will prevent such a user from seeing
more than one or two characters at a time. However, if a relative font size is specified, such
as large or larger, the actual size is determined by the browser that displays the font.
Using relative sizes also makes pages more accessible to users with disabilities. Users with
impaired vision, for example, may configure their browser to use a larger default font,
upon which all relative sizes are based. Text that the author specifies to be smaller than
the main text still displays in a smaller size font, yet it is clearly visible to each user. Acces-
sibility is an important consideration—in 1998, Congress passed the Section 508 Amend-
ment to the Rehabilitation Act of 1973, mandating that websites of government agencies
are required to be accessible to disabled users.

Line 23 uses the XHTML attribute class in an h1 element to apply a style class—in
this case class special (declared with the .special selector in the style sheet in line 18).
When the browser renders the h1 element, note that the text appears on screen with the

3.4 Conflicting Styles 49

properties of both an h1 element (arial or sans-serif font defined in line 17) and the
.special style class applied (the color #6666ff defined in line 18). Also notice that the
browser still applies its own default style to the h1 element—the header is still displayed
in a large font size. Similarly, all em elements will still be italicized by the browser, but they
will also be bold as a result of our style rule.

The formatting for the p element and the .special class is applied to the text in lines
34–41. In many cases, the styles applied to an element (the parent or ancestor element)
also apply to the element’s nested elements (child or descendant elements). The em ele-
ment nested in the p element in line 35 inherits the style from the p element (namely, the
12-point font size in line 16) but retains its italic style. In other words, styles defined for
the paragraph and not defined for the em element is applied to the em element. Because
multiple values of one property can be set or inherited on the same element, they must be
reduced to one style per element before being rendered. We discuss the rules for resolving
these conflicts in the next section.

3.4 Conflicting Styles
Styles may be defined by a user, an author or a user agent (e.g., a web browser). A user is
a person viewing your web page, you are the author—the person who writes the docu-
ment—and the user agent is the program used to render and display the document. Styles
“cascade,” or flow together, such that the ultimate appearance of elements on a page results
from combining styles defined in several ways. Styles defined by the user take precedence
over styles defined by the user agent, and styles defined by authors take precedence over
styles defined by the user.

Most styles defined for parent elements are also inherited by child (nested) elements.
While it makes sense to inherit most styles, such as font properties, there are certain prop-
erties that we don’t want to be inherited. Consider for example the background-image
property, which allows the programmer to set an image as the background of an element.
If the body element is assigned a background image, we don’t want the same image to be
in the background of every element in the body of our page. Instead, the background-
image property of all child elements retains its default value of none. In this section, we
discuss the rules for resolving conflicts between styles defined for elements and styles
inherited from parent and ancestor elements.

Figure 3.2 presented an example of inheritance in which a child em element inherited
the font-size property from its parent p element. However, in Fig. 3.2, the child em ele-
ment had a color property that conflicted with (i.e., had a different value than) the color
property of its parent p element. Properties defined for child and descendant elements
have a greater specificity than properties defined for parent and ancestor elements. Con-
flicts are resolved in favor of properties with a higher specificity. In other words, the styles
explicitly defined for a child element are more specific than the styles defined for the
child’s parent element; therefore, the child’s styles take precedence. Figure 3.3 illustrates
examples of inheritance and specificity.

Line 12 applies property text-decoration to all a elements whose class attribute is
set to nodec. The text-decoration property applies decorations to text in an element. By
default, browsers underline the text of an a (anchor) element. Here, we set the text-dec-
oration property to none to indicate that the browser should not underline hyperlinks.

50 Chapter 3 Cascading Style Sheets™ (CSS)

Other possible values for text-decoration include overline, line-through, underline
and blink. [Note: blink is not supported by Internet Explorer.] The .nodec appended to
a is a more specific class selector; this style will apply only to a (anchor) elements that
specify nodec in their class attribute.

Portability Tip 3.1
To ensure that your style sheets work in various web browsers, test them on all the client web
browsers that will render documents using your styles, as well as using the W3C CSS Validator.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 3.3: advanced.html -->
6 <!-- Inheritance in style sheets. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>More Styles</title>
10 <style type = "text/css">
11 body { font-family: arial, helvetica, sans-serif }
12
13
14
15
16 ul { margin-left: 20px }
17 ul ul { font-size: .8em }
18 </style>
19 </head>

20 <body>

21 <h1>Shopping list for Monday:</h1>
22
23
24 Milk
25 Bread
26
27 White bread
28 Rye bread
29 Whole wheat bread
30
31
32 Rice
33 Potatoes
34 Pizza with mushrooms
35
36
37 <p>Go to the
38

39 Grocery store
40 </p>
41 </body>

42 </html>

Fig. 3.3 | Inheritance in style sheets. (Part 1 of 2.)

a.nodec { text-decoration: none }
a:hover { text-decoration: underline }
li em { font-weight: bold }
h1, em { text-decoration: underline }

3.4 Conflicting Styles 51

Line 13 specifies a style for hover, which is a pseudoclass. Pseudoclasses give the
author access to content not specifically declared in the document. The hover pseudoclass
is activated dynamically when the user moves the mouse cursor over an element. Note that
pseudoclasses are separated by a colon (with no surrounding spaces) from the name of the
element to which they are applied.

Common Programming Error 3.1
Including a space before or after the colon separating a pseudoclass from the name of the element
to which it is applied is an error that prevents the pseudoclass from being applied properly.

Line 14 causes all em elements that are children of li elements to be bold. In the screen
output of Fig. 3.3, note that Go to the (contained in an em element in line 37) does not
appear bold, because the em element is not in an li element. However, the em element con-
taining with mushrooms (line 34) is nested in an li element; therefore, it is formatted in
bold. The syntax for applying rules to multiple elements is similar. In line 15, we separate
the selectors with a comma to apply an underline style rule to all h1 and all em elements.

Line 16 assigns a left margin of 20 pixels to all ul elements. We’ll discuss the margin
properties in detail in Section 3.9. A pixel is a relative-length measurement—it varies in
size, based on screen resolution. Other relative lengths include em (the M-height of the
font, which is usually set to the height of an uppercase M), ex (the x-height of the font,
which is usually set to the height of a lowercase x) and percentages (e.g., font-size: 50%).

Fig. 3.3 | Inheritance in style sheets. (Part 2 of 2.)

52 Chapter 3 Cascading Style Sheets™ (CSS)

To set an element to display text at 150 percent of its default text size, the author could
use the syntax

font-size: 1.5em

Alternatively, you could use

font-size: 150%

Other units of measurement available in CSS are absolute-length measurements—i.e.,
units that do not vary in size based on the system. These units are in (inches), cm (centi-
meters), mm (millimeters), pt (points; 1 pt = 1/72 in) and pc (picas; 1 pc = 12 pt). Line 17
specifies that all nested unordered lists (ul elements that are descendants of ul elements)
are to have font size .8em. [Note: When setting a style property that takes a measurement
(e.g. font-size, margin-left), no units are necessary if the value is zero.]

Good Programming Practice 3.2
Whenever possible, use relative-length measurements. If you use absolute-length measurements,
your document may not be readable on some client browsers (e.g., wireless phones).

3.5 Linking External Style Sheets
Style sheets are a convenient way to create a document with a uniform theme. With exter-
nal style sheets (i.e., separate documents that contain only CSS rules), you can provide a
uniform look and feel to an entire website. Different pages on a site can all use the same
style sheet. When changes to the styles are required, the author needs to modify only a sin-
gle CSS file to make style changes across the entire website. Note that while embedded
style sheets separate content from presentation, both are still contained in a single file, pre-
venting a web designer and a content author from working in parallel. External style sheets
solve this problem by separating the content and style into separate files.

Software Engineering Observation 3.1
Always use an external style sheet when developing a website with multiple pages. External style
sheets separate content from presentation, allowing for more consistent look-and-feel, more
efficient development, and better performance.

Figure 3.4 presents an external style sheet. Lines 1–2 are CSS comments. Like
XHTML comments, CSS comments describe the content of a CSS document. Comments
may be placed in any type of CSS code (i.e., inline styles, embedded style sheets and
external style sheets) and always start with /* and end with */. Text between these delim-
iters is ignored by the browser.

1 /* Fig. 3.4: styles.css */
2 /* External stylesheet */
3
4 body { font-family: arial, helvetica, sans-serif }
5
6 a.nodec { text-decoration: none }

Fig. 3.4 | External style sheet. (Part 1 of 2.)

3.5 Linking External Style Sheets 53

Figure 3.5 contains an XHTML document that references the external style sheet in
Fig. 3.4. Lines 10–11 (Fig. 3.5) show a link element that uses the rel attribute to specify
a relationship between the current document and another document. In this case, we
declare the linked document to be a stylesheet for this document. The type attribute
specifies the MIME type of the related document as text/css. The href attribute pro-
vides the URL for the document containing the style sheet. In this case, styles.css is in
the same directory as external.html.

7
8 a:hover { text-decoration: underline }
9

10 li em { font-weight: bold }
11
12 h1, em { text-decoration: underline }
13
14 ul { margin-left: 20px }
15
16 ul ul { font-size: .8em; }

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 3.5: external.html -->
6 <!-- Linking an external style sheet. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Linking External Style Sheets</title>
10
11
12 </head>

13 <body>

14 <h1>Shopping list for Monday:</h1>
15
16
17 Milk
18 Bread
19
20 White bread
21 Rye bread
22 Whole wheat bread
23
24
25 Rice
26 Potatoes
27 Pizza with mushrooms
28
29

Fig. 3.5 | Linking an external style sheet. (Part 1 of 2.)

Fig. 3.4 | External style sheet. (Part 2 of 2.)

<link rel = "stylesheet" type = "text/css"

href = "styles.css" />

54 Chapter 3 Cascading Style Sheets™ (CSS)

Software Engineering Observation 3.2
External style sheets are reusable. Creating them once and reusing them reduces programming
effort.

Performance Tip 3.1
Reusing external style sheets reduces load time and bandwidth usage on a server, since the style
sheet can be downloaded once, stored by the web browser, and applied to all pages on a website.

3.6 Positioning Elements
Before CSS, controlling the positioning of elements in an XHTML document was diffi-
cult—the browser determined positioning. CSS introduced the position property and a
capability called absolute positioning, which gives authors greater control over how docu-
ment elements are displayed. Figure 3.6 demonstrates absolute positioning.

Normally, elements are positioned on the page in the order that they appear in the
XHTML document. Lines 11–14 define a style called bgimg for the first img element
(i.gif) on the page. Specifying an element’s position as absolute removes the element

30 <p>Go to the
31

32 Grocery store
33 </p>
34 </body>

35 </html>

Fig. 3.5 | Linking an external style sheet. (Part 2 of 2.)

3.6 Positioning Elements 55

from the normal flow of elements on the page, instead positioning it according to the dis-
tance from the top, left, right or bottom margins of its containing block-level element
(i.e., an element such as body or p). Here, we position the element to be 0 pixels away from
both the top and left margins of its containing element. In line 28, this style is applied
to the image, which is contained in a p element.

The z-index property allows you to layer overlapping elements properly. Elements
that have higher z-index values are displayed in front of elements with lower z-index
values. In this example, i.gif has the lowest z-index (1), so it displays in the background.
The .fgimg CSS rule in lines 15–18 gives the circle image (circle.gif, in lines 31–32) a
z-index of 2, so it displays in front of i.gif. The p element in line 34 (Positioned Text)
is given a z-index of 3 in line 22, so it displays in front of the other two. If you do not
specify a z-index or if elements have the same z-index value, the elements are placed from
background to foreground in the order they are encountered in the document.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 3.6: positioning.html -->
6 <!-- Absolute positioning of elements. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Absolute Positioning</title>
10 <style type = "text/css">

11
12
13
14
15
16
17
18
19
20
21
22
23 font-size: 20pt;
24 font-family: tahoma, geneva, sans-serif }
25 </style>

26 </head>

27 <body>

28 <p><img src = "bgimg.gif" class = "bgimg"
29 alt = "First positioned image" /></p>

30
31 <p><img src = "fgimg.gif" class = "fgimg"
32 alt = "Second positioned image" /></p>
33
34 <p class = "text">Positioned Text</p>
35 </body>

36 </html>

Fig. 3.6 | Absolute positioning of elements. (Part 1 of 2.)

.bgimg { position: absolute;
 top: 0px;
 left: 0px;
 z-index: 1 }
.fgimg { position: absolute;
 top: 25px;
 left: 100px;
 z-index: 2 }
.text { position: absolute;
 top: 25px;
 left: 100px;
 z-index: 3;

56 Chapter 3 Cascading Style Sheets™ (CSS)

Absolute positioning is not the only way to specify page layout. Figure 3.7 demon-
strates relative positioning, in which elements are positioned relative to other elements.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 3.7: positioning2.html -->
6 <!-- Relative positioning of elements. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Relative Positioning</title>
10 <style type = "text/css">
11 p { font-size: 1.3em;
12 font-family: verdana, arial, sans-serif }
13 span { color: red;
14 font-size: .6em;
15 height: 1em }
16
17
18
19
20
21
22
23
24 </style>

25 </head>

26 <body>

27 <p>The text at the end of this sentence
28
29

Fig. 3.7 | Relative positioning of elements. (Part 1 of 2.)

Fig. 3.6 | Absolute positioning of elements. (Part 2 of 2.)

.super { position: relative;
 top: -1ex }
.sub { position: relative;
 bottom: -1ex }
.shiftleft { position: relative;
 left: -1ex }
.shiftright { position: relative;
 right: -1ex }

is in superscript.</p>

3.6 Positioning Elements 57

Setting the position property to relative, as in class super (lines 16–17), lays out
the element on the page and offsets it by the specified top, bottom, left or right value.
Unlike absolute positioning, relative positioning keeps elements in the general flow of ele-
ments on the page, so positioning is relative to other elements in the flow. Recall that ex
(line 17) is the x-height of a font, a relative-length measurement typically equal to the
height of a lowercase x.

Common Programming Error 3.2
Because relative positioning keeps elements in the flow of text in your documents, be careful to
avoid unintentionally overlapping text.

Inline and Block-Level Elements
We introduce the span element in line 28. Lines 13–15 define the CSS rule for all span
elements. The height of the span determines how much vertical space the span will occu-
py. The font-size determines the size of the text inside the span.

Element span is a grouping element—it does not apply any inherent formatting to its
contents. Its primary purpose is to apply CSS rules or id attributes to a section of text.
Element span is an inline-level element—it applies formatting to text without changing
the flow of the document. Examples of inline elements include span, img, a, em and
strong. The div element is also a grouping element, but it is a block-level element. This

30 <p>The text at the end of this sentence
31
32
33 <p>The text at the end of this sentence
34
35
36 <p>The text at the end of this sentence
37
38 </body>

39 </html>

v

Fig. 3.7 | Relative positioning of elements. (Part 2 of 2.)

is in subscript.</p>

is shifted left.</p>

is shifted right.</p>

58 Chapter 3 Cascading Style Sheets™ (CSS)

means it is displayed on its own line and has a virtual box around it. Examples of block-
level elements include div, p and heading elements (h1 through h6). We’ll discuss inline
and block-level elements in more detail in Section 3.9.

3.7 Backgrounds
CSS provides control over the background of block-level elements. CSS can set a back-
ground color or add background images to XHTML elements. Figure 3.8 adds a corporate
logo to the bottom-right corner of the document. This logo stays fixed in the corner even
when the user scrolls up or down the screen.

The background-image property (line 11) specifies the image URL for the image
logo.gif in the format url(fileLocation). You can also set the background-color prop-
erty in case the image is not found (and to fill in where the image does not cover).

The background-position property (line 12) places the image on the page. The key-
words top, bottom, center, left and right are used individually or in combination for
vertical and horizontal positioning. An image can be positioned using lengths by speci-
fying the horizontal length followed by the vertical length. For example, to position the
image as horizontally centered (positioned at 50 percent of the distance across the screen)
and 30 pixels from the top, use

background-position: 50% 30px;

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 3.8: background.html -->
6 <!-- Adding background images and indentation. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Background Images</title>
10 <style type = "text/css">
11

12

13

14

15

16 p { font-size: 18pt;
17 color: #1144AA;
18

19 font-family: arial, sans-serif; }
20 .dark { font-weight: bold }
21 </style>

22 </head>

23 <body>

24 <p>
25 This example uses the background-image,
26 background-position and background-attachment
27 styles to place the Deitel

Fig. 3.8 | Adding background images and indentation. (Part 1 of 2.)

body { background-image: url(logo.gif);
 background-position: bottom right;
 background-repeat: no-repeat;
 background-attachment: fixed;
 background-color: #eeeeee }

text-indent: 1em;

3.8 Element Dimensions 59

The background-repeat property (line 13) controls background image tiling, which
places multiple copies of the image next to each other to fill the background. Here, we set
the tiling to no-repeat to display only one copy of the background image. Other values
include repeat (the default) to tile the image vertically and horizontally, repeat-x to tile
the image only horizontally or repeat-y to tile the image only vertically.

The final property setting, background-attachment: fixed (line 14), fixes the image
in the position specified by background-position. Scrolling the browser window will not
move the image from its position. The default value, scroll, moves the image as the user
scrolls through the document.

Line 18 uses the text-indent property to indent the first line of text in the element
by a specified amount, in this case 1em. An author might use this property to create a web
page that reads more like a novel, in which the first line of every paragraph is indented.

The CSS property font-style property allows you to set the text style to none,
italic or oblique (oblique is simply more slanted than italic—the browser will default
to italic if the system or font does not support oblique text).

3.8 Element Dimensions
In addition to positioning elements, CSS rules can specify the actual dimensions of each
page element. Figure 3.9 demonstrates how to set the dimensions of elements.

28 & Associates, Inc. logo in the bottom,
29 right corner of the page. Notice how the logo
30 stays in the proper position when you resize the
31 browser window. The background-color fills in where
32 there is no image.
33 </p>
34 </body>

35 </html>

Fig. 3.8 | Adding background images and indentation. (Part 2 of 2.)

60 Chapter 3 Cascading Style Sheets™ (CSS)

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 3.9: width.html -->
6 <!-- Element dimensions and text alignment. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Box Dimensions</title>
10 <style type = "text/css">
11 div { background-color: #aaccff;
12 margin-bottom: .5em;
13 font-family: arial, helvetica, sans-serif }
14 </style>
15 </head>

16 <body>

17 Here is some
18 text that goes in a box which is
19 set to stretch across twenty percent
20 of the width of the screen.</div>
21
22
23 Here is some CENTERED text that goes in a box
24 which is set to stretch across eighty percent of
25 the width of the screen.</div>
26
27
28 This box is only twenty percent of
29 the width and has a fixed height.
30 What do we do if it overflows? Set the
31 overflow property to scroll!</div>
32 </body>

33 </html>

Fig. 3.9 | Element dimensions and text alignment.

<div style = "width: 20%">

<div style = "width: 80%; text-align: center">

<div style = "width: 20%; height: 150px; overflow: scroll">

3.9 Box Model and Text Flow 61

The inline style in line 17 illustrates how to set the width of an element on screen;
here, we indicate that the div element should occupy 20 percent of the screen width. The
height of an element can be set similarly, using the height property. The height and
width values also can be specified as relative or absolute lengths. For example,

width: 10em

sets the element’s width to 10 times the font size. Most elements are left aligned by default;
however, this alignment can be altered to position the element elsewhere. Line 22 sets text
in the element to be center aligned; other values for the text-align property include
left and right.

In the third div, we specify a percentage height and a pixel width. One problem with
setting both dimensions of an element is that the content inside the element can exceed
the set boundaries, in which case the element is simply made large enough for all the con-
tent to fit. However, in line 27, we set the overflow property to scroll, a setting that adds
scroll bars if the text overflows the boundaries.

3.9 Box Model and Text Flow
All block-level XHTML elements have a virtual box drawn around them based on what is
known as the box model. When the browser renders elements using the box model, the
content of each element is surrounded by padding, a border and a margin (Fig. 3.10).

CSS controls the border using three properties: border-width, border-color and
border-style. We illustrate these three properties in Fig. 3.11.

Property border-width may be set to any valid CSS length (e.g., em, ex, px, etc.) or
to the predefined value of thin, medium or thick. The border-color property sets the
color. [Note: This property has different meanings for different style borders.] The
border-style options are none, hidden, dotted, dashed, solid, double, groove, ridge,
inset and outset. Borders groove and ridge have opposite effects, as do inset and
outset. When border-style is set to none, no border is rendered.

Fig. 3.10 | Box model for block-level elements.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 3.11: borders.html -->
6 <!-- Borders of block-level elements. -->

Fig. 3.11 | Borders of block-level elements. (Part 1 of 2.)

Margin
Border
Padding

Content

62 Chapter 3 Cascading Style Sheets™ (CSS)

Each border property may be set for an individual side of the box (e.g., border-top-
style or border-left-color). Note that we assign more than one class to an XHTML
element by separating multiple class names with spaces, as shown in lines 36–37.

7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Borders</title>
10 <style type = "text/css">
11 div { text-align: center;
12 width: 50%;
13 position: relative;
14 left: 25%;
15 border-width: 4px }
16
17
18
19
20
21
22
23
24
25
26 </style>
27 </head>

28 <body>

29 <div class = "solid">Solid border</div><hr />
30 <div class = "double">Double border</div><hr />
31 <div class = "groove">Groove border</div><hr />
32 <div class = "inset">Inset border</div><hr />
33 <div class = "dashed">Dashed border</div><hr />
34
35
36 </body>

37 </html>

Fig. 3.11 | Borders of block-level elements. (Part 2 of 2.)

.medium { border-width: medium }

.thin { border-width: thin }

.solid { border-style: solid }

.double { border-style: double }

.groove { border-style: groove }

.inset { border-style: inset }

.outset { border-style: outset }

.dashed { border-style: dashed }

.red { border-color: red }

.blue { border-color: blue }

<div class = "thin red solid">Thin Red Solid border</div><hr />
<div class = "medium blue outset">Medium Blue Outset border</div>

3.9 Box Model and Text Flow 63

As we have seen with absolute positioning, it is possible to remove elements from the
normal flow of text. Floating allows you to move an element to one side of the screen;
other content in the document then flows around the floated element. Figure 3.12 dem-
onstrates how floats and the box model can be used to control the layout of an entire page.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 3.12: floating.html -->
6 <!-- Floating elements. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Flowing Text Around Floating Elements</title>
10 <style type = "text/css">
11 div.heading { background-color: #bbddff;
12 text-align: center;
13 font-family: arial, helvetica, sans-serif;
14 padding: .2em }
15 p { text-align: justify;
16 font-family: verdana, geneva, sans-serif;
17
18 div.floated { background-color: #eeeeee;
19 font-size: 1.5em;
20 font-family: arial, helvetica, sans-serif;
21
22
23
24
25 text-align: right;
26 width: 50% }
27
28 </style>

29 </head>

30 <body>

31 <div class = "heading">
32 </div>
33 <div class = "section">

34 <div class = "floated">Corporate Training and Publishing</div>
35 <p>Deitel & Associates, Inc. is an internationally
36 recognized corporate training and publishing organization
37 specializing in programming languages, Internet/World
38 Wide Web technology and object technology education.
39 The company provides courses on Java, C++, Visual Basic, C#,
40 C, Internet and web programming, Object
41 Technology, and more.</p>
42 </div>
43 <div class = "section">
44 <div class = "floated">Leading-Edge Programming Textbooks</div>
45 <p>Through its publishing
46 partnership with Prentice Hall, Deitel & Associates,
47 Inc. publishes leading-edge programming textbooks,

Fig. 3.12 | Floating elements. (Part 1 of 2.)

margin: .5em }

padding: .2em;
margin-left: .5em;
margin-bottom: .5em;
float: right;

div.section { border: 1px solid #bbddff }

64 Chapter 3 Cascading Style Sheets™ (CSS)

Looking at the XHTML code, we can see that the general structure of this document
consists of a header and two main sections. Each section contains a subheading and a para-
graph of text.

Block-level elements (such as divs) render with a line break before and after their con-
tent, so the header and two sections will render vertically one on top of another. In the
absence of our styles, the subheading divs would also stack vertically on top of the text in
the p tags. However, in line 24 we set the float property to right in the class floated,
which is applied to the subheadings. This causes each subheading div to float to the right
edge of its containing element, while the paragraph of text will flow around it.

Line 17 assigns a margin of .5em to all paragraph tags. The margin property sets the
space between the outside of the border and all other content on the page. In line 21, we
assign .2em of padding to the floated divs. The padding property determines the distance
between the content inside an element and the inside of the element’s border. Margins for
individual sides of an element can be specified (lines 22–23) by using the properties
margin-top, margin-right, margin-left and margin-bottom. Padding can be specified in
the same way, using padding-top, padding-right, padding-left and padding-bottom.
To see the effects of margins and padding, try putting the margin and padding properties
inside comments and observing the difference.

48 professional books, interactive CD-ROM-based multimedia
49 Cyber Classrooms, satellite courses and DVD and web-based
50 video courses.</p>
51 </div>
52 </body>

53 </html>

Fig. 3.12 | Floating elements. (Part 2 of 2.)

3.10 Media Types 65

In line 27, we assign a border to the section boxes using a shorthand declaration of
the border properties. CSS allows shorthand assignments of borders to allow you to define
all three border properties in one line. The syntax for this shorthand is border: <width>

<style> <color>. Our border is one pixel thick, solid, and the same color as the back-
ground-color property of the heading div (line 11). This allows the border to blend with
the header and makes the page appear as one box with a line dividing its sections.

3.10 Media Types
CSS media types allow a programmer to decide what a page should look like depending
on the kind of media being used to display the page. The most common media type for a
web page is the screen media type, which is a standard computer screen. Other media
types in CSS 2 include handheld, braille, aural and print. The handheld medium is
designed for mobile Internet devices, while braille is for machines that can read or print
web pages in braille. aural styles allow the programmer to give a speech-synthesizing web
browser more information about the content of the web page. This allows the browser to
present a web page in a sensible manner to a visually impaired person. The print media
type affects a web page’s appearance when it is printed. For a complete list of CSS media
types, see http://www.w3.org/TR/REC-CSS2/media.html#media-types.

Media types allow a programmer to decide how a page should be presented on any
one of these media without affecting the others. Figure 3.13 gives a simple example that
applies one set of styles when the document is viewed on the screen, and another when the
document is printed. To see the difference, look at the screen captures below the paragraph
or use the Print Preview feature in Internet Explorer or Firefox.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 3.13: mediatypes.html -->
6 <!-- CSS media types. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Media Types</title>
10 <style type = "text/css">
11
12 {
13 body { background-color: #4488aa }
14 h1 { font-family: verdana, helvetica, sans-serif;
15 color: #aaffcc }
16 p { font-size: 12pt;
17 color: white;
18 font-family: arial, sans-serif }
19 } /* end @media all declaration. */
20
21 {
22 body { background-color: white }
23 h1 { color: #008844}

Fig. 3.13 | CSS media types. (Part 1 of 2.)

@media all

@media print

http://www.w3.org/TR/REC-CSS2/media.html#media-types

66 Chapter 3 Cascading Style Sheets™ (CSS)

24 p { font-size: 14pt;
25 color: #4488aa;
26 font-family: "times new roman", times, serif }
27 } /* end @media print declaration. */
28 </style>

29 </head>

30 <body>

31 <h1>CSS Media Types Example</h1>
32
33 <p>
34 This example uses CSS media types to vary how the page
35 appears in print and how it appears on any other media.
36 This text will appear one font on the screen and a
37 different font on paper or in a print preview. To see
38 the difference in Internet Explorer, go to the Print
39 menu and select Print Preview. In Firefox, select Print
40 Preview from the File menu.
41 </p>
42 </body>

43 </html>

Fig. 3.13 | CSS media types. (Part 2 of 2.)

3.11 Building a CSS Drop-Down Menu 67

In line 11, we begin a block of styles that applies to all media types, declared by @media
all and enclosed in curly braces ({ and }). In lines 13–18, we define some styles for all
media types. Lines 20–27 set styles to be applied only when the page is printed, beginning
with the declaration @media print and enclosed in curly braces.

The styles we applied for all media types look nice on a screen but would not look
good on a printed page. A colored background would use a lot of ink, and a black-and-
white printer may print a page that’s hard to read because there isn’t enough contrast
between the colors. Also, sans-serif fonts like arial, helvetica, and geneva are easier
to read on a screen, while serif fonts like times new roman are easier to read on paper.

Look-and-Feel Observation 3.1
Pages with dark background colors and light text use a lot of ink and may be difficult to read
when printed, especially on a black-and white-printer. Use the print media type to avoid this.

Look-and-Feel Observation 3.2
In general, sans-serif fonts look better on a screen, while serif fonts look better on paper. The
print media type allows your web page to display sans-serif font on a screen and change to a serif
font when it is printed.

To solve these problems, we apply specific styles for the print media type. We change
the background-color of the body, the color of the h1 tag, and the font-size, color,
and font-family of the p tag to be more suited for printing and viewing on paper. Notice
that most of these styles conflict with the declarations in the section for all media types.
Since the print media type has higher specificity than all media types, the print styles
override the styles for all media types when the page is printed. Since the font-family
property of the h1 tag is not overridden in the print section, it retains its old value even
when the page is printed.

3.11 Building a CSS Drop-Down Menu
Drop-down menus are a good way to provide navigation links on a website without using
a lot of screen space. In this section, we take a second look at the :hover pseudoclass and
introduce the display property to create a drop-down menu using CSS and XHTML.

We’ve already seen the :hover pseudoclass used to change a link’s style when the
mouse hovers over it. We’ll use this feature in a more advanced way to cause a menu to
appear when the mouse hovers over a menu button. The other important property we
need is the display property. This allows a programmer to decide whether an element is
rendered on the page or not. Possible values include block, inline and none. The block
and inline values display the element as a block element or an inline element, while none
stops the element from being rendered. The code for the drop-down menu is shown in
Fig. 3.14.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4

Fig. 3.14 | CSS drop-down menu. (Part 1 of 3.)

68 Chapter 3 Cascading Style Sheets™ (CSS)

5 <!-- Fig. 3.14: dropdown.html -->
6 <!-- CSS drop-down menu. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>
10 Drop-Down Menu
11 </title>
12 <style type = "text/css">

13 body { font-family: arial, sans-serif }
14 div.menu { font-weight: bold;
15 color: white;
16 border: 2px solid #225599;
17 text-align: center;
18 width: 10em;
19 background-color: #225599 }
20
21
22 border-top: 2px solid #225599;
23 background-color: white;
24 width: 10em;
25 text-decoration: none;
26 color: black }
27
28 </style>

29 </head>

30 <body>

31 <div class = "menu">Menu
32 Home
33 News
34 Articles
35 Blog
36 Contact
37 </div>

38 </body>

39 </html>

Fig. 3.14 | CSS drop-down menu. (Part 2 of 3.)

div.menu:hover a { display: block }
div.menu a { display: none;

div.menu a:hover { background-color: #dfeeff }

3.12 User Style Sheets 69

First let’s look at the XHTML code. In lines 31–37, a div of class menu has the text
“Menu” and five links inside it. This is our drop-down menu. The behavior we want is as
follows: the text that says “Menu” should be the only thing visible on the page, unless the
mouse is over the menu div. When the mouse cursor hovers over the menu div, we want
the links to appear below the menu for the user to choose from.

To see how we get this functionality, let’s look at the CSS code. There are two lines
that give us the drop-down functionality. Line 21 selects all the links inside the menu div
and sets their display value to none. This instructs the browser not to render the links.
The other important style is in line 20. The selectors in this line are similar to those in line
21, except that this line selects only the a (anchor) elements that are children of a menu
div that has the mouse over it. The display: block in this line means that when the
mouse is over the menu div, the links inside it will be displayed as block-level elements.

The selectors in line 27 are also similar to lines 20 and 21. This time, however, the
style is applied only to any a element that is a child of the menu div when that child has
the mouse cursor over it. This style changes the background-color of the currently high-
lighted menu option. The rest of the CSS simply adds aesthetic style to the components
of our menu. Look at the screen captures or run the code example to see the menu in
action.

This drop-down menu is just one example of more advanced CSS formatting. Many
additional resources are available online for CSS navigation menus and lists. Specifically,
check out List-o-Matic, an automatic CSS list generator located at www.accessify.com/
tools-and-wizards/developer-tools/list-o-matic/ and Dynamic Drive’s library of
vertical and horizontal CSS menus at www.dynamicdrive.com/style/.

3.12 User Style Sheets
Users can define their own user style sheets to format pages based on their preferences.
For example, people with visual impairments may want to increase the page’s text size.

Fig. 3.14 | CSS drop-down menu. (Part 3 of 3.)

www.accessify.com/tools-and-wizards/developer-tools/list-o-matic/
www.accessify.com/tools-and-wizards/developer-tools/list-o-matic/
www.dynamicdrive.com/style/

70 Chapter 3 Cascading Style Sheets™ (CSS)

Web page authors need to be careful not to inadvertently override user preferences with
defined styles. This section discusses possible conflicts between author styles and user
styles.

Figure 3.15 contains an author style. The font-size is set to 9pt for all <p> tags that
have class note applied to them.

User style sheets are external style sheets. Figure 3.16 shows a user style sheet that sets
the body’s font-size to 20pt, color to yellow and background-color to #000080.

User style sheets are not linked to a document; rather, they are set in the browser’s
options. To add a user style sheet in IE7, select Internet Options..., located in the Tools
menu. In the Internet Options dialog (Fig. 3.17) that appears, click Accessibility..., check

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 3.15: user_absolute.html -->
6 <!-- pt measurement for text size. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>User Styles</title>
10 <style type = "text/css">
11
12 </style>

13 </head>

14 <body>

15 <p>Thanks for visiting my website. I hope you enjoy it.
16
17
18 </body>

19 </html>

Fig. 3.15 | pt measurement for text size.

1 /* Fig. 3.16: userstyles.css */
2 /* A user stylesheet */
3
4 color: yellow;
5 background-color: #000080 }

Fig. 3.16 | User style sheet.

.note { font-size: 9pt }

</p><p class = "note">Please Note: This site will be
moving soon. Please check periodically for updates.</p>

body { font-size: 20pt;

3.12 User Style Sheets 71

the Format documents using my style sheet checkbox, and type the location of the user
style sheet. Internet Explorer 7 applies the user style sheet to any document it loads. To
add a user style sheet in Firefox, find your Firefox profile using the instructions at
www.mozilla.org/support/firefox/profile#locate and place a style sheet called
userContent.css in the chrome subdirectory.

The web page from Fig. 3.15 is displayed in Fig. 3.18, with the user style sheet from
Fig. 3.16 applied. In this example, if users define their own font-size in a user style sheet,
the author style has a higher precedence and overrides the user style. The 9pt font specified
in the author style sheet overrides the 20pt font specified in the user style sheet. This small
font may make pages difficult to read, especially for individuals with visual impairments.
You can avoid this problem by using relative measurements (e.g., em or ex) instead of abso-
lute measurements, such as pt. Figure 3.19 changes the font-size property to use a rela-
tive measurement (line 11) that does not override the user style set in Fig. 3.16. Instead,

Fig. 3.17 | User style sheet in Internet Explorer 7.

Fig. 3.18 | User style sheet applied with pt measurement.

www.mozilla.org/support/firefox/profile#locate

72 Chapter 3 Cascading Style Sheets™ (CSS)

the font size displayed is relative to the one specified in the user style sheet. In this case,
text enclosed in the <p> tag displays as 20pt, and <p> tags that have class note applied to
them are displayed in 15pt (.75 times 20pt).

Figure 3.20 displays the web page from Fig. 3.19 with the user style sheet from
Fig. 3.16 applied. Note that the second line of text displayed is larger than the same line
of text in Fig. 3.18.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 3.19: user_relative.html -->
6 <!-- em measurement for text size. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>User Styles</title>
10 <style type = "text/css">
11
12 </style>
13 </head>

14 <body>

15 <p>Thanks for visiting my website. I hope you enjoy it.
16 </p><p class = "note">Please Note: This site will be
17 moving soon. Please check periodically for updates.</p>
18 </body>

19 </html>

Fig. 3.19 | em measurement for text size.

Fig. 3.20 | User style sheet applied with em measurement.

.note { font-size: .75em }

3.13 CSS 3 73

3.13 CSS 3
The W3C is currently developing CSS 3 and some browsers are beginning to implement
some of the new features that will be in the CSS 3 specification. We discuss a few of the
upcoming features that will most likely be included in CSS 3.

CSS 3 will allow for more advanced control of borders. In addition to the border-
style, border-color, and border-width properties, you will be able to set multiple
border colors, use images for borders, add shadows to boxes, and create borders with
rounded corners.

Background images will be more versatile in CSS 3, allowing you to set the size of a
background image, specify an offset to determine where in the element the image should
be positioned, and use multiple background images in one element. There will also be
properties to set shadow effects on text and more options for text overflow when the text
is too long to fit in its containing element.

Additional features will include resizable boxes, enhanced selectors, multicolumn lay-
outs, and more developed speech (aural) styles. The Web Resources section points you to
the Deitel CSS Resource Center, where you can find links to the latest information on the
development and features of CSS 3.

3.14 Web Resources
http://www.deitel.com/css21
The Deitel CSS Resource Center contains links to some of the best CSS information on the web.
There you’ll find categorized links to tutorials, references, code examples, demos, videos, and more.
Check out the demos section for more advanced examples of layouts, menus, and other web page
components.

http://www.deitel.com/css21

4
JavaScript:
Introduction to
Scripting

O B J E C T I V E S
In this chapter you’ll learn:

■ To write simple JavaScript programs.

■ To use input and output statements.

■ Basic memory concepts.

■ To use arithmetic operators.

■ The precedence of arithmetic operators.

■ To write decision-making statements.

■ To use relational and equality operators.

Comment is free, but facts
are sacred.
—C. P. Scott

The creditor hath a better
memory than the debtor.
—James Howell

When faced with a decision,
I always ask, “What would
be the most fun?”
—Peggy Walker

Equality, in a social sense,
may be divided into that of
condition and that of rights.
—James Fenimore Cooper

4.1 Introduction 75

O
u

tl
in

e

4.1 Introduction
In Chapters 2 and 3, we introduced XHTML and Cascading Style Sheets (CSS). In this
chapter, we begin our introduction to the JavaScript1 scripting language, which facilitates
a disciplined approach to designing computer programs that enhance the functionality
and appearance of web pages.2

Chapters 4–9 present a detailed discussion of JavaScript—the de facto standard client-
side scripting language for web-based applications, due to its highly portable nature. Our
treatment of JavaScript introduces client-side scripting (used in Chapters 4–11), which
makes web pages more dynamic and interactive.

We now introduce JavaScript programming and present examples that illustrate sev-
eral important features of JavaScript. Each example is carefully analyzed one line at a time.
In Chapters 5–6, we present a detailed treatment of program development and program
control in JavaScript.

Before you can run code examples with JavaScript on your computer, you may need
to change your browser’s security settings. By default, Internet Explorer 7 prevents scripts
on your local computer from running, displaying a yellow warning bar at the top of the
window instead. To allow scripts to run in files on your computer, select Internet Options
from the Tools menu. Click the Advanced tab and scroll down to the Security section of
the Settings list. Check the box labeled Allow active content to run in files on My Computer
(Fig. 4.1). Click OK and restart Internet Explorer. XHTML documents on your own com-
puter that contain JavaScript code will now run properly. Firefox has JavaScript enabled
by default.

4.1 Introduction
4.2 Simple Program: Displaying a Line of Text in a Web Page
4.3 Modifying Our First Program
4.4 Obtaining User Input with prompt Dialogs

4.4.1 Dynamic Welcome Page
4.4.2 Adding Integers

4.5 Data Types in JavaScript
4.6 Arithmetic
4.7 Decision Making: Equality and Relational Operators
4.8 Web Resources

1. Don’t confuse the scripting language JavaScript with the programming language Java (from Sun Mi-
crosystems, Inc.). Java is a full-fledged object-oriented programming language. It can be used to de-
velop applications that execute on a range of devices—from the smallest devices (such as cell phones
and PDAs) to supercomputers. Java is popular for developing large-scale distributed enterprise appli-
cations and web applications. JavaScript is a browser-based scripting language developed by Netscape
and implemented in all major browsers.

2. JavaScript was originally created by Netscape. Both Netscape and Microsoft have been instrumental
in the standardization of JavaScript by ECMA International as ECMAScript. For more infomation
on ECMAScript visit www.ecma-international.org/publications/standards/ECMA-262.htm.

www.ecma-international.org/publications/standards/ECMA-262.htm

76 Chapter 4 JavaScript: Introduction to Scripting

4.2 Simple Program: Displaying a Line of Text in a Web
Page
JavaScript uses notations that are familiar to programmers. We begin by considering a sim-
ple script (or program) that displays the text "Welcome to JavaScript Programming!" in
the body of an XHTML document. All major web browsers contain JavaScript interpret-
ers, which process the commands written in JavaScript. The JavaScript code and its output
in Internet Explorer are shown in Fig. 4.2.

Fig. 4.1 | Enabling JavaScript in Internet Explorer 7

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 4.2: welcome.html -->
6 <!-- Displaying a line of text. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>A First Program in JavaScript</title>
10

11
12
13
14
15

16 </head><body></body>

17 </html>

Fig. 4.2 | Displaying a line of text. (Part 1 of 2.)

<script type = "text/javascript">

<!--
 document.writeln(
 "<h1>Welcome to JavaScript Programming!</h1>");

// -->
</script>

4.2 Simple Program: Displaying a Line of Text in a Web Page 77

This program illustrates several important JavaScript features. We consider each line
of the XHTML document and script in detail. As in the preceding chapters, we have given
each XHTML document line numbers for your convenience; the line numbers are not
part of the XHTML document or of the JavaScript programs. Lines 12–13 do the “real
work” of the script, namely, displaying the phrase Welcome to JavaScript Programming!

in the web page.
Line 8 indicates the beginning of the <head> section of the XHTML document. For

the moment, the JavaScript code we write will appear in the <head> section. The browser
interprets the contents of the <head> section first, so the JavaScript programs we write
there execute before the <body> of the XHTML document displays. In later chapters on
JavaScript and in the chapters on dynamic HTML, we illustrate inline scripting, in which
JavaScript code is written in the <body> of an XHTML document.

Line 10 uses the <script> tag to indicate to the browser that the text which follows
is part of a script. The type attribute specifies the type of file as well as the scripting lan-
guage used in the script—in this case, a text file written in javascript. Both Internet
Explorer and Firefox use JavaScript as the default scripting language.

Line 11 contains the XHTML opening comment tag <!--. Some older web browsers
do not support scripting. In such browsers, the actual text of a script often will display in
the web page. To prevent this from happening, many script programmers enclose the
script code in an XHTML comment, so that browsers that do not support scripts will
simply ignore the script. The syntax used is as follows:

<script type = "text/javascript">

<!--
script code here
// -->

</script>

When a browser that does not support scripts encounters the preceding code, it ignores
the <script> and </script> tags and the script code in the XHTML comment. Browsers
that do support scripting will interpret the JavaScript code as expected. [Note: Some
browsers require the JavaScript single-line comment // (see Section 4.4 for an explana-

Fig. 4.2 | Displaying a line of text. (Part 2 of 2.)

Title of the XHTML
document

Location and name of the loaded
XHTML document

Script result

78 Chapter 4 JavaScript: Introduction to Scripting

tion) before the ending XHTML comment delimiter (-->) to interpret the script properly.
The opening HTML comment tag (<!--) also serves as a single-line comment delimiter
in JavaScript, therefore it does not need to be commented.]

Portability Tip 4.1
Some browsers do not support the <script>…</script> tags. If your document is to be ren-
dered with such browsers, enclose the script code between these tags in an XHTML comment, so
that the script text does not get displayed as part of the web page. The closing comment tag of the
XHTML comment (-->) is preceded by a JavaScript comment (//) to prevent the browser from
trying to interpret the XHTML comment as a JavaScript statement.

Lines 12–13 instruct the browser’s JavaScript interpreter to perform an action,
namely, to display in the web page the string of characters contained between the double
quotation (") marks. A string is sometimes called a character string, a message or a string
literal. We refer to characters between double quotation marks as strings. Individual
white-space characters between words in a string are not ignored by the browser. However,
if consecutive spaces appear in a string, browsers condense them to a single space. Also, in
most cases, browsers ignore leading white-space characters (i.e., white space at the begin-
ning of a string).

Software Engineering Observation 4.1
Strings in JavaScript can be enclosed in either double quotation marks (") or single quotation
marks (').

Lines 12–13 use the browser’s document object, which represents the XHTML docu-
ment the browser is currently displaying. The document object allows you to specify text
to display in the XHTML document. The browser contains a complete set of objects that
allow script programmers to access and manipulate every element of an XHTML docu-
ment. In later chapters, we overview some of these objects as we discuss the Document
Object Model (DOM).

An object resides in the computer’s memory and contains information used by the
script. The term object normally implies that attributes (data) and behaviors (methods)
are associated with the object. The object’s methods use the attributes to perform useful
actions for the client of the object (i.e., the script that calls the methods). A method may
require additional information (arguments) to perform its action; this information is
enclosed in parentheses after the name of the method in the script. In lines 12–13, we call
the document object’s writeln method to write a line of XHTML markup in the XHTML
document. The parentheses following the method name writeln contain the one argu-
ment that method writeln requires (in this case, the string of XHTML that the browser
is to display). Method writeln instructs the browser to display the argument string. If the
string contains XHTML elements, the browser interprets these elements and renders them
on the screen. In this example, the browser displays the phrase Welcome to JavaScript

Programming! as an h1-level XHTML heading, because the phrase is enclosed in an h1 ele-
ment.

The code elements in lines 12–13, including document.writeln, its argument in the
parentheses (the string) and the semicolon (;), together are called a statement. Every state-
ment ends with a semicolon (also known as the statement terminator), although this prac-
tice is not required by JavaScript. Line 15 indicates the end of the script.

4.3 Modifying Our First Program 79

Good Programming Practice 4.1
Always include a semicolon at the end of a statement to terminate the statement. This notation
clarifies where one statement ends and the next statement begins.

Common Programming Error 4.1
Forgetting the ending </script> tag for a script may prevent the browser from interpreting the
script properly and may prevent the XHTML document from loading or rendering properly.

The </head> tag in line 16 indicates the end of the <head> section. Also in line 16,
the tags <body> and </body> specify that this XHTML document has an empty body.
Line 17 indicates the end of this XHTML document.

We are now ready to view our XHTML document in a web browser—open it in
Internet Explorer or Firefox. If the script contains no syntax errors, it should produce the
output shown in Fig. 4.2.

Common Programming Error 4.2
JavaScript is case sensitive. Not using the proper uppercase and lowercase letters is a syntax er-
ror—a violation of the rules of writing correct statements in the programming language. The
JavaScript interpreter in Internet Explorer reports all syntax errors by indicating in a separate
popup window that a runtime error has occurred (i.e., a problem occurred while the interpreter
was running the script). [Note: To enable this feature in IE7, select Internet Options… from
the Tools menu. In the Internet Options dialog that appears, select the Advanced tab and click
the checkbox labelled Display a notification about every script error under the Browsing cat-
egory. Firefox has an error console that reports JavaScript errors and warnings. It is accessible by
choosing Error Console from the Tools menu.]

4.3 Modifying Our First Program
This section continues our introduction to JavaScript programming with two examples
that modify the example in Fig. 4.2.

Displaying a Line of Colored Text
A script can display Welcome to JavaScript Programming! several ways. Figure 4.3 uses
two JavaScript statements to produce one line of text in the XHTML document. This ex-
ample also displays the text in a different color, using the CSS color property.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 4.3: welcome2.html -->
6 <!-- Printing one line with multiple statements. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Printing a Line with Multiple Statements</title>
10 <script type = "text/javascript">

11 <!--
12

Fig. 4.3 | Printing one line with separate statements. (Part 1 of 2.)

document.write("<h1 style = \"color: magenta\">");

80 Chapter 4 JavaScript: Introduction to Scripting

Most of this document is identical to Fig. 4.2, so we concentrate only on lines 12–14
of Fig. 4.3, which display one line of text in the XHTML document. The first statement
uses document method write to display a string. Unlike writeln, write does not position
the output cursor in the XHTML document at the beginning of the next line after writing
its argument. [Note: The output cursor keeps track of where the next character appears in
the XHTML document, not where the next character appears in the web page as rendered
by the browser.] The next character written in the XHTML document appears immedi-
ately after the last character written with write. Thus, when lines 13–14 execute, the first
character written, “W,” appears immediately after the last character displayed with write
(the > character inside the right double quote in line 12). Each write or writeln statement
resumes writing characters where the last write or writeln statement stopped writing
characters. So, after a writeln statement, the next output appears on the beginning of the
next line. In effect, the two statements in lines 12–14 result in one line of XHTML text.
Remember that statements in JavaScript are separated by semicolons (;). Therefore, lines
13–14 represent only one complete statement. JavaScript allows large statements to be
split over many lines. However, you cannot split a statement in the middle of a string. The
+ operator (called the “concatenation operator” when used in this manner) in line 13 joins
two strings together and is explained in more detail later in this chapter.

Common Programming Error 4.3
Splitting a statement in the middle of a string is a syntax error.

Note that the characters \" (in line 12) are not displayed in the browser. The back-
slash (\) in a string is an escape character. It indicates that a “special” character is to be
used in the string. When a backslash is encountered in a string of characters, the next char-
acter is combined with the backslash to form an escape sequence. The escape sequence \"
is the double-quote character, which causes a double-quote character to be inserted into
the string. We use this escape sequence to insert double quotes around the attribute value
for style without terminating the string. Note that we could also have used single quotes

13
14
15 // -->
16 </script>

17 </head><body></body>

18 </html>

Fig. 4.3 | Printing one line with separate statements. (Part 2 of 2.)

document.write("Welcome to JavaScript " +
"Programming!</h1>");

4.3 Modifying Our First Program 81

for the attribute value, as in document.write("<h1 style = 'color: magenta'>");,
because the single quotes do not terminate a double-quoted string. We discuss escape
sequences in greater detail momentarily.

It is important to note that the preceding discussion has nothing to do with the actual
rendering of the XHTML text. Remember that the browser does not create a new line of
text unless the browser window is too narrow for the text being rendered or the browser
encounters an XHTML element that explicitly starts a new line—for example,
 to
start a new line or <p> to start a new paragraph.

Common Programming Error 4.4
Many people confuse the writing of XHTML text with the rendering of XHTML text. Writing
XHTML text creates the XHTML that will be rendered by the browser for presentation to the
user.

Displaying Multiple Lines of Text
In the next example, we demonstrate that a single statement can cause the browser to dis-
play multiple lines by using line-break XHTML tags (
) throughout the string of
XHTML text in a write or writeln method call. Figure 4.4 demonstrates the use of line-
break XHTML tags. Lines 12–13 produce three separate lines of text when the browser
renders the XHTML document.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 4.4: welcome3.html -->
6 <!-- Printing on multiple lines with a single statement. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Printing Multiple Lines</title>
10 <script type = "text/javascript">

11 <!--
12
13
14 // -->
15 </script>

16 </head><body></body>

17 </html>

Fig. 4.4 | Printing on multiple lines with a single statement.

document.writeln("<h1>Welcome to
JavaScript" +
 "
Programming!</h1>");

82 Chapter 4 JavaScript: Introduction to Scripting

Displaying Text in an Alert Dialog
The first several programs in this chapter display text in the XHTML document. Some-
times it is useful to display information in windows called dialogs (or dialog boxes) that
“pop up” on the screen to grab the user’s attention. Dialogs typically display important
messages to users browsing the web page. JavaScript allows you easily to display a dialog
box containing a message. The program in Fig. 4.5 displays Welcome to JavaScript Pro-

gramming! as three lines in a predefined dialog called an alert dialog.
Line 12 in the script uses the browser’s window object to display an alert dialog. The

argument to the window object’s alert method is the string to display. Executing the pre-
ceding statement displays the dialog shown in the first window of Fig. 4.5. The title bar

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 4.5: welcome4.html -->
6 <!-- Alert dialog displaying multiple lines. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Printing Multiple Lines in a Dialog Box</title>
10 <script type = "text/javascript">

11 <!--
12
13 // -->
14 </script>

15 </head>

16 <body>

17 <p>Click Refresh (or Reload) to run this script again.</p>
18 </body>

19 </html>

Fig. 4.5 | Alert dialog displaying multiple lines.

window.alert("Welcome to\nJavaScript\nProgramming!");

The OK button allows
the user to dismiss (or
hide) the dialog.

The dialog is
automatically sized to
accommodate the string.

Title bar

Mouse cursor

4.3 Modifying Our First Program 83

of the dialog contains the string Windows Internet Explorer to indicate that the browser is
presenting a message to the user. The dialog provides an OK button that allows the user to
dismiss (i.e., close) the dialog by clicking the button. To dismiss the dialog, position the
mouse cursor (also called the mouse pointer) over the OK button and click the mouse.
Firefox’s alert dialog looks similar, but the title bar contains the text [JavaScript Applica-
tion].

Common Programming Error 4.5
Dialogs display plain text; they do not render XHTML. Therefore, specifying XHTML elements
as part of a string to be displayed in a dialog results in the actual characters of the tags being
displayed.

 Note that the alert dialog contains three lines of plain text. Normally, a dialog dis-
plays the characters in a string exactly as they appear between the double quotes. Note,
however, that the dialog does not display the characters \n. The escape sequence \n is the
newline character. In a dialog, the newline character causes the cursor (i.e., the current
screen position indicator) to move to the beginning of the next line in the dialog. Some
other common escape sequences are listed in Fig. 4.6. The \n, \t and \r escape sequences
in the table do not affect XHTML rendering unless they are in a pre element (this element
displays the text between its tags in a fixed-width font exactly as it is formatted between
the tags, including leading white-space characters and consecutive white-space characters).
The other escape sequences result in characters that will be displayed in plain text dialogs
and in XHTML.

Escape sequence Description

\n New line. Position the screen cursor at the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor to the beginning of the cur-
rent line; do not advance to the next line. Any characters output after
the carriage return overwrite the characters previously output on that
line.

\\ Backslash. Used to represent a backslash character in a string.

\" Double quote. Used to represent a double-quote character in a string
contained in double quotes. For example,

window.alert("\"in quotes\"");

displays "in quotes" in an alert dialog.

\' Single quote. Used to represent a single-quote character in a string. For
example,

window.alert('\'in quotes\'');

displays 'in quotes' in an alert dialog.

Fig. 4.6 | Some common escape sequences.

84 Chapter 4 JavaScript: Introduction to Scripting

Common Programming Error 4.6
XHTML elements in an alert dialog’s message are not interpreted as XHTML.This means that
using
, for example, to create a line break in an alert box is an error. The string

will simply be included in your message.

4.4 Obtaining User Input with prompt Dialogs
Scripting gives you the ability to generate part or all of a web page’s content at the time it
is shown to the user. A script can adapt the content based on input from the user or other
variables, such as the time of day or the type of browser used by the client. Such web pages
are said to be dynamic, as opposed to static, since their content has the ability to change.
The next two subsections use scripts to demonstrate dynamic web pages.

4.4.1 Dynamic Welcome Page
Our next script builds on prior scripts to create a dynamic welcome page that obtains the
user’s name, then displays it on the page. The script uses another predefined dialog box
from the window object—a prompt dialog—which allows the user to input a value that the
script can use. The program asks the user to input a name, then displays the name in the
XHTML document. Figure 4.7 presents the script and sample output. [Note: In later Java-
Script chapters, we obtain input via GUI components in XHTML forms, as introduced
in Chapter 2.]

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 4.7: welcome5.html -->
6 <!-- Prompt box used on a welcome screen. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Using Prompt and Alert Boxes</title>
10 <script type = "text/javascript">

11 <!--
12 // string entered by the user
13
14 // read the name from the prompt box as a string
15
16
17 document.writeln("<h1>Hello, " + name +
18 ", welcome to JavaScript programming!</h1>");
19 // -->
20 </script>
21 </head>

22 <body>

23 <p>Click Refresh (or Reload) to run this script again.</p>
24 </body>

25 </html>

Fig. 4.7 | Prompt box used on a welcome screen. (Part 1 of 2.)

var name;

name = window.prompt("Please enter your name");

4.4 Obtaining User Input with prompt Dialogs 85

Line 12 is a declaration that contains the JavaScript keyword var. Keywords are
words that have special meaning in JavaScript. The keyword var at the beginning of the
statement indicates that the word name is a variable. A variable is a location in the com-
puter’s memory where a value can be stored for use by a program. All variables have a
name, type and value, and should be declared with a var statement before they are used in
a program. Although using var to declare variables is not required, we’ll see in Chapter 7,
JavaScript: Functions, that var sometimes ensures proper behavior of a script.

The name of a variable can be any valid identifier. An identifier is a series of characters
consisting of letters, digits, underscores (_) and dollar signs ($) that does not begin with
a digit and is not a reserved JavaScript keyword. [Note: A complete list of keywords can be
found in Fig. 5.1.] Identifiers may not contain spaces. Some valid identifiers are Welcome,
$value, _value, m_inputField1 and button7. The name 7button is not a valid identifier,
because it begins with a digit, and the name input field is not valid, because it contains
a space. Remember that JavaScript is case sensitive—uppercase and lowercase letters are
considered to be different characters, so name, Name and NAME are different identifiers.

Good Programming Practice 4.2
Choosing meaningful variable names helps a script to be “self-documenting” (i.e., easy to under-
stand by simply reading the script, rather than having to read manuals or extended comments).

Good Programming Practice 4.3
By convention, variable-name identifiers begin with a lowercase first letter. Each subsequent
word should begin with a capital first letter. For example, identifier itemPrice has a capital P
in its second word, Price.

Common Programming Error 4.7
Splitting a statement in the middle of an identifier is a syntax error.

Fig. 4.7 | Prompt box used on a welcome screen. (Part 2 of 2.)

86 Chapter 4 JavaScript: Introduction to Scripting

Declarations end with a semicolon (;) and can be split over several lines with each
variable in the declaration separated by a comma—known as a comma-separated list of
variable names. Several variables may be declared either in one declaration or in multiple
declarations.

In line 12, a single-line comment that begins with the characters // states the purpose
of the variable in the script. This form of comment is called a single-line comment because
it terminates at the end of the line in which it appears. A // comment can begin at any
position in a line of JavaScript code and continues until the end of the line.

Good Programming Practice 4.4
Declare each variable on a separate line. This format allows for easy insertion of a descriptive
comment next to each declaration—a widely followed professional coding standard.

Another comment notation facilitates writing multiline comments. For example,

/* This is a multiline
 comment. It can be
 split over many lines. */

is a multiline comment spread over several lines. Such comments begin with the delimiter
/* and end with the delimiter */. All text between the delimiters of the comment is ig-
nored by the interpreter.

Common Programming Error 4.8
Forgetting one of the delimiters of a multiline comment is a syntax error.

Common Programming Error 4.9
Nesting multiline comments (i.e., placing a multiline comment between the delimiters of anoth-
er multiline comment) is a syntax error.

JavaScript adopted comments delimited with /* and */ from the C programming lan-
guage and single-line comments delimited with // from the C++ programming language.
JavaScript programmers generally prefer C++-style single-line comments over C-style
comments. Throughout this book, we use C++-style single-line comments.

Line 14 is a comment indicating the purpose of the statement in the next line. Line
15 calls the window object’s prompt method, which displays the dialog in Fig. 4.8. The
dialog allows the user to enter a string representing the user’s name.

Fig. 4.8 | Prompt dialog displayed by the window object’s prompt method.

When the user
clicks OK, the
value typed by
the user is
returned to the
program as a
string.

This is the text field in which the
user types the value.

This is the
prompt to the
user.

This is the value the user types into the
alert dialog.

4.4 Obtaining User Input with prompt Dialogs 87

The argument to prompt specifies a message telling the user what to type in the text
field. An optional second argument, separated from the first by a comma, may specify the
default string displayed in the text field; our code does not supply a second argument. In
this case, Internet Explorer displays the default value undefined, while Firefox and most
other browsers leave the text field empty. The user types characters in the text field, then
clicks the OK button to submit the string to the program. We normally receive input from
a user through a GUI component such as the prompt dialog, as in this program, or through
an XHTML form GUI component, as we’ll see in later chapters.

The user can type anything in the text field of the prompt dialog. For this program,
whatever the user enters is considered the name. If the user clicks the Cancel button, no
string value is sent to the program. Instead, the prompt dialog submits the value null, a
JavaScript keyword signifying that a variable has no value. Note that null is not a string
literal, but rather a predefined term indicating the absence of value. Writing a null value
to the document, however, displays the word null in the web page.

The statement in line 15 assigns the value returned by the window object’s prompt
method (a string containing the characters typed by the user—or the default value or null
if the Cancel button is clicked) to variable name by using the assignment operator, =. The
statement is read as, “name gets the value returned by window.prompt("Please enter

your name").” The = operator is called a binary operator because it has two operands—
name and the result of the expression window.prompt("Please enter your name"). The
expression to the right of the assignment operator is always evaluated first.

Good Programming Practice 4.5
Place spaces on either side of a binary operator. This format makes the operator stand out and
makes the program more readable.

Lines 17–18 use document.writeln to display the new welcome message. The expres-
sion inside the parentheses uses the operator + to “add” a string (the literal "<h1>Hello, "),
the variable name (the string that the user entered in line 15) and another string (the literal
", welcome to JavaScript programming!</h1>"). JavaScript has a version of the + oper-
ator for string concatenation that enables a string and a value of another data type
(including another string) to be combined. The result of this operation is a new (and nor-
mally longer) string. If we assume that name contains the string literal "Jim", the expression
evaluates as follows: JavaScript determines that the two operands of the first + operator (the
string "<h1>Hello, " and the value of variable name) are both strings, then concatenates
the two into one string. Next, JavaScript determines that the two operands of the second
+ operator (the result of the first concatenation operation, the string "<h1>Hello, Jim",
and the string ", welcome to JavaScript programming!</h1>") are both strings and con-
catenates the two. This results in the string "<h1>Hello, Jim, welcome to JavaScript

programming!</h1>". The browser renders this string as part of the XHTML document.
Note that the space between Hello, and Jim is part of the string "<h1>Hello, ".

As we’ll illustrate later, the + operator used for string concatenation can convert other
variable types to strings if necessary. Because string concatenation occurs between two
strings, JavaScript must convert other variable types to strings before it can proceed with
the operation. For example, if a variable age has the integer value 21, then the expression
"my age is " + age evaluates to the string "my age is 21". JavaScript converts the value of
age to a string and concatenates it with the existing string literal "my age is ".

88 Chapter 4 JavaScript: Introduction to Scripting

After the browser interprets the <head> section of the XHTML document (which
contains the JavaScript), it then interprets the <body> (lines 22–24) and renders the
XHTML. Notice that the XHTML page is not rendered until the prompt is dismissed
because the prompt pauses execution in the head, before the body is processed. If you click
your browser’s Refresh (Internet Explorer) or Reload (Firefox) button after entering a
name, the browser will reload the XHTML document, so that you can execute the script
again and change the name. [Note: In some cases, it may be necessary to hold down the
Shift key while clicking the Refresh or Reload button, to ensure that the XHTML docu-
ment reloads properly. Browsers often save a recent copy of a page in memory, and holding
the Shift key forces the browser to download the most recent version of a page.]

4.4.2 Adding Integers
Our next script illustrates another use of prompt dialogs to obtain input from the user.
Figure 4.9 inputs two integers (whole numbers, such as 7, –11, 0 and 31914) typed by a
user at the keyboard, computes the sum of the values and displays the result.

Lines 12–16 declare the variables firstNumber, secondNumber, number1, number2

and sum. Single-line comments state the purpose of each of these variables. Line 19
employs a prompt dialog to allow the user to enter a string representing the first of the two
integers that will be added. The script assigns the first value entered by the user to the

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 4.9: addition.html -->
6 <!-- Addition script. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>An Addition Program</title>
10 <script type = "text/javascript">

11 <!--
12 var firstNumber; // first string entered by user
13 var secondNumber; // second string entered by user
14 var number1; // first number to add
15 var number2; // second number to add
16 var sum; // sum of number1 and number2
17
18 // read in first number from user as a string
19
20
21 // read in second number from user as a string
22
23
24 // convert numbers from strings to integers
25
26
27
28 sum = number1 + number2; // add the numbers

Fig. 4.9 | Addition script. (Part 1 of 2.)

firstNumber = window.prompt("Enter first integer");

secondNumber = window.prompt("Enter second integer");

number1 = parseInt(firstNumber);
number2 = parseInt(secondNumber);

4.4 Obtaining User Input with prompt Dialogs 89

variable firstNumber. Line 22 displays a prompt dialog to obtain the second number to
add and assign this value to the variable secondNumber.

As in the preceding example, the user can type anything in the prompt dialog. For this
program, if the user either types a noninteger value or clicks the Cancel button, a logic
error will occur, and the sum of the two values will appear in the XHTML document as
NaN (meaning not a number). A logic error is caused by syntactically correct code that
produces an undesired result. In Chapter 9, JavaScript: Objects, we discuss the Number
object and its methods that can determine whether a value is not a number.

Recall that a prompt dialog returns to the program as a string the value typed by the
user. Lines 25–26 convert the two strings input by the user to integer values that can be
used in a calculation. Function parseInt converts its string argument to an integer. Line
25 assigns to the variable number1 the integer that function parseInt returns. Line 26
assigns an integer value to variable number2 in a similar manner. Any subsequent references
to number1 and number2 in the program use these integer values. [Note: We refer to

29
30 // display the results
31 document.writeln("<h1>The sum is " + sum + "</h1>");
32 // -->
33 </script>

34 </head>

35 <body>

36 <p>Click Refresh (or Reload) to run the script again</p>
37 </body>

38 </html>

Fig. 4.9 | Addition script. (Part 2 of 2.)

90 Chapter 4 JavaScript: Introduction to Scripting

parseInt as a function rather than a method because we do not precede the function call
with an object name (such as document or window) and a dot (.). The term method means
that the function belongs to a particular object. For example, method writeln belongs to
the document object and method prompt belongs to the window object.]

Line 28 calculates the sum of the variables number1 and number2 using the addition
operator, +, and assigns the result to variable sum by using the assignment operator, =.
Notice that the + operator can perform both addition and string concatenation. In this
case, the + operator performs addition, because both operands contain integers. After line
28 performs this calculation, line 31 uses document.writeln to display the result of the
addition on the web page. Lines 33 and 34 close the script and head elements, respec-
tively. Lines 35–37 render the body of XHTML document. Use your browser’s Refresh or
Reload button to reload the XHTML document and run the script again.

Common Programming Error 4.10
Confusing the + operator used for string concatenation with the + operator used for addition of-
ten leads to undesired results. For example, if integer variable y has the value 5, the expression
"y + 2 = " + y + 2 results in "y + 2 = 52", not "y + 2 = 7", because first the value of y (i.e., 5) is
concatenated with the string "y + 2 = ", then the value 2 is concatenated with the new, larger
string "y + 2 = 5". The expression "y + 2 = " + (y + 2) produces the string "y + 2 = 7" because
the parentheses ensure that y + 2 is executed mathematically before it is conveted to a string.

4.5 Data Types in JavaScript
Unlike its predecessor languages C, C++ and Java, JavaScript does not require variables to
have a declared type before they can be used in a program. A variable in JavaScript can
contain a value of any data type, and in many situations JavaScript automatically converts
between values of different types for you. For this reason, JavaScript is referred to as a
loosely typed language. When a variable is declared in JavaScript, but is not given a value,
the variable has an undefined value. Attempting to use the value of such a variable is nor-
mally a logic error.

When variables are declared, they are not assigned values unless specified by you.
Assigning the value null to a variable indicates that it does not contain a value.

4.6 Arithmetic
Many scripts perform arithmetic calculations. The arithmetic operators use various spe-
cial symbols that are not used in algebra. The asterisk (*) indicates multiplication; the per-
cent sign (%) is the remainder operator, which will be discussed shortly. The arithmetic
operators are binary operators—each operates on two operands. For example, the expres-
sion sum + value contains the binary operator + and the two operands sum and value.

JavaScript provides the remainder operator, %, which yields the remainder after divi-
sion. [Note: The % operator is known as the modulus operator in some programming lan-
guages.] The expression x % y yields the remainder after x is divided by y. Thus, 17 % 5

yields 2 (i.e., 17 divided by 5 is 3, with a remainder of 2), and 7.4 % 3.1 yields 1.2. In later
chapters, we consider applications of the remainder operator, such as determining whether
one number is a multiple of another. There is no arithmetic operator for exponentiation
in JavaScript. (Chapter 6, JavaScript: Control Statements II, shows how to perform expo-
nentiation in JavaScript using the Math object’s pow method.)

4.7 Decision Making: Equality and Relational Operators 91

4.7 Decision Making: Equality and Relational Operators
This section introduces a version of JavaScript’s if statement that allows a program to
make a decision based on the truth or falsity of a condition. If the condition is met (i.e.,
the condition is true), the statement in the body of the if statement is executed. If the
condition is not met (i.e., the condition is false), the statement in the body of the if state-
ment is not executed. We’ll see an example shortly. [Note: Other versions of the if state-
ment are introduced in Chapter 5, JavaScript: Control Statements I.]

Conditions in if statements can be formed by using the equality operators and rela-
tional operators summarized in Fig. 4.10. The relational operators all have the same level
of precedence and associate from left to right. The equality operators both have the same
level of precedence, which is lower than the precedence of the relational operators. The
equality operators also associate from left to right.

Common Programming Error 4.11
It is a syntax error if the operators ==, !=, >= and <= contain spaces between their symbols, as in
= =, ! =, > = and < =, respectively.

Common Programming Error 4.12
Reversing the operators !=, >= and <=, as in =!, => and =<, respectively, is a syntax error.

Common Programming Error 4.13
Confusing the equality operator, ==, with the assignment operator, =, is a logic error. The equal-
ity operator should be read as “is equal to,” and the assignment operator should be read as “gets”
or “gets the value of.” Some people prefer to read the equality operator as “double equals” or
“equals equals.”

Standard algebraic
equality operator or
relational operator

JavaScript equality or
relational operator

Sample
JavaScript
condition

Meaning of
JavaScript condition

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Fig. 4.10 | Equality and relational operators.

92 Chapter 4 JavaScript: Introduction to Scripting

The script in Fig. 4.11 uses four if statements to display a time-sensitive greeting on
a welcome page. The script obtains the local time from the user’s computer and converts
it from 24-hour clock format (0–23) to a 12-hour clock format (0–11). Using this value,
the script displays an appropriate greeting for the current time of day. The script and
sample output are shown in Fig. 4.11.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 4.11: welcome6.html -->
6 <!-- Using equality and relational operators. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Using Relational Operators</title>
10 <script type = "text/javascript">

11 <!--
12 var name; // string entered by the user
13 var // current date and time
14 var // current hour (0-23)
15
16 // read the name from the prompt box as a string
17 name = window.prompt("Please enter your name");
18
19 // determine whether it is morning
20
21 document.write("<h1>Good Morning, ");
22
23 // determine whether the time is PM
24
25 {
26 // convert to a 12-hour clock
27
28
29 // determine whether it is before 6 PM
30
31 document.write("<h1>Good Afternoon, ");
32
33 // determine whether it is after 6 PM
34
35 document.write("<h1>Good Evening, ");
36 } // end if
37
38 document.writeln(name +
39 ", welcome to JavaScript programming!</h1>");
40 // -->
41 </script>

42 </head>

43 <body>

44 <p>Click Refresh (or Reload) to run this script again.</p>
45 </body>

46 </html>

Fig. 4.11 | Using equality and relational operators. (Part 1 of 2.)

now = new Date();
hour = now.getHours();

if (hour < 12)

if (hour >= 12)

hour = hour - 12;

if (hour < 6)

if (hour >= 6)

4.7 Decision Making: Equality and Relational Operators 93

Lines 12–14 declare the variables used in the script. Remember that variables may be
declared in one declaration or in multiple declarations. If more than one variable is
declared in a single declaration (as in this example), the names are separated by commas
(,). This list of names is referred to as a comma-separated list. Once again, note the com-
ment at the end of each line, indicating the purpose of each variable in the program. Also
note that some of the variables are assigned a value in the declaration—JavaScript allows
you to assign a value to a variable when the variable is declared.

Line 13 sets the variable now to a new Date object, which contains information about
the current local time. In Section 4.2, we introduced the document object, an object that
encapsulates data pertaining to the current web page. Programmers may choose to use
other objects to perform specific tasks or obtain particular pieces of information. Here, we
use JavaScript’s built-in Date object to acquire the current local time. We create a new
instance of an object by using the new operator followed by the type of the object, Date,
and a pair of parentheses. Some objects require that arguments be placed in the paren-
theses to specify details about the object to be created. In this case, we leave the parentheses
empty to create a default Date object containing information about the current date and
time. After line 13 executes, the variable now refers to the new Date object. [Note: We did
not need to use the new operator when we used the document and window objects because
these objects always are created by the browser.] Line 14 sets the variable hour to an integer
equal to the current hour (in a 24-hour clock format) returned by the Date object’s get-
Hours method. Chapter 9 presents a more detailed discussion of the Date object’s attri-
butes and methods, and of objects in general. As in the preceding example, the script uses
window.prompt to allow the user to enter a name to display as part of the greeting (line 17).

To display the correct time-sensitive greeting, the script must determine whether the
user is visiting the page during the morning, afternoon or evening. The first if statement
(lines 20–21) compares the value of variable hour with 12. If hour is less than 12, then the
user is visiting the page during the morning, and the statement at line 21 outputs the string
"Good morning". If this condition is not met, line 21 is not executed. Line 24 determines

Fig. 4.11 | Using equality and relational operators. (Part 2 of 2.)

94 Chapter 4 JavaScript: Introduction to Scripting

whether hour is greater than or equal to 12. If hour is greater than or equal to 12, then the
user is visiting the page in either the afternoon or the evening. Lines 25–36 execute to
determine the appropriate greeting. If hour is less than 12, then the JavaScript interpreter
does not execute these lines and continues to line 38.

The brace { in line 25 begins a block of statements (lines 27–35) that are executed if
hour is greater than or equal to 12—to execute multiple statements inside an if construct,
enclose them in curly braces. Line 27 subtracts 12 from hour, converting the current hour
from a 24-hour clock format (0–23) to a 12-hour clock format (0–11). The if statement
(line 30) determines whether hour is now less than 6. If it is, then the time is between noon
and 6 PM, and line 31 outputs the beginning of an XHTML h1 element ("<h1>Good
Afternoon, "). If hour is greater than or equal to 6, the time is between 6 PM and mid-
night, and the script outputs the greeting "Good Evening" (lines 34–35). The brace } in
line 36 ends the block of statements associated with the if statement in line 24. Note that
if statements can be nested, i.e., one if statement can be placed inside another if state-
ment. The if statements that determine whether the user is visiting the page in the after-
noon or the evening (lines 30–31 and lines 34–35) execute only if the script has already
established that hour is greater than or equal to 12 (line 24). If the script has already deter-
mined the current time of day to be morning, these additional comparisons are not per-
formed. (Chapter 5 presents a more in-depth discussion of blocks and nested if
statements.) Finally, lines 38–39 output the rest of the XHTML h1 element (the
remaining part of the greeting), which does not depend on the time of day.

Good Programming Practice 4.6
Include comments after the closing curly brace of control statements (such as if statements) to
indicate where the statements end, as in line 36 of Fig. 4.11.

Note that there is no semicolon (;) at the end of the first line of each if statement.
Including such a semicolon would result in a logic error at execution time. For example,

if (hour < 12) ;
 document.write("<h1>Good Morning, ");

would actually be interpreted by JavaScript erroneously as

if (hour < 12)
 ;

document.write("<h1>Good Morning, ");

where the semicolon on the line by itself—called the empty statement—is the statement
to execute if the condition in the if statement is true. When the empty statement executes,
no task is performed in the program. The program then continues with the next statement,
which executes regardless of whether the condition is true or false. In this example,
"<h1>Good Morning, " would be printed regardless of the time of day.

Common Programming Error 4.14
Placing a semicolon immediately after the right parenthesis of the condition in an if statement
is normally a logic error. The semicolon would cause the body of the if statement to be empty,
so the if statement itself would perform no action, regardless of whether its condition was true.
Worse yet, the intended body statement of the if statement would now become a statement in
sequence after the if statement and would always be executed.

4.8 Web Resources 95

Common Programming Error 4.15
Leaving out a condition in a series of if statements is normally a logic error. For instance, check-
ing if hour is greater than 12 or less than 12, but not if hour is equal to 12, would mean that
the script takes no action when hour is equal to 12. Always be sure to handle every possible con-
dition.

Note the use of spacing in lines 38–39 of Fig. 4.11. Remember that white-space char-
acters, such as tabs, newlines and spaces, are normally ignored by the browser. So, state-
ments may be split over several lines and may be spaced according to your preferences
without affecting the meaning of a program. However, it is incorrect to split identifiers
and string literals. Ideally, statements should be kept small, but it is not always possible to
do so.

The chart in Fig. 4.12 shows the precedence of the operators introduced in this
chapter. The operators are shown from top to bottom in decreasing order of precedence.
Note that all of these operators, with the exception of the assignment operator, =, associate
from left to right. Addition is left associative, so an expression like x + y + z is evaluated as
if it had been written as (x + y) + z. The assignment operator, =, associates from right to
left, so an expression like x = y = 0 is evaluated as if it had been written as x = (y = 0), which
first assigns the value 0 to variable y, then assigns the result of that assignment, 0, to x.

4.8 Web Resources
www.deitel.com/javascript

The Deitel JavaScript Resource Center contains links to some of the best JavaScript resources on the
web. There you’ll find categorized links to JavaScript tutorials, tools, code generators, forums,
books, libraries, frameworks and more.

Operators Associativity Type

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

= right to left assignment

Fig. 4.12 | Precedence and associativity of the operators discussed so far.

www.deitel.com/javascript

5
JavaScript:
Control
Statements I

O B J E C T I V E S
In this chapter you’ll learn:

■ To use the if and if…else selection statements to
choose among alternative actions.

■ To use the while repetition statement to execute
statements in a script repeatedly.

■ Counter-controlled repetition and sentinel-controlled
repetition.

■ To use the increment, decrement and assignment
operators.

Let’s all move one place on.
—Lewis Carroll

The wheel is come full circle.
—William Shakespeare

How many apples fell on
Newton’s head before he took
the hint!
—Robert Frost

5.1 Introduction 97

O
u

tl
in

e

5.1 Introduction
When writing a script, it is essential to understand the types of building blocks that are
available and to employ proven program-construction principles. In this chapter and in
Chapter 6, we discuss JavaScript’s control statements, which are similar to those in many
other high-level languages. We also introduce JavaScript’s assignment operators and ex-
plore its increment and decrement operators. These additional operators abbreviate and
simplify many program statements.

5.2 Control Statements
JavaScript provides three types of selection statements; we discuss each in this chapter and
in Chapter 6. The if selection statement performs (selects) an action if a condition is true
or skips the action if the condition is false. The if…else selection statement qperforms
an action if a condition is true and performs a different action if the condition is false. The
switch selection statement (Chapter 6) performs one of many different actions, depend-
ing on the value of an expression.

The if statement is called a single-selection statement because it selects or ignores a
single action (or, as we’ll soon see, a single group of actions). The if…else statement is
a double-selection statement because it selects between two different actions (or groups of
actions). The switch statement is a multiple-selection statement because it selects among
many different actions (or groups of actions).

JavaScript provides four repetition statement types, namely while, do…while, for
and for…in. (do…while and for are covered in Chapter 6; for…in is covered in
Chapter 8.) Each of the words if, else, switch, while, do, for and in is a JavaScript key-
word. These words are reserved by the language to implement various features, such as
JavaScript’s control statements. Keywords cannot be used as identifiers (e.g., for variable
names). A list of JavaScript keywords is shown in Fig. 5.1.

Common Programming Error 5.1
Using a keyword as an identifier is a syntax error.

5.1 Introduction
5.2 Control Statements
5.3 if Selection Statement
5.4 if…else Selection Statement
5.5 while Repetition Statement
5.6 Counter-Controlled Repetition
5.7 Formulating Algorithms: Sentinel-Controlled Repetition
5.8 Formulating Algorithms: Nested Control Statements
5.9 Assignment Operators

5.10 Increment and Decrement Operators
5.11 Web Resources

98 Chapter 5 JavaScript: Control Statements I

As we have shown, JavaScript has only eight control structures: sequence, three types
of selection and four types of repetition. A program is formed by combining control state-
ments as necessary to implement the program’s algorithm.

Single-entry/single-exit control statements make it easy to build programs; the con-
trol statements are attached to one another by connecting the exit point of one to the entry
point of the next. This process is called control-statement stacking. We’ll learn that there
is only one other way in which control statements may be connected—control-statement
nesting. Thus JavaScript programs are constructed from only eight different types of con-
trol statements combined in only two ways.

5.3 if Selection Statement
A selection statement is used to choose among alternative courses of action in a program.
For example, suppose that the passing grade on an examination is 60 (out of 100). Then
the JavaScript statement

if (studentGrade >= 60)
 document.writeln("Passed");

determines whether the condition “student’s grade is greater than or equal to 60” is true
or false. If the condition is true, then "Passed" is output in the XHTML document, and
the next JavaScript statement in order is performed. If the condition is false, the print
statement is ignored, and the next JavaScript statement in order is performed.

Note that the second line of this selection statement is indented. The JavaScript inter-
preter ignores white-space characters—blanks, tabs and newlines used for indentation and
vertical spacing.

The flowchart in Fig. 5.2 illustrates the single-selection if statement. This flowchart
contains what is perhaps the most important flowcharting symbol—the diamond symbol

JavaScript keywords

break case catch continue default

delete do else false finally

for function if in instanceof

new null return switch this

throw true try typeof var

void while with

Keywords that are reserved but not used by JavaScript
abstract boolean byte char class

const debugger double enum export

extends final float goto implements

import int interface long native

package private protected public short

static super synchronized throws transient

volatile

Fig. 5.1 | JavaScript keywords.

5.4 if…else Selection Statement 99

(or decision symbol), which indicates that a decision is to be made. The decision symbol
contains an expression, such as a condition, that can be either true or false. The decision
symbol has two flowlines emerging from it. One indicates the path to follow in the pro-
gram when the expression in the symbol is true; the other indicates the path to follow in
the program when the expression is false. A decision can be made on any expression that
evaluates to a value of JavaScript’s boolean type (i.e., any expression that evaluates to true
or false—also known as a boolean expression).

Software Engineering Observation 5.1
In JavaScript, any nonzero numeric value in a condition evaluates to true, and 0 evaluates to
false. For strings, any string containing one or more characters evaluates to true, and the empty
string (the string containing no characters, represented as "") evaluates to false. Also, a variable
that has been declared with var but has not been assigned a value evaluates to false.

Note that the if statement is a single-entry/single-exit control statement. Flowcharts
for the remaining control statements also contain (besides small circle symbols and flow-
lines) only rectangle symbols, to indicate the actions to be performed, and diamond sym-
bols, to indicate decisions to be made. This type of flowchart represents the action/
decision model of programming.

5.4 if…else Selection Statement
The if selection statement performs an indicated action only when the condition evalu-
ates to true; otherwise, the action is skipped. The if…else selection statement allows
you to specify that a different action is to be performed when the condition is true than
when the condition is false. For example, the JavaScript statement

if (studentGrade >= 60)
 document.writeln("Passed");
else

 document.writeln("Failed");

outputs Passed in the XHTML document if the student’s grade is greater than or equal
to 60 and outputs Failed if the student’s grade is less than 60. In either case, after printing
occurs, the next JavaScript statement in sequence (i.e., the next statement after the whole
if…else statement) is performed. Note that the body of the else part of the structure is

Fig. 5.2 | Flowcharting the single-selection if statement.

grade >= 60 true

false

print “Passed”

100 Chapter 5 JavaScript: Control Statements I

also indented. The flowchart shown in Fig. 5.3 illustrates the if…else selection state-
ment’s flow of control.

JavaScript provides an operator, called the conditional operator (?:), that is closely
related to the if…else statement. The operator ?: is JavaScript’s only ternary operator—
it takes three operands. The operands together with the ?: form a conditional expression.
The first operand is a boolean expression, the second is the value for the conditional expres-
sion if the expression evaluates to true and the third is the value for the conditional expres-
sion if the expression evaluates to false. For example, consider the following statement

document.writeln(studentGrade >= 60 ? "Passed" : "Failed");

contains a conditional expression that evaluates to the string "Passed" if the condition
studentGrade >= 60 is true and evaluates to the string "Failed" if the condition is false.
Thus, this statement with the conditional operator performs essentially the same operation
as the preceding if…else statement. The precedence of the conditional operator is low,
so the entire conditional expression is normally placed in parentheses to ensure that it eval-
uates correctly.

Nested if…else statements test for multiple cases by placing if…else statements
inside if…else statements. For example, the following pseudocode statement indicates
that the program should print A for exam grades greater than or equal to 90, B for grades
in the range 80 to 89, C for grades in the range 70 to 79, D for grades in the range 60 to 69
and F for all other grades:

if (studentGrade >= 90)
 document.writeln("A");
else

if (studentGrade >= 80)
 document.writeln("B");

else

 if (studentGrade >= 70)
 document.writeln("C");
 else
 if (studentGrade >= 60)
 document.writeln("D");
 else
 document.writeln("F");

Fig. 5.3 | Flowcharting the double-selection if…else statement.

grade >= 60 true

print “Failed”

false

print “Passed”

5.4 if…else Selection Statement 101

If studentGrade is greater than or equal to 90, all four conditions will be true, but only
the document.writeln statement after the first test will execute. After that particular doc-
ument.writeln executes, the else part of the outer if…else statements is skipped.

Good Programming Practice 5.1
If there are several levels of indentation, each level should be indented the same additional
amount of space.

Most JavaScript programmers prefer to write the preceding if statement as

if (grade >= 90)
 document.writeln("A");
else if (grade >= 80)
 document.writeln("B");
else if (grade >= 70)
 document.writeln("C");
else if (grade >= 60)
 document.writeln("D");
else

 document.writeln("F");

The two forms are equivalent. The latter form is popular because it avoids the deep inden-
tation of the code to the right. Such deep indentation often leaves little room on a line,
forcing lines to be split and decreasing program readability.

It is important to note that the JavaScript interpreter always associates an else with
the previous if, unless told to do otherwise by the placement of braces ({}). This situation
is referred to as the dangling-else problem. For example,

if (x > 5)
if (y > 5)

 document.writeln("x and y are > 5");
else

 document.writeln("x is <= 5");

appears to indicate with its indentation that if x is greater than 5, the if statement in its
body determines whether y is also greater than 5. If so, the body of the nested if statement
outputs the string "x and y are > 5". Otherwise, it appears that if x is not greater than 5,
the else part of the if…else statement outputs the string "x is <= 5".

Beware! The preceding nested if statement does not execute as it appears. The inter-
preter actually interprets the preceding statement as

if (x > 5)
if (y > 5)

 document.writeln("x and y are > 5");
else

 document.writeln("x is <= 5");

in which the body of the first if statement is a nested if…else statement. This statement
tests whether x is greater than 5. If so, execution continues by testing whether y is also
greater than 5. If the second condition is true, the proper string—"x and y are > 5"—is
displayed. However, if the second condition is false, the string "x is <= 5" is displayed,
even though we know that x is greater than 5.

102 Chapter 5 JavaScript: Control Statements I

To force the preceding nested if statement to execute as it was intended originally, it
must be written as follows:

if (x > 5)
{

if (y > 5)
 document.writeln("x and y are > 5");
}
else

 document.writeln("x is <= 5");

The braces ({}) indicate to the interpreter that the second if statement is in the body of
the first if statement and that the else is matched with the first if statement.

The if selection statement expects only one statement in its body. To include several
statements in an if statement’s body, enclose the statements in braces ({ and }). This can
also be done in the else section of an if…else statement. A set of statements contained
within a pair of braces is called a block.

Software Engineering Observation 5.2
A block can be placed anywhere in a program that a single statement can be placed.

Software Engineering Observation 5.3
Unlike individual statements, a block does not end with a semicolon. However, each statement
within the braces of a block should end with a semicolon.

The following example includes a block in the else part of an if…else statement:

if (grade >= 60)
 document.writeln("Passed");
else

{
 document.writeln("Failed
");
 document.writeln("You must take this course again.");
}

In this case, if grade is less than 60, the program executes both statements in the body of
the else and prints

Failed.
You must take this course again.

Note the braces surrounding the two statements in the else clause. These braces are im-
portant. Without them, the statement

document.writeln("You must take this course again.");

would be outside the body of the else part of the if and would execute regardless of
whether the grade is less than 60.

Common Programming Error 5.2
Forgetting one or both of the braces that delimit a block can lead to syntax errors or logic errors.

5.5 while Repetition Statement 103

Good Programming Practice 5.2
Some programmers prefer to type the beginning and ending braces of blocks before typing the in-
dividual statements within the braces. This helps avoid omitting one or both of the braces.

Software Engineering Observation 5.4
Just as a block can be placed anywhere a single statement can be placed, it is also possible to have
no statement at all (the empty statement) in such places. The empty statement is represented by
placing a semicolon (;) where a statement would normally be.

Common Programming Error 5.3
Placing a semicolon after the condition in an if statement leads to a logic error in single-selection
if statement and a syntax error in double-selection if statements (if the if part contains a non-
empty body statement).

5.5 while Repetition Statement
A repetition statement allows you to specify that a script is to repeat an action while some
condition remains true.

Common Programming Error 5.4
If the body of a while statement never causes the while statement’s condition to become true, a
logic error occurs. Normally, such a repetition structure will never terminate—an error called
an infinite loop. Both Internet Explorer and Firefox show a dialog allowing the user to termi-
nate a script that contains an infinite loop.

Common Programming Error 5.5
Remember that JavaScript is a case-sensitive language. In code, spelling the keyword while with
an uppercase W, as in While, is a syntax error. All of JavaScript’s reserved keywords, such as
while, if and else, contain only lowercase letters.

As an example of a while statement, consider a program segment designed to find the
first power of 2 larger than 1000. Variable product begins with the value 2:

var product = 2;

while (product <= 1000)
 product = 2 * product;

When the while statement finishes executing, product contains the result 1024. The
flowchart in Fig. 5.4 illustrates the flow of control of the preceding while statement.

When the script enters the while statement, product is 2. The script repeatedly mul-
tiplies variable product by 2, so product takes on the values 4, 8, 16, 32, 64, 128, 256,
512 and 1024 successively. When product becomes 1024, the condition product <= 1000
in the while statement becomes false. This terminates the repetition, with 1024 as
product’s final value. Execution continues with the next statement after the while state-
ment. [Note: If a while statement’s condition is initially false, the body statement(s) will
never execute.]

104 Chapter 5 JavaScript: Control Statements I

5.6 Counter-Controlled Repetition
Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range 0 to 100) for this
quiz are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students (10
in this case). The program for this problem (Fig. 5.5) must input each of the grades, per-
form the averaging calculation and display the result. We use counter-controlled repeti-
tion to input the grades one at a time. In this example, repetition terminates when the
counter exceeds 10.

Fig. 5.4 | Flowcharting the while repetition statement.

product <= 1000 product = 2 * product
true

false

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 5.5: average.html -->
6 <!-- Counter-controlled repetition to calculate a class average. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Class Average Program</title>
10 <script type = "text/javascript">

11 <!--
12 var total; // sum of grades
13 var ; // number of grades entered
14 var grade; // grade typed by user (as a string)
15 var gradeValue; // grade value (converted to integer)
16 var average; // average of all grades
17
18 // Initialization Phase
19 total = 0; // clear total
20 // prepare to loop
21
22 // Processing Phase
23 // loop 10 times
24 {
25

Fig. 5.5 | Counter-controlled repetition to calculate a class average. (Part 1 of 2.)

gradeCounter

gradeCounter = 1;

while (gradeCounter <= 10)

5.6 Counter-Controlled Repetition 105

Lines 12–16 declare variables total, gradeCounter, grade, gradeValue, average.
The variable grade will store the string the user types into the prompt dialog. The variable
gradeValue will store the integer value of the grade the user enters into the prompt dialog.

Lines 19–20 are assignment statements that initialize total to 0 and gradeCounter
to 1. Note that variables total and gradeCounter are initialized before they are used in a
calculation.

26 // prompt for input and read grade from user
27 grade = window.prompt("Enter integer grade:", "0");
28
29 // convert grade from a string to an integer
30 gradeValue = parseInt(grade);
31
32 // add gradeValue to total
33 total = total + gradeValue;
34
35 // add 1 to gradeCounter
36
37 } // end while
38
39 // Termination Phase
40 average = total / 10; // calculate the average
41
42 // display average of exam grades
43 document.writeln(
44 "<h1>Class average is " + average + "</h1>");
45 // -->
46 </script>

47 </head>

48 <body>

49 <p>Click Refresh (or Reload) to run the script again<p>
50 </body>

51 </html>

Fig. 5.5 | Counter-controlled repetition to calculate a class average. (Part 2 of 2.)

gradeCounter = gradeCounter + 1;

This dialog is displayed 10 times. User input
is 100, 88, 93, 55, 68, 77, 83, 95, 73 and 62.

106 Chapter 5 JavaScript: Control Statements I

Common Programming Error 5.6
Not initializing a variable that will be used in a calculation results in a logic error that produces
the value NaN—Not a Number. You must initialize the variable before it is used in a calculation.

Line 23 indicates that the while statement continues iterating while the value of
gradeCounter is less than or equal to 10. Line 27 corresponds to the pseudocode state-
ment “Input the next grade.” The statement displays a prompt dialog with the prompt
"Enter integer grade:" on the screen.

After the user enters the grade, line 30 converts it from a string to an integer. We must
convert the string to an integer in this example; otherwise, the addition statement in line
33 will be a string-concatenation statement rather than a numeric sum.

The program now is ready to increment the variable gradeCounter to indicate that a
grade has been processed and to read the next grade from the user. Line 36 adds 1 to
gradeCounter, so the condition in the while statement will eventually become false and
terminate the loop. After this statement executes, the program continues by testing the
condition in the while statement in line 23. If the condition is still true, the statements in
lines 27–36 repeat. Otherwise the program continues execution with the first statement in
sequence after the body of the loop (i.e., line 40).

Line 40 assigns the results of the average calculation to variable average. Lines 43–44
write a line of XHTML text in the document that displays the string "Class average is "

followed by the value of variable average as an <h1> element in the browser.
Execute the script in a web browser by double clicking the XHTML document (from

Windows Explorer). This script parses any user input as an integer. In the sample program
execution in Fig. 5.5, the sum of the values entered (100, 88, 93, 55, 68, 77, 83, 95, 73
and 62) is 794. Although the treats all input as integers, the averaging calculation in the
program does not produce an integer. Rather, the calculation produces a floating-point
number (i.e., a number containing a decimal point). The average of the 10 integers input
by the user in this example is 79.4.

Software Engineering Observation 5.5
If the string passed to parseInt contains a floating-point numeric value, parseInt simply
truncates the floating-point part. For example, the string "27.95" results in the integer 27, and
the string "–123.45" results in the integer –123. If the string passed to parseInt is not a
numeric value, parseInt returns NaN (not a number).

JavaScript actually represents all numbers as floating-point numbers in memory.
Floating-point numbers often develop through division, as shown in this example. When
we divide 10 by 3, the result is 3.3333333…, with the sequence of 3s repeating infinitely.
The computer allocates only a fixed amount of space to hold such a value, so the stored
floating-point value can be only an approximation.

5.7 Formulating Algorithms: Sentinel-Controlled
Repetition
Let us generalize the class-average problem. Consider the following problem:

Develop a class-averaging program that will process an arbitrary number of grades
each time the program is run.

5.7 Formulating Algorithms: Sentinel-Controlled Repetition 107

In the first class-average example, the number of grades (10) was known in advance. In this
example, no indication is given of how many grades the user will enter. The program must
process an arbitrary number of grades. How can the program determine when to stop the
input of grades? How will it know when to calculate and display the class average?

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value or a flag value) to indicate the end of data entry. The
user types in grades until all legitimate grades have been entered. Then the user types the
sentinel value to indicate that the last grade has been entered.

Clearly, one must choose a sentinel value that cannot be confused with an acceptable
input value. –1 is an acceptable sentinel value for this problem because grades on a quiz
are normally nonnegative integers from 0 to 100. Thus, an execution of the class-average
program might process a stream of inputs such as 95, 96, 75, 74, 89 and –1. The program
would compute and print the class average for the grades 95, 96, 75, 74 and 89 (–1 is the
sentinel value, so it should not enter into the average calculation).

Figure 5.6 shows the JavaScript program and a sample execution. Although each
grade is an integer, the averaging calculation is likely to produce a number with a decimal
point (a real number).

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 5.6: average2.html -->
6 <!-- Sentinel-controlled repetition to calculate a class average. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Class Average Program: Sentinel-controlled Repetition</title>
10
11 <script type = "text/javascript">

12 <!--
13 var total; // sum of grades
14 var gradeCounter; // number of grades entered
15 var grade; // grade typed by user (as a string)
16 var gradeValue; // grade value (converted to integer)
17 var average; // average of all grades
18
19 // Initialization phase
20 total = 0; // clear total
21 // prepare to loop
22
23 // Processing phase
24 // prompt for input and read grade from user
25 grade = window.prompt(
26 "Enter Integer Grade, -1 to Quit:", "0");
27
28 // convert grade from a string to an integer
29 gradeValue = parseInt(grade);
30
31 while (gradeValue != -1)
32 {

Fig. 5.6 | Sentinel-controlled repetition to calculate a class average. (Part 1 of 2.)

gradeCounter = 0;

108 Chapter 5 JavaScript: Control Statements I

33 // add gradeValue to total
34 total = total + gradeValue;
35
36 // add 1 to gradeCounter
37
38
39 // prompt for input and read grade from user
40 grade = window.prompt(
41 "Enter Integer Grade, -1 to Quit:", "0");
42
43 // convert grade from a string to an integer
44 gradeValue = parseInt(grade);
45 } // end while
46
47 // Termination phase
48
49 {
50 average = total / gradeCounter;
51
52 // display average of exam grades
53 document.writeln(
54 "<h1>Class average is " + average + "</h1>");
55 } // end if
56
57 document.writeln("<p>No grades were entered</p>");
58 // -->
59 </script>

60 </head>

61 <body>

62 <p>Click Refresh (or Reload) to run the script again</p>
63 </body>

64 </html>

Fig. 5.6 | Sentinel-controlled repetition to calculate a class average. (Part 2 of 2.)

gradeCounter = gradeCounter + 1;

if (gradeCounter != 0)

else

This dialog is displayed four times. User
input is 97, 88, 72 and –1.

5.8 Formulating Algorithms: Nested Control Statements 109

In this example, we see that control statements may be stacked on top of one another
(in sequence). The while statement (lines 31–45) is followed immediately by an if…else

statement (lines 48–57) in sequence. Much of the code in this program is identical to the
code in Fig. 5.5, so we concentrate in this example on the new features.

Line 21 initializes gradeCounter to 0, because no grades have been entered yet.
Remember that the program uses sentinel-controlled repetition. To keep an accurate
record of the number of grades entered, the script increments gradeCounter only after
processing a valid grade value.

Note the block in the while loop in Fig. 5.6 (lines 32–45). Without the braces, the
last three statements in the body of the loop would fall outside of the loop, causing the
computer to interpret the code incorrectly, as follows:

while (gradeValue != -1)
// add gradeValue to total

 total = total + gradeValue;

// add 1 to gradeCounter
gradeCounter = gradeCounter + 1;

// prompt for input and read grade from user
grade = window.prompt(
 "Enter Integer Grade, -1 to Quit:", "0");

// convert grade from a string to an integer
gradeValue = parseInt(grade);

This interpretation would cause an infinite loop in the program if the user does not enter
the sentinel -1 as the first input value in lines 25–26 (i.e., before the while statement).

Common Programming Error 5.7
Omitting the braces that delineate a block can lead to logic errors such as infinite loops.

5.8 Formulating Algorithms: Nested Control Statements
Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real
estate brokers. Last year, several of the students who completed this course took the
licensing exam. Naturally, the college wants to know how well its students performed.
You have been asked to write a program to summarize the results. You have been given
a list of these 10 students. Next to each name is written a 1 if the student passed the
exam and a 2 if the student failed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the message “Enter result” on the screen
each time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students who passed and
the number of students who failed.

4. If more than eight students passed the exam, print the message “Raise tuition.”

110 Chapter 5 JavaScript: Control Statements I

After reading the problem statement carefully, we make the following observations
about the problem:

1. The program must process test results for 10 students. A counter-controlled loop
will be used.

2. Each test result is a number—either a 1 or a 2. Each time the program reads a test
result, the program must determine whether the number is a 1 or a 2. We test for
a 1 in our algorithm. If the number is not a 1, we assume that it is a 2.

3. Two counters are used to keep track of the exam results—one to count the num-
ber of students who passed the exam and one to count the number of students
who failed the exam.

After the program processes all the results, it must decide whether more than eight
students passed the exam. The JavaScript program and two sample executions are shown
in Fig. 5.7.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 5.7: analysis.html -->
6 <!-- Examination-results calculation. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Analysis of Examination Results</title>
10 <script type = "text/javascript">

11 <!--
12 // initializing variables in declarations
13
14
15
16
17
18 // process 10 students; counter-controlled loop
19
20 {
21 result = window.prompt("Enter result (1=pass,2=fail)", "0");
22
23
24
25
26
27
28
29 } // end while
30
31 // termination phase
32 document.writeln("<h1>Examination Results</h1>");

Fig. 5.7 | Examination-results calculation. (Part 1 of 2.)

var passes = 0; // number of passes
var failures = 0; // number of failures
var student = 1; // student counter
var result; // one exam result

while (student <= 10)

if (result == "1")
 passes = passes + 1;
else

 failures = failures + 1;

student = student + 1;

5.8 Formulating Algorithms: Nested Control Statements 111

33 document.writeln(
34 "Passed: " + passes + "
Failed: " + failures);
35
36
37
38 // -->
39 </script>

40 </head>

41 <body>

42 <p>Click Refresh (or Reload) to run the script again</p>
43 </body>

44 </html>

Fig. 5.7 | Examination-results calculation. (Part 2 of 2.)

if (passes > 8)
 document.writeln("
Raise Tuition");

This dialog is displayed 10 times. User
input is 1, 2, 1, 1, 1, 1, 1, 1, 1 and 1.

This dialog is displayed 10 times. User
input is 1, 2, 1, 2, 2, 1, 2, 2, 1 and 1.

112 Chapter 5 JavaScript: Control Statements I

Lines 13–16 declare the variables used to process the examination results. Note that
JavaScript allows variable initialization to be incorporated into declarations (passes is
assigned 0, failures is assigned 0 and student is assigned 1). Some programs may require
reinitialization at the beginning of each repetition; such reinitialization would normally
occur in assignment statements.

The processing of the exam results occurs in the while statement in lines 19–29. Note
that the if…else statement in lines 23–26 in the loop tests only whether the exam result
was 1; it assumes that all other exam results are 2. Normally, you should validate the values
input by the user (i.e., determine whether the values are correct).

5.9 Assignment Operators
JavaScript provides several assignment operators (called compound assignment operators)
for abbreviating assignment expressions. For example, the statement

c = c + 3;

can be abbreviated with the addition assignment operator, +=, as

c += 3;

The += operator adds the value of the expression on the right of the operator to the value
of the variable on the left of the operator and stores the result in the variable on the left of
the operator. Any statement of the form

variable = variable operator expression;

where operator is one of the binary operators +, -, *, / or % (or others we’ll discuss later in
the text), can be written in the form

variable operator = expression;

Thus, the assignment c += 3 adds 3 to c. Figure 5.8 shows the arithmetic assignment op-
erators, sample expressions using these operators and explanations of the meaning of the
operators.

Assignment
operator

Initial value of
variable

Sample
expression Explanation Assigns

+= c = 3 c += 7 c = c + 7 10 to c

-= d = 5 d -= 4 d = d - 4 1 to d

*= e = 4 e *= 5 e = e * 5 20 to e

/= f = 6 f /= 3 f = f / 3 2 to f

%= g = 12 g %= 9 g = g % 9 3 to g

Fig. 5.8 | Arithmetic assignment operators.

5.10 Increment and Decrement Operators 113

Performance Tip 5.1
Programmers can write programs that execute a bit faster when the arithmetic assignment oper-
ators are used, because the variable on the left side of the assignment does not have to be evaluated
twice.

Performance Tip 5.2
Many of the performance tips we mention in this text result in only nominal improvements, so
you may be tempted to ignore them. Significant performance improvement often is realized when
a supposedly nominal improvement is placed in a loop that may repeat a large number of times.

5.10 Increment and Decrement Operators
JavaScript provides the unary increment operator (++) and decrement operator (--) (sum-
marized in Fig. 5.9). If a variable c is incremented by 1, the increment operator, ++, can
be used rather than the expression c = c + 1 or c += 1. If an increment or decrement oper-
ator is placed before a variable, it is referred to as the preincrement or predecrement op-
erator, respectively. If an increment or decrement operator is placed after a variable, it is
referred to as the postincrement or postdecrement operator, respectively.

Error-Prevention Tip 5.1
The predecrement and postdecrement JavaScript operators cause the W3C XHTML Validator
to incorrectly report errors. The validator attempts to interpret the decrement operator as part of
an XHTML comment tag (<!-- or -->). You can avoid this problem by using the subtraction
assignment operator (-=) to subtract one from a variable. Note that the validator may report
many more (nonexistent) errors once it improperly parses the decrement operator.

Preincrementing (or predecrementing) a variable causes the program to increment
(decrement) the variable by 1, then use the new value of the variable in the expression in
which it appears. Postincrementing (postdecrementing) the variable causes the program to
use the current value of the variable in the expression in which it appears, then increment
(decrement) the variable by 1.

Operator Example Called Explanation

++ ++a preincrement Increment a by 1, then use the new value of a
in the expression in which a resides.

++ a++ postincrement Use the current value of a in the expression in
which a resides, then increment a by 1.

-- --b predecrement Decrement b by 1, then use the new value of b
in the expression in which b resides.

-- b-- postdecrement Use the current value of b in the expression in
which b resides, then decrement b by 1.

Fig. 5.9 | Increment and decrement operators.

114 Chapter 5 JavaScript: Control Statements I

The script in Fig. 5.10 demonstrates the difference between the preincrementing ver-
sion and the postincrementing version of the ++ increment operator. Postincrementing the
variable c causes it to be incremented after it is used in the document.writeln method call
(line 18). Preincrementing the variable c causes it to be incremented before it is used in
the document.writeln method call (line 25). The program displays the value of c before
and after the ++ operator is used. The decrement operator (--) works similarly.

Good Programming Practice 5.3
For readability, unary operators should be placed next to their operands, with no intervening
spaces.

The three assignment statements in Fig. 5.7 (lines 24, 26 and 28, respectively),

passes = passes + 1;
failures = failures + 1;
student = student + 1;

can be written more concisely with assignment operators as

passes += 1;
failures += 1;
student += 1;

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 5.10: increment.html -->
6 <!-- Preincrementing and Postincrementing. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Preincrementing and Postincrementing</title>
10 <script type = "text/javascript">

11 <!--
12 var c;
13
14 c = 5;
15 document.writeln("<h3>Postincrementing</h3>");
16 document.writeln(c); // prints 5
17 // prints 5 then increments
18 document.writeln("
" +);
19 document.writeln("
" + c); // prints 6
20
21 c = 5;
22 document.writeln("<h3>Preincrementing</h3>");
23 document.writeln(c); // prints 5
24 // increments then prints 6
25 document.writeln("
" +);
26 document.writeln("
" + c); // prints 6
27 // -->
28 </script>

29 </head><body></body>

30 </html>

Fig. 5.10 | Preincrementing and postincrementing. (Part 1 of 2.)

c++

++c

5.10 Increment and Decrement Operators 115

with preincrement operators as

++passes;
++failures;
++student;

or with postincrement operators as

passes++;
failures++;
student++;

It is important to note here that when incrementing or decrementing a variable in a
statement by itself, the preincrement and postincrement forms have the same effect, and
the predecrement and postdecrement forms have the same effect. It is only when a variable
appears in the context of a larger expression that preincrementing the variable and post-
incrementing the variable have different effects. Predecrementing and postdecrementing
behave similarly.

Common Programming Error 5.8
Attempting to use the increment or decrement operator on an expression other than a left-hand-
side expression—commonly called an lvalue—is a syntax error. A left-hand-side expression is a
variable or expression that can appear on the left side of an assignment operation. For example,
writing ++(x + 1) is a syntax error, because (x + 1) is not a left-hand-side expression.

Figure 5.11 lists the precedence and associativity of the operators introduced to this
point. The operators are shown top to bottom in decreasing order of precedence. The
second column describes the associativity of the operators at each level of precedence.
Notice that the conditional operator (?:), the unary operators increment (++) and decre-
ment (--) and the assignment operators =, +=, -=, *=, /= and %= associate from right to
left. All other operators in the operator precedence table (Fig. 5.11) associate from left to
right. The third column names the groups of operators.

Fig. 5.10 | Preincrementing and postincrementing. (Part 2 of 2.)

116 Chapter 5 JavaScript: Control Statements I

5.11 Web Resources
www.deitel.com/javascript/

The Deitel JavaScript Resource Center contains links to some of the best JavaScript resources on the
web. There you’ll find categorized links to JavaScript tutorials, tools, code generators, forums,
books, libraries, frameworks and more. Be sure to visit the related Resource Centers on XHTML
(www.deitel.com/xhtml/) and CSS 2.1 (www.deitel.com/css21/).

Operator Associativity Type

++ -- right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

?: right to left conditional

= += -= *= /= %= right to left assignment

Fig. 5.11 | Precedence and associativity of the operators discussed so far.

www.deitel.com/javascript/
www.deitel.com/xhtml/
www.deitel.com/css21/

6
JavaScript:
Control
Statements II

O B J E C T I V E S
In this chapter you’ll learn:

■ The essentials of counter-controlled repetition.

■ To use the for and do…while repetition statements to
execute statements in a program repeatedly.

■ To perform multiple selection using the switch
selection statement.

■ To use the break and continue program-control
statements

■ To use the logical operators.

Not everything that can be
counted counts, and not
every thing that counts can
be counted.
—Albert Einstein

Who can control his fate?
—William Shakespeare

The used key is always
bright.
—Benjamin Franklin

Intelligence … is the faculty
of making artificial objects,
especially tools to make tools.
—Henri Bergson

Every advantage in the past
is judged in the light of the
final issue.
—Demosthenes

118 Chapter 6 JavaScript: Control Statements II

O
u

tl
in

e

6.1 Introduction
Chapter 5 began our introduction to control statements. In this chapter, we introduce
JavaScript’s remaining control statements (with the exception of for…in, which is pre-
sented in Chapter 8). In later chapters, you’ll see that control structures are helpful in ma-
nipulating objects.

6.2 Essentials of Counter-Controlled Repetition
Counter-controlled repetition requires:

1. The name of a control variable (or loop counter).

2. The initial value of the control variable.

3. The increment (or decrement) by which the control variable is modified each time
through the loop (also known as each iteration of the loop).

4. The condition that tests for the final value of the control variable to determine
whether looping should continue.

To see the four elements of counter-controlled repetition, consider the simple script
shown in Fig. 6.1, which displays lines of XHTML text that illustrate the seven different
font sizes supported by XHTML. The declaration in line 12 names the control variable
(counter), reserves space for it in memory and sets it to an initial value of 1. The declara-
tion and initialization of counter could also have been accomplished by the following dec-
laration and assignment statement:

var counter; // declare counter
counter = 1; // initialize counter to 1

6.1 Introduction
6.2 Essentials of Counter-Controlled Repetition
6.3 for Repetition Statement
6.4 Examples Using the for Statement
6.5 switch Multiple-Selection Statement
6.6 do…while Repetition Statement
6.7 break and continue Statements
6.8 Labeled break and continue Statements
6.9 Logical Operators

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 6.1: WhileCounter.html -->
6 <!-- Counter-controlled repetition. -->

Fig. 6.1 | Counter-controlled repetition. (Part 1 of 2.)

6.2 Essentials of Counter-Controlled Repetition 119

Lines 16–18 in the while statement write a paragraph element consisting of the string
“XHTML font size” concatenated with the control variable counter’s value, which repre-
sents the font size. An inline CSS style attribute sets the font-size property to the value
of counter concatenated to ex. Note the use of the escape sequence \", which is placed
around attribute style’s value. Because the double-quote character delimits the beginning
and end of a string literal in JavaScript, it cannot be used in the contents of the string
unless it is preceded by a \ to create the escape sequence \". For example, if counter is 5,
the preceding statement produces the markup

<p style = "font-size: 5ex">XHTML font size 5ex</p>

7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Counter-Controlled Repetition</title>
10 <script type = "text/javascript">

11 <!--
12
13
14
15 {
16 document.writeln("<p style = \"font-size: " +
17 counter + "ex\">XHTML font size " + counter +
18 "ex</p>");
19
20 } //end while
21 // -->
22 </script>

23 </head><body></body>

24 </html>

Fig. 6.1 | Counter-controlled repetition. (Part 2 of 2.)

var counter = 1; // initialization

while (counter <= 7) // repetition condition

++counter; // increment

120 Chapter 6 JavaScript: Control Statements II

XHTML allows either single quotes (') or double quotes (") to be placed around the value
specified for an attribute. JavaScript allows single quotes to be placed in a string literal.
Thus, we could have placed single quotes around the font-size property to produce
equivalent XHTML output without the use of escape sequences.

Common Programming Error 6.1
Placing a double-quote (") character inside a string literal that is delimited by double quotes
causes a runtime error when the script is interpreted. To be displayed as part of a string literal,
a double-quote (") character must be preceded by a \ to form the escape sequence \".

Line 19 in the while statement increments the control variable by 1 for each iteration
of the loop (i.e., each time the body of the loop is performed). The loop-continuation con-
dition (line 14) in the while statement tests whether the value of the control variable is less
than or equal to 7 (the final value for which the condition is true). Note that the body of
this while statement executes even when the control variable is 7. The loop terminates
when the control variable exceeds 7 (i.e., counter becomes 8).

6.3 for Repetition Statement
The for repetition statement handles all the details of counter-controlled repetition.
Figure 6.2 illustrates the power of the for statement by reimplementing the script of
Fig. 6.1.

When the for statement begins executing (line 15), the control variable counter is
declared and is initialized to 1 (i.e., the first statement of the for statement declares the
control variable’s name and provides the control variable’s initial value). Next, the loop-
continuation condition, counter <= 7, is checked. The condition contains the final value

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 6.2: ForCounter.html -->
6 <!-- Counter-controlled repetition with the for statement. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Counter-Controlled Repetition</title>
10 <script type = "text/javascript">

11 <!--
12 // Initialization, repetition condition and
13 // incrementing are all included in the for
14 // statement header.
15
16 document.writeln("<p style = \"font-size: " +
17 counter + "ex\">XHTML font size " + counter +
18 "ex</p>");
19 // -->
20 </script>

21 </head><body></body>

22 </html>

Fig. 6.2 | Counter-controlled repetition with the for statement. (Part 1 of 2.)

for (var counter = 1; counter <= 7; ++counter)

6.3 for Repetition Statement 121

(7) of the control variable. The initial value of counter is 1. Therefore, the condition is
satisfied (i.e., true), so the body statement (lines 16–18) writes a paragraph element in the
XHTML document. Then, variable counter is incremented in the expression ++counter
and the loop continues execution with the loop-continuation test. The control variable is
now equal to 2, so the final value is not exceeded and the program performs the body state-
ment again (i.e., performs the next iteration of the loop). This process continues until the
control variable counter becomes 8, at which point the loop-continuation test fails and
the repetition terminates.

The program continues by performing the first statement after the for statement. (In
this case, the script terminates, because the interpreter reaches the end of the script.)

Figure 6.3 takes a closer look at the for statement at line 15 of Fig. 6.2. The for state-
ment’s first line (including the keyword for and everything in parentheses after for) is
often called the for statement header. Note that the for statement “does it all”—it spec-
ifies each of the items needed for counter-controlled repetition with a control variable.

Fig. 6.3 | for statement header components.

Fig. 6.2 | Counter-controlled repetition with the for statement. (Part 2 of 2.)

for (var counter = 1; counter <= 7; ++counter)

Initial value of
control variable

Increment of
control variable

Control variable
name

Final value of control variable for
which the condition is true

for
keyword

Loop-continuation
condition

122 Chapter 6 JavaScript: Control Statements II

Note that Fig. 6.3 uses the loop-continuation condition counter <= 7. If you incor-
rectly write counter < 7, the loop will execute only six times. This is an example of the
common logic error called an off-by-one error.

Common Programming Error 6.2
Using an incorrect relational operator or an incorrect final value of a loop counter in the condi-
tion of a while, for or do…while statement can cause an off-by-one error or an infinite loop.

Error-Prevention Tip 6.1
Using the final value in the condition of a while or for statement and using the <= relational
operator will help avoid off-by-one errors. For a loop used to print the values 1 to 10, for exam-
ple, the initial value of counter should be 1, and the loop-continuation condition should be
counter <= 10 rather than counter < 10 (which is an off-by-one error) or counter < 11 (which
is correct). Many programmers, however, prefer so-called zero-based counting, in which, to
count 10 times through the loop, counter would be initialized to zero and the loop-continuation
test would be counter < 10.

The general format of the for statement is

for (initialization; loopContinuationTest; increment)
statements

where the initialization expression names the loop’s control variable and provides its initial
value, loopContinuationTest is the expression that tests the loop-continuation condition
(containing the final value of the control variable for which the condition is true), and
increment is an expression that increments the control variable. The for statement can be
represented by an equivalent while statement, with initialization, loopContinuationTest
and increment placed as follows (Section 6.7 discusses an exception to this rule):

initialization;

while (loopContinuationTest)
{

statements
increment;

}

If the initialization expression in the for statement’s header is the first definition of
the control variable, the control variable can still be used after the for statement in the
script. The part of a script in which a variable name can be used is known as the variable’s
scope. Scope is discussed in detail in Chapter 7, JavaScript: Functions.

Good Programming Practice 6.1
Place only expressions involving the control variable in the initialization and increment sections
of a for statement. Manipulations of other variables should appear either before the loop (if they
execute only once, like initialization statements) or in the loop body (if they execute once per it-
eration of the loop, like incrementing or decrementing statements).

The three expressions in the for statement are optional. If loopContinuationTest is
omitted, JavaScript assumes that the loop-continuation condition is true, thus creating an

6.3 for Repetition Statement 123

infinite loop. One might omit the initialization expression if the control variable is initial-
ized before the loop. One might omit the increment expression if the increment is calcu-
lated by statements in the body of the for statement or if no increment is needed. The
increment expression in the for statement acts like a stand-alone statement at the end of
the body of the for statement. Therefore, the expressions

counter = counter + 1
counter += 1
++counter
counter++

are all equivalent in the incrementing portion of the for statement. Many programmers
prefer the form counter++. This is because the incrementing of the control variable occurs
after the body of the loop is executed, and therefore the postincrementing form seems
more natural. Preincrementing and postincrementing both have the same effect in our ex-
ample, because the variable being incremented does not appear in a larger expression. The
two semicolons in the for statement header are required.

Common Programming Error 6.3
Using commas instead of the two required semicolons in the header of a for statement is a syntax
error.

Common Programming Error 6.4
Placing a semicolon immediately to the right of the right parenthesis of the header of a for state-
ment makes the body of that for statement an empty statement. This code is normally a logic
error.

The “increment” may be negative, in which case the loop counts downward. If the
loop-continuation condition initially is false, the for statement’s body is not performed.
Instead, execution proceeds with the statement following the for statement.

The control variable frequently is printed or used in calculations in the body of a for
statement, but it does not have to be. Other times, the control variable is used for control-
ling repetition but never mentioned in the body of the for statement.

Error-Prevention Tip 6.2
Although the value of the control variable can be changed in the body of a for statement, avoid
changing it, because doing so can lead to subtle errors.

The for statement is flowcharted much like the while statement. For example,
Fig. 6.4 shows the flowchart of the for statement

for (var counter = 1; counter <= 7; ++counter)
 document.writeln("<p style = \"font-size: " +
 counter + "ex\">XHTML font size " + counter +
 "ex</p>");

This flowchart makes it clear that the initialization occurs only once and that incrementing
occurs after each execution of the body statement. Note that, besides small circles and ar-
rows, the flowchart contains only rectangle symbols and a diamond symbol.

124 Chapter 6 JavaScript: Control Statements II

6.4 Examples Using the for Statement
The examples in this section show methods of varying the control variable in a for state-
ment. In each case, we write the appropriate for header. Note the change in the relational
operator for loops that decrement the control variable.

a) Vary the control variable from 1 to 100 in increments of 1.

for (var i = 1; i <= 100; ++i)

b) Vary the control variable from 100 to 1 in increments of -1 (i.e., decrements of 1).

for (var i = 100; i >= 1; --i)

c) Vary the control variable from 7 to 77 in steps of 7.

for (var i = 7; i <= 77; i += 7)

d) Vary the control variable from 20 to 2 in steps of -2.

for (var i = 20; i >= 2; i -= 2)

e) Vary the control variable over the following sequence of values: 2, 5, 8, 11, 14, 17,
20.

for (var j = 2; j <= 20; j += 3)

f) Vary the control variable over the following sequence of values: 99, 88, 77, 66, 55,
44, 33, 22, 11, 0.

for (var j = 99; j >= 0; j -= 11)

Fig. 6.4 | for repetition statement flowchart.

counter <= 7

document.writeln(
"<p style=\"font-size: "

 + counter +
"ex\">XHTML font size " +

 counter + "ex</p>");

true

false

var counter = 1

++counter

Establish initial
value of control
variable.

Determine if
final value of
control variable
has been
reached.

Body of loop
(this may be many
statements)

Increment
the control
variable.

6.4 Examples Using the for Statement 125

Common Programming Error 6.5
Not using the proper relational operator in the loop-continuation condition of a loop that counts
downward (e.g., using i <= 1 in a loop that counts down to 1) is usually a logic error that will
yield incorrect results when the program runs.

The next two scripts demonstrate the for repetition statement. Figure 6.5 uses the
for statement to sum the even integers from 2 to 100. Note that the increment expression
adds 2 to the control variable number after the body executes during each iteration of the
loop. The loop terminates when number has the value 102 (which is not added to the sum).

Note that the body of the for statement in Fig. 6.5 actually could be merged into the
rightmost (increment) portion of the for header by using a comma, as follows:

for (var number = 2; number <= 100; sum += number, number += 2)
 ;

Similarly, the initialization sum = 0 could be merged into the initialization section of the
for statement.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 6.5: Sum.html -->
6 <!-- Summation with the for repetition structure. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Sum the Even Integers from 2 to 100</title>
10 <script type = "text/javascript">

11 <!--
12 var sum = 0;
13
14
15 sum += number;
16
17 document.writeln("The sum of the even integers " +
18 "from 2 to 100 is " + sum);
19 // -->
20 </script>

21 </head><body></body>

22 </html>

Fig. 6.5 | Summation with the for repetition structure.

for (var number = 2; number <= 100; number += 2)

126 Chapter 6 JavaScript: Control Statements II

Good Programming Practice 6.2
Although statements preceding a for statement and in the body of a for statement can often be
merged into the for header, avoid doing so, because it makes the program more difficult to
read.

Good Programming Practice 6.3
For clarity, limit the size of control-statement headers to a single line, if possible.

The next example computes compound interest (compounded yearly) using the for
statement. Consider the following problem statement:

A person invests $1000.00 in a savings account yielding 5 percent interest. Assuming
that all the interest is left on deposit, calculate and print the amount of money in the
account at the end of each year for 10 years. Use the following formula to determine
the amounts:

a = p (1 + r)n

where

p is the original amount invested (i.e., the principal)
r is the annual interest rate
n is the number of years
a is the amount on deposit at the end of the nth year.

This problem involves a loop that performs the indicated calculation for each of the
10 years the money remains on deposit. Figure 6.6 presents the solution to this problem,
displaying the results in a table.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 6.6: Interest.html -->
6 <!-- Compound interest calculation with a for loop. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Calculating Compound Interest</title>
10 <style type = "text/css">
11 table { width: 100% }
12 th { text-align: left }
13 </style>
14 <script type = "text/javascript">

15 <!--
16 var amount; // current amount of money
17 var principal = 1000.0; // principal amount
18 var rate = .05; // interest rate
19
20 document.writeln(
21 "<table border = \"1\">"); // begin the table
22 document.writeln(
23 "<caption>Calculating Compound Interest</caption>");

Fig. 6.6 | Compound interest calculation with a for loop. (Part 1 of 2.)

6.4 Examples Using the for Statement 127

Lines 16–18 declare three variables and initialize principal to 1000.0 and rate to
.05. Lines 20–21 write an XHTML <table> tag, and lines 22–23 write the caption that
summarizes the table’s content. Lines 24–25 create the table’s header section (<thead>), a
row (<tr>) and a column heading (<th>) containing “Year.” Lines 26–28 create a table
heading for “Amount on deposit” and write the closing </tr> and </thead> tags.

The for statement (lines 31–37) executes its body 10 times, incrementing control
variable year from 1 to 10 (note that year represents n in the problem statement). Java-
Script does not include an exponentiation operator. Instead, we use the Math object’s pow

24 document.writeln(
25 "<thead><tr><th>Year</th>"); // year column heading
26 document.writeln(
27 "<th>Amount on deposit</th>"); // amount column heading
28 document.writeln("</tr></thead><tbody>");
29
30 // output a table row for each year
31
32 {
33 amount = principal * Math.pow(1.0 + rate, year);
34 document.writeln("<tr><td>" + year +
35 "</td><td>" + amount.toFixed(2) +
36 "</td></tr>");
37 } //end for
38
39 document.writeln("</tbody></table>");
40 // -->
41 </script>
42 </head><body></body>

43 </html>

Fig. 6.6 | Compound interest calculation with a for loop. (Part 2 of 2.)

for (var year = 1; year <= 10; ++year)

128 Chapter 6 JavaScript: Control Statements II

method for this purpose. Math.pow(x, y) calculates the value of x raised to the yth power.
Method Math.pow takes two numbers as arguments and returns the result.

Line 33 performs the calculation using the formula given in the problem statement.
Lines 34–36 write a line of XHTML markup that creates another row in the table. The
first column is the current year value. The second column displays the value of amount.
Line 39 writes the closing </tbody> and </table> tags after the loop terminates.

Line 35 introduces the Number object and its toFixed method. The variable amount
contains a numerical value, so JavaScript represents it as a Number object. The toFixed
method of a Number object formats the value by rounding it to the specified number of
decimal places. In line 35, amount.toFixed(2) outputs the value of amount with two dec-
imal places.

Variables amount, principal and rate represent numbers in this script. Remember
that JavaScript represents all numbers as floating-point numbers. This feature is conve-
nient in this example, because we are dealing with fractional parts of dollars and need a
type that allows decimal points in its values.

A Caution about Using Floating Point Numbers for Monetary Amounts
Unfortunately, floating-point numbers can cause trouble. Here is a simple example of
what can go wrong when using floating-point numbers to represent dollar amounts (as-
suming that dollar amounts are displayed with two digits to the right of the decimal point):
Two dollar amounts stored in the machine could be 14.234 (which would normally be
rounded to 14.23 for display purposes) and 18.673 (which would normally be rounded to
18.67 for display purposes). When these amounts are added, they produce the internal
sum 32.907, which would normally be rounded to 32.91 for display purposes. Thus your
printout could appear as

 14.23
+ 18.67

 32.91

but a person adding the individual numbers as printed would expect the sum to be 32.90.
You have been warned!

6.5 switch Multiple-Selection Statement
Occasionally, an algorithm will contain a series of decisions in which a variable or expres-
sion is tested separately for each of the values it may assume, and different actions are taken
for each value. JavaScript provides the switch multiple-selection statement to handle such
decision making. The script in Fig. 6.7 demonstrates three different CSS list formats de-
termined by the value the user enters.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 6.7: SwitchTest.html -->
6 <!-- Using the switch multiple-selection statement. -->

Fig. 6.7 | Using the switch multiple-selection statement. (Part 1 of 4.)

6.5 switch Multiple-Selection Statement 129

7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Switching between XHTML List Formats</title>
10 <script type = "text/javascript">

11 <!--
12 var choice; // user’s choice
13 var startTag; // starting list item tag
14 var endTag; // ending list item tag
15 var validInput = true; // indicates if input is valid
16 var listType; // type of list as a string
17
18 choice = window.prompt("Select a list style:\n" +
19 "1 (numbered), 2 (lettered), 3 (roman)", "1");
20
21
22
23
24 startTag = "";
25 endTag = "";
26 listType = "<h1>Numbered List</h1>";
27
28
29 startTag = "<ol style = \"list-style-type: upper-alpha\">";
30 endTag = "";
31 listType = "<h1>Lettered List</h1>";
32
33
34 startTag = "<ol style = \"list-style-type: upper-roman\">";
35 endTag = "";
36 listType = "<h1>Roman Numbered List</h1>";
37
38
39 validInput = false;
40 } //end switch
41
42 if (validInput == true)
43 {
44 document.writeln(listType + startTag);
45
46 for (var i = 1; i <= 3; ++i)
47 document.writeln("List item " + i + "");
48
49 document.writeln(endTag);
50 } //end if
51 else
52 document.writeln("Invalid choice: " + choice);
53 // -->
54 </script>

55 </head>

56 <body>

57 <p>Click Refresh (or Reload) to run the script again</p>
58 </body>

59 </html>

Fig. 6.7 | Using the switch multiple-selection statement. (Part 2 of 4.)

switch (choice)
{

case "1":

 break;
case "2":

 break;
case "3":

 break;
default:

130 Chapter 6 JavaScript: Control Statements II

Fig. 6.7 | Using the switch multiple-selection statement. (Part 3 of 4.)

6.5 switch Multiple-Selection Statement 131

Line 12 in the script declares the variable choice. This variable stores the user’s
choice, which determines what type of XHTML list to display. Lines 13–14 declare vari-
ables startTag and endTag, which will store the XHTML tags that will be used to create
the list element. Line 15 declares variable validInput and initializes it to true. The script
uses this variable to determine whether the user made a valid choice (indicated by the value
of true). If a choice is invalid, the script sets validInput to false. Line 16 declares vari-
able listType, which will store an h1 element indicating the list type. This heading
appears before the list in the XHTML document.

Lines 18–19 prompt the user to enter a 1 to display a numbered list, a 2 to display a
lettered list and a 3 to display a list with roman numerals. Lines 21–40 define a switch
statement that assigns to the variables startTag, endTag and listType values based on
the value input by the user in the prompt dialog. We create these different lists using the
CSS property list-style-type, which allows us to set the numbering system for the list.
Possible values include decimal (numbers—the default), lower-roman (lowercase Roman
numerals), upper-roman (uppercase Roman numerals), lower-alpha (lowercase letters),
upper-alpha (uppercase letters), and several others.

The switch statement consists of a series of case labels and an optional default case.
When the flow of control reaches the switch statement, the script evaluates the control-
ling expression (choice in this example) in the parentheses following keyword switch.
The value of this expression is compared with the value in each of the case labels, starting
with the first case label. Assume that the user entered 2. Remember that the value typed
by the user in a prompt dialog is returned as a string. So, the string 2 is compared to the
string in each case in the switch statement. If a match occurs (case "2":), the statements
for that case execute. For the string 2 (lines 29–32), we set startTag to an opening ol tag
with the style property list-style-type set to upper-alpha, set endTag to "" to
indicate the end of an ordered list and set listType to "<h1>Lettered List</h1>". If no
match occurs between the controlling expression’s value and a case label, the default case
executes and sets variable validInput to false.

The break statement in line 32 causes program control to proceed with the first state-
ment after the switch statement. The break statement is used because the cases in a
switch statement would otherwise run together. If break is not used anywhere in a switch

Fig. 6.7 | Using the switch multiple-selection statement. (Part 4 of 4.)

132 Chapter 6 JavaScript: Control Statements II

statement, then each time a match occurs in the statement, the statements for all the
remaining cases execute.

Next, the flow of control continues with the if statement in line 42, which tests vari-
able validInput to determine whether its value is true. If so, lines 44–49 write the list-
Type, the startTag, three list items () and the endTag. Otherwise, the script writes
text in the XHTML document indicating that an invalid choice was made (line 52).

Each case can have multiple actions (statements). The switch statement is different
from others in that braces are not required around multiple actions in a case of a switch.
The general switch statement (i.e., using a break in each case) is flowcharted in Fig. 6.8.
[Note: As an exercise, flowchart the general switch statement without break statements.]

The flowchart makes it clear that each break statement at the end of a case causes
control to exit from the switch statement immediately. The break statement is not
required for the last case in the switch statement (or the default case, when it appears
last), because program control automatically continues with the next statement after the
switch statement.

Common Programming Error 6.6
Forgetting a break statement when one is needed in a switch statement is a logic error.

Software Engineering Observation 6.1
Provide a default case in switch statements. Cases not explicitly tested in a switch statement
without a default case are ignored. Including a default case focuses you on processing
exceptional conditions. However, there are situations in which no default processing is needed.

Fig. 6.8 | switch multiple-selection statement.

case a case a action(s)
true

false

.

.

.

break

case b action(s) break

false

false

case z case z action(s) break

default action(s)

true

true

case b

6.6 do…while Repetition Statement 133

Good Programming Practice 6.4
Although the case clauses and the default case clause in a switch statement can occur in any
order, it is clearer (and more common) to place the default clause last.

Good Programming Practice 6.5
In a switch statement, when the default clause is listed last, its break statement is not required.
Some programmers include this break for clarity and for symmetry with other cases.

Note that having several case labels listed together (e.g., case 1: case 2: with no
statements between the cases) performs the same set of actions for each case.

6.6 do…while Repetition Statement
The do…while repetition statement is similar to the while statement. In the while state-
ment, the loop-continuation test occurs at the beginning of the loop, before the body of
the loop executes. The do…while statement tests the loop-continuation condition after
the loop body executes—therefore, the loop body always executes at least once. When a
do…while terminates, execution continues with the statement after the while clause.
Note that it is not necessary to use braces in a do…while statement if there is only one
statement in the body. However, the braces usually are included, to avoid confusion be-
tween the while and do…while statements. For example,

while (condition)

normally is regarded as the header to a while statement. A do…while statement with no
braces around a single-statement body appears as

do

statement
while (condition);

which can be confusing. The last line—while(condition);—may be misinterpreted as a
while statement containing an empty statement (the semicolon by itself). Thus, to avoid
confusion, the do…while statement with a one-statement body is often written as follows:

do

{
statement

} while (condition);

Good Programming Practice 6.6
Some programmers always include braces in a do…while statement even if they are not neces-
sary. This helps eliminate ambiguity between the while statement and the do…while statement
containing a one-statement body.

Error-Prevention Tip 6.3
Infinite loops are caused when the loop-continuation condition never becomes false in a while,
for or do…while statement. To prevent this, make sure that there is not a semicolon immedi-
ately after the header of a while or for statement. In a counter-controlled loop, make sure that
the control variable is incremented (or decremented) in the body of the loop. In a sentinel-con-
trolled loop, make sure that the sentinel value is eventually input.

134 Chapter 6 JavaScript: Control Statements II

The script in Fig. 6.9 uses a do…while statement to display each of the six different
XHTML heading types (h1 through h6). Line 12 declares control variable counter and
initializes it to 1. Upon entering the do…while statement, lines 15–17 write a line of
XHTML text in the document. The value of control variable counter is used to create the
starting and ending header tags (e.g., <h1> and </h1>) and to create the line of text to dis-
play (e.g., This is an h1 level head). Line 18 increments the counter before the loop-
continuation test occurs at the bottom of the loop.

The do…while flowchart in Fig. 6.10 makes it clear that the loop-continuation test
does not occur until the action executes at least once.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 6.9: DoWhileTest.html -->
6 <!-- Using the do...while repetition statement. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Using the do...while Repetition Statement</title>
10 <script type = "text/javascript">

11 <!--
12 var counter = 1;
13
14
15 document.writeln("<h" + counter + ">This is " +
16 "an h" + counter + " level head" + "</h" +
17 counter + ">");
18 ++counter;
19
20 // -->
21 </script>

22
23 </head><body></body>

24 </html>

Fig. 6.9 | Using the do…while repetition statement.

do {

} while (counter <= 6);

6.7 break and continue Statements 135

6.7 break and continue Statements
The break and continue statements alter the flow of control. The break statement, when
executed in a while, for, do…while or switch statement, causes immediate exit from the
statement. Execution continues with the first statement after the structure. The break
statement is commonly used to escape early from a loop or to skip the remainder of a
switch statement (as in Fig. 6.7). Figure 6.11 demonstrates the break statement in a for
repetition statement.

Fig. 6.10 | do…while repetition statement flowchart.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 6.11: BreakTest.html -->
6 <!-- Using the break statement in a for statement. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>

10 Using the break Statement in a for Statement
11 </title>

12 <script type = "text/javascript">

13 <!--
14 for (var count = 1; count <= 10; ++count)
15 {
16 if (count == 5)
17
18
19 document.writeln("Count is: " + count + "
");
20 } //end for
21
22 document.writeln(
23 "Broke out of loop at count = " + count);
24 // -->
25 </script>

26 </head><body></body>

27 </html>

Fig. 6.11 | Using the break statement in a for statement. (Part 1 of 2.)

condition true

action(s)

false

break; // break loop only if count == 5

136 Chapter 6 JavaScript: Control Statements II

During each iteration of the for statement in lines 14–20, the script writes the value
of count in the XHTML document. When the if statement in line 16 detects that count
is 5, the break in line 17 executes. This statement terminates the for statement, and the
program proceeds to line 22 (the next statement in sequence immediately after the for
statement), where the script writes the value of count when the loop terminated (i.e., 5).
The loop executes line 19 only four times.

The continue statement, when executed in a while, for or do…while statement,
skips the remaining statements in the body of the statement and proceeds with the next
iteration of the loop. In while and do…while statements, the loop-continuation test eval-
uates immediately after the continue statement executes. In for statements, the increment
expression executes, then the loop-continuation test evaluates. This is the one case in
which for and while differ. Improper placement of continue before the increment in a
while may result in an infinite loop.

Figure 6.12 uses continue in a for statement to skip the document.writeln state-
ment in line 20 when the if statement in line 17 determines that the value of count is 5.
When the continue statement executes, the script skips the remainder of the for state-
ment’s body. Program control continues with the increment of the for statement’s control
variable, followed by the loop-continuation test to determine whether the loop should
continue executing.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 6.12: ContinueTest.html -->
6 <!-- Using the continue statement in a for statement. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>

10 Using the continue Statement in a for Statement
11 </title>

12

Fig. 6.12 | Using the continue statement in a for statement. (Part 1 of 2.)

Fig. 6.11 | Using the break statement in a for statement. (Part 2 of 2.)

6.7 break and continue Statements 137

Software Engineering Observation 6.2
Some programmers feel that break and continue violate structured programming. They do not
use break and continue, because the effects of these statements can be achieved by structured
programming techniques.

Performance Tip 6.1
The break and continue statements, when used properly, perform faster than the corresponding
structured techniques.

Software Engineering Observation 6.3
There is a tension between achieving quality software engineering and achieving the best-
performing software. Often, one of these goals is achieved at the expense of the other. For all but
the most performance-intensive situations, the following rule of thumb should be followed: First
make your code simple, readable and correct; then make it fast and small, but only if necessary.

13 <script type = "text/javascript">

14 <!--
15 for (var count = 1; count <= 10; ++count)
16 {
17 if (count == 5)
18
19
20 document.writeln("Count is: " + count + "
");
21 } //end for
22
23 document.writeln("Used continue to skip printing 5");
24 // -->
25 </script>

26
27 </head><body></body>

28 </html>

Fig. 6.12 | Using the continue statement in a for statement. (Part 2 of 2.)

continue; // skip remaining loop code only if count == 5

138 Chapter 6 JavaScript: Control Statements II

6.8 Labeled break and continue Statements
The break statement can break out of an immediately enclosing while, for, do…while

or switch statement. To break out of a nested set of structures, you can use the labeled
break statement. This statement, when executed in a while, for, do…while or switch
statement, causes immediate exit from that statement and any number of enclosing repe-
tition statements; program execution resumes with the first statement after the enclosing
labeled statement (a statement preceded by a label). The labeled statement can be a block
(a set of statements enclosed in curly braces, {}). Labeled break statements commonly are
used to terminate nested looping structures containing while, for, do…while or switch
statements. Figure 6.13 demonstrates the labeled break in a nested for statement.

The labeled block (lines 12–28) begins with a label (an identifier followed by a colon).
Here, we use the label stop:. The block is enclosed between the braces at the end of line
12 and in line 28, and includes both the nested for statement starting in line 13 and the
document.writeln statement in line 27. When the if statement in line 17 detects that row

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 6.13: BreakLabelTest.html -->
6 <!-- Labeled break statement in a nested for statement. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Using the break Statement with a Label</title>
10 <script type = "text/javascript">

11 <!--
12
13 for (var row = 1; row <= 10; ++row)
14 {
15 for (var column = 1; column <= 5 ; ++column)
16 {
17 if (row == 5)
18
19
20 document.write("* ");
21 } //end for
22
23 document.writeln("
");
24 } //end for
25
26 // the following line is skipped
27 document.writeln("This line should not print");
28 } // end block labeled stop
29
30 document.writeln("End of script");
31 // -->
32 </script>

33 </head><body></body>

34 </html>

Fig. 6.13 | Labeled break statement in a nested for statement. (Part 1 of 2.)

stop: { // labeled block

break stop; // jump to end of stop block

6.8 Labeled break and continue Statements 139

is equal to 5, the statement in line 18 executes. This statement terminates both the for
statement in line 15 and its enclosing for statement in line 13, and the program proceeds
to the statement in line 30 (the first statement in sequence after the labeled block). The
inner for statement executes its body only four times. Note that the document.writeln
statement in line 27 never executes, because it is included in the labeled block and the
outer for statement never completes.

The continue statement proceeds with the next iteration (repetition) of the immedi-
ately enclosing while, for or do…while statement. The labeled continue statement,
when executed in a repetition statement (while, for or do…while), skips the remaining
statements in the structure’s body and any number of enclosing repetition statements,
then proceeds with the next iteration of the enclosing labeled repetition statement (a rep-
etition statement preceded by a label). In labeled while and do…while statements, the
loop-continuation test evaluates immediately after the continue statement executes. In a
labeled for statement, the increment expression executes, then the loop-continuation test
evaluates. Figure 6.14 uses the labeled continue statement in a nested for statement to
cause execution to continue with the next iteration of the outer for statement.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 6.14: ContinueLabelTest.html -->
6 <!-- Labeled continue statement in a nested for statement. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Using the continue Statement with a Label</title>
10 <script type = "text/javascript">

11 <!--
12
13 for (var row = 1; row <= 5; ++row)
14 {
15 document.writeln("
");
16

Fig. 6.14 | Labeled continue statement in a nested for statement. (Part 1 of 2.)

Fig. 6.13 | Labeled break statement in a nested for statement. (Part 2 of 2.)

nextRow: // target label of continue statement

140 Chapter 6 JavaScript: Control Statements II

The labeled for statement (lines 13–24) starts with the nextRow label in line 12.
When the if statement in line 19 in the inner for statement detects that column is greater
than row, line 20 executes and program control continues with the increment of the con-
trol variable of the outer for statement. Even though the inner for statement counts from
1 to 10, the number of * characters output on a row never exceeds the value of row.

6.9 Logical Operators
So far, we have studied only such simple conditions as count <= 10, total > 1000 and num-
ber != sentinelValue. These conditions were expressed in terms of the relational opera-
tors >, <, >= and <=, and in terms of the equality operators == and !=. Each decision tested
one condition. To make a decision based on multiple conditions, we performed these tests
in separate statements or in nested if or if…else statements.

JavaScript provides logical operators that can be used to form more complex condi-
tions by combining simple conditions. The logical operators are && (logical AND), ||
(logical OR) and ! (logical NOT, also called logical negation). We consider examples of
each of these operators.

Suppose that, at some point in a program, we wish to ensure that two conditions are
both true before we choose a certain path of execution. In this case, we can use the logical
&& operator, as follows:

if (gender == 1 && age >= 65)
 ++seniorFemales;

17 for (var column = 1; column <= 10; ++column)
18 {
19 if (column > row)
20
21
22 document.write("* ");
23 } //end for
24 } //end for
25 // -->
26 </script>

27 </head><body></body>

28 </html>

Fig. 6.14 | Labeled continue statement in a nested for statement. (Part 2 of 2.)

continue nextRow; // next iteration of labeled loop

6.9 Logical Operators 141

This if statement contains two simple conditions. The condition gender == 1 might be
evaluated to determine, for example, whether a person is a female. The condition age >=

65 is evaluated to determine whether a person is a senior citizen. The if statement then
considers the combined condition

gender == 1 && age >= 65

This condition is true if and only if both of the simple conditions are true. Finally, if this
combined condition is indeed true, the count of seniorFemales is incremented by 1. If
either or both of the simple conditions are false, the program skips the incrementing and
proceeds to the statement following the if statement. The preceding combined condition
can be made more readable by adding redundant parentheses:

(gender == 1) && (age >= 65)

The table in Fig. 6.15 summarizes the && operator. The table shows all four possible
combinations of false and true values for expression1 and expression2. Such tables are
often called truth tables. JavaScript evaluates to false or true all expressions that include
relational operators, equality operators and/or logical operators.

Now let us consider the || (logical OR) operator. Suppose we wish to ensure that
either or both of two conditions are true before we choose a certain path of execution. In
this case, we use the || operator, as in the following program segment:

if (semesterAverage >= 90 || finalExam >= 90)
 document.writeln("Student grade is A");

This statement also contains two simple conditions. The condition semesterAverage >=

90 is evaluated to determine whether the student deserves an “A” in the course because of
a solid performance throughout the semester. The condition finalExam >= 90 is evaluated
to determine whether the student deserves an “A” in the course because of an outstanding
performance on the final exam. The if statement then considers the combined condition

semesterAverage >= 90 || finalExam >= 90

and awards the student an “A” if either or both of the simple conditions are true. Note
that the message "Student grade is A" is not printed only when both of the simple con-
ditions are false. Figure 6.16 is a truth table for the logical OR operator (||).

expression1 expression2 expression1 && expression2

false false false

false true false

true false false

true true true

Fig. 6.15 | Truth table for the && (logical AND) operator.

142 Chapter 6 JavaScript: Control Statements II

The && operator has a higher precedence than the || operator. Both operators asso-
ciate from left to right. An expression containing && or || operators is evaluated only until
truth or falsity is known. Thus, evaluation of the expression

gender == 1 && age >= 65

stops immediately if gender is not equal to 1 (i.e., the entire expression is false) and con-
tinues if gender is equal to 1 (i.e., the entire expression could still be true if the condition
age >= 65 is true). Similarly, the || operator immediately returns true if the first operand
is true. This performance feature for evaluation of logical AND and logical OR expres-
sions is called short-circuit evaluation.

JavaScript provides the ! (logical negation) operator to enable a programmer to
“reverse” the meaning of a condition (i.e., a true value becomes false, and a false value
becomes true). Unlike the logical operators && and ||, which combine two conditions
(i.e., they are binary operators), the logical negation operator has only a single condition
as an operand (i.e., it is a unary operator). The logical negation operator is placed before a
condition to choose a path of execution if the original condition (without the logical nega-
tion operator) is false, as in the following program segment:

if (! (grade == sentinelValue))
 document.writeln("The next grade is " + grade);

The parentheses around the condition grade == sentinelValue are needed, because the
logical negation operator has a higher precedence than the equality operator. Figure 6.17
is a truth table for the logical negation operator.

In most cases, you can avoid using logical negation by expressing the condition dif-
ferently with an appropriate relational or equality operator. For example, the preceding
statement may also be written as follows:

if (grade != sentinelValue)
 document.writeln("The next grade is " + grade);

expression1 expression2 expression1 || expression2

false false false

false true true

true false true

true true true

Fig. 6.16 | Truth table for the || (logical OR) operator.

expression !expression

false true

true false

Fig. 6.17 | Truth table for
operator ! (logical negation).

6.9 Logical Operators 143

The script in Fig. 6.18 demonstrates all the logical operators by producing their truth
tables. The script produces an XHTML table containing the results.

In the output of Fig. 6.18, the strings "false" and "true" indicate false and true
for the operands in each condition. The result of the condition is shown as true or false.
Note that when you use the concatenation operator with a boolean value and a string,
JavaScript automatically converts the boolean value to string “false" or "true". Lines
16–39 build an XHTML table containing the results.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 6.18: LogicalOperators.html -->
6 <!-- Demonstrating logical operators. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Demonstrating the Logical Operators</title>
10 <style type = "text/css">

11 table { width: 100% }
12 td.left { width: 25% }
13 </style>
14 <script type = "text/javascript">

15 <!--
16 document.writeln(
17 "<table border = \"1\"");
18 document.writeln(
19 "<caption>Demonstrating Logical " +
20 "Operators</caption>");
21 document.writeln(
22 "<tr><td class = \"left\">Logical AND (&&)</td>" +
23
24
25
26
27 "</td></tr>");
28 document.writeln(
29 "<tr><td class = \"left\">Logical OR (||)</td>" +
30
31
32
33
34 "</td></tr>");
35 document.writeln(
36 "<tr><td class = \"left\">Logical NOT (!)</td>" +
37
38
39 document.writeln("</table>");
40 // -->
41 </script>

42 </head><body></body>

43 </html>

Fig. 6.18 | Demonstrating logical operators. (Part 1 of 2.)

"<td>false && false: " + (false && false) +
"
false && true: " + (false && true) +
"
true && false: " + (true && false) +
"
true && true: " + (true && true) +

"<td>false || false: " + (false || false) +
"
false || true: " + (false || true) +
"
true || false: " + (true || false) +
"
true || true: " + (true || true) +

"<td>!false: " + (!false) +
"
!true: " + (!true) + "</td></tr>");

144 Chapter 6 JavaScript: Control Statements II

An interesting feature of JavaScript is that most nonboolean values can be converted
to boolean true or false values. Nonzero numeric values are considered to be true. The
numeric value zero is considered to be false. Any string that contains characters is con-
sidered to be true. The empty string (i.e., the string containing no characters) is consid-
ered to be false. The value null and variables that have been declared but not initialized
are considered to be false. All objects (e.g., the browser’s document and window objects
and JavaScript’s Math object) are considered to be true.

 Figure 6.19 shows the precedence and associativity of the JavaScript operators intro-
duced up to this point. The operators are shown top to bottom in decreasing order of pre-
cedence.

Operator Associativity Type

++ -- ! right to left unary
* / % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== != left to right equality
&& left to right logical AND
|| left to right logical OR
?: right to left conditional
= += -= *= /= %= right to left assignment

Fig. 6.19 | Precedence and associativity of the operators discussed so far.

Fig. 6.18 | Demonstrating logical operators. (Part 2 of 2.)

7
JavaScript:
Functions

O B J E C T I V E S
In this chapter you’ll learn:

■ How to create new functions.

■ How to pass information between functions.

■ Simulation techniques that use random number
generation.

■ How the visibility of identifiers is limited to specific
regions of programs.

■ To use JavaScript’s global functions.

■ To use recursive functions.

■ To compare recursion vs. iteration.

Form ever follows function.
—Louis Sullivan

E pluribus unum.
(One composed of many.)
—Virgil

O! call back yesterday, bid
time return.
—William Shakespeare

Call me Ishmael.
—Herman Melville

When you call me that,
smile.
—Owen Wister

146 Chapter 7 JavaScript: Functions

O
u

tl
in

e

7.1 Introduction
Most computer programs that solve real-world problems are much larger than the pro-
grams presented in the first few chapters of this book. Experience has shown that the best
way to develop and maintain a large program is to construct it from small, simple pieces,
or modules. This technique is called divide and conquer. This chapter describes many key
features of JavaScript that facilitate the design, implementation, operation and mainte-
nance of large scripts.

7.2 Functions
Modules in JavaScript are called functions. JavaScript programs are written by combining
new functions that you write with “prepackaged” functions and objects available in
JavaScript. The prepackaged functions that belong to JavaScript objects (such as Math.pow
and Math.round, introduced previously) are called methods. The term method implies
that the function belongs to a particular object. We refer to functions that belong to a par-
ticular JavaScript object as methods; all others are referred to as functions.

JavaScript provides several objects that have a rich collection of methods for per-
forming common mathematical calculations, string manipulations, date and time manip-
ulations, and manipulations of collections of data called arrays. These objects provide
many of the capabilities you’ll frequently need. Some common predefined objects of
JavaScript and their methods are discussed in Chapter 8, JavaScript: Arrays, and
Chapter 9, JavaScript: Objects.

Software Engineering Observation 7.1
Avoid reinventing the wheel. Use existing JavaScript objects, methods and functions instead of
writing new ones. This reduces script-development time and helps avoid introducing errors.

Portability Tip 7.1
Using the methods built into JavaScript objects helps make scripts more portable.

You can write functions to define specific tasks that may be used at many points in a
script. These functions are referred to as programmer-defined functions. The actual state-
ments defining the function are written only once and are hidden from other functions.

7.1 Introduction
7.2 Functions
7.3 Programmer-Defined Functions
7.4 Function Definitions
7.5 Random Number Generation
7.6 Example: Game of Chance
7.7 Another Example: Random Image Generator
7.8 Scope Rules
7.9 JavaScript Global Functions

7.10 Recursion
7.11 Recursion vs. Iteration

7.3 Programmer-Defined Functions 147

Functions are invoked by writing the name of the function, followed by a left paren-
thesis, followed by a comma-separated list of zero or more arguments, followed by a right
parenthesis. For example, a programmer desiring to convert a string stored in variable
inputValue to a floating-point number and add it to variable total might write

total += parseFloat(inputValue);

When this statement executes, JavaScript function parseFloat converts the string in the
inputValue variable to a floating-point value and adds that value to total. Variable
inputValue is function parseFloat’s argument. Function parseFloat takes a string rep-
resentation of a floating-point number as an argument and returns the corresponding
floating-point numeric value. Function arguments may be constants, variables or expres-
sions.

Methods are called in the same way, but require the name of the object to which the
method belongs and a dot preceding the method name. For example, we’ve already seen
the syntax document.writeln("Hi there.");. This statement calls the document object’s
writeln method to output the text.

7.3 Programmer-Defined Functions
Functions allow you to modularize a program. All variables declared in function defini-
tions are local variables—they can be accessed only in the function in which they are de-
fined. Most functions have a list of parameters that provide the means for communicating
information between functions via function calls. A function’s parameters are also consid-
ered to be local variables. When a function is called, the arguments in the function call are
assigned to the corresponding parameters in the function definition.

Software Engineering Observation 7.2
If a function’s task cannot be expressed concisely, perhaps the function is performing too many
different tasks. It is usually best to break such a function into several smaller functions.

7.4 Function Definitions
Each script we’ve presented thus far in the text has consisted of a series of statements and
control structures in sequence. These scripts have been executed as the browser loads the
web page and evaluates the <head> section of the page. We now consider how you can
write your own customized functions and call them in a script.

Programmer-Defined Function square
Consider a script (Fig. 7.1) that uses a function square to calculate the squares of the in-
tegers from 1 to 10. [Note: We continue to show many examples in which the body ele-
ment of the XHTML document is empty and the document is created directly by Java-
Script. In later chapters, we show many examples in which JavaScripts interact with the
elements in the body of a document.]

The for statement in lines 15–17 outputs XHTML that displays the results of
squaring the integers from 1 to 10. Each iteration of the loop calculates the square of the
current value of control variable x and outputs the result by writing a line in the XHTML
document. Function square is invoked, or called, in line 17 with the expression

148 Chapter 7 JavaScript: Functions

square(x). When program control reaches this expression, the program calls function
square (defined in lines 23–26). The parentheses () represent the function-call operator,
which has high precedence. At this point, the program makes a copy of the value of x (the
argument) and program control transfers to the first line of function square. Function

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 7.1: SquareInt.html -->
6 <!-- Programmer-defined function square. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>A Programmer-Defined square Function</title>
10 <script type = "text/javascript">

11 <!--
12 document.writeln("<h1>Square the numbers from 1 to 10</h1>");
13
14 // square the numbers from 1 to 10
15 for (var x = 1; x <= 10; x++)
16 document.writeln("The square of " + x + " is " +
17 + "
");
18
19 // The following square function definition is executed
20 // only when the function is explicitly called.
21
22 // square function definition
23
24
25
26
27 // -->
28 </script>

29 </head><body></body>

30 </html>

Fig. 7.1 | Programmer-defined function square.

square(x)

function square(y)
{

return y * y;
} // end function square

7.4 Function Definitions 149

square receives the copy of the value of x and stores it in the parameter y. Then square
calculates y * y. The result is passed back (returned) to the point in line 17 where square
was invoked. Lines 16–17 concatenate "The square of ", the value of x, the string " is ",
the value returned by function square and a
 tag and write that line of text in the
XHTML document. This process is repeated 10 times.

The definition of function square (lines 23–26) shows that square expects a single
parameter y. Function square uses this name in its body to manipulate the value passed
to square from line 17. The return statement in square passes the result of the calculation
y * y back to the calling function. Note that JavaScript keyword var is not used to declare
variables in the parameter list of a function.

Common Programming Error 7.1
Using the JavaScript var keyword to declare a variable in a function parameter list results in a
JavaScript runtime error.

In this example, function square follows the rest of the script. When the for state-
ment terminates, program control does not flow sequentially into function square. A
function must be called explicitly for the code in its body to execute. Thus, when the for
statement terminates in this example, the script terminates.

Software Engineering Observation 7.3
Statements that are enclosed in the body of a function definition are not executed by the Java-
Script interpreter unless the function is invoked explicitly.

The format of a function definition is

function function-name(parameter-list)
{

declarations and statements
}

The function-name is any valid identifier. The parameter-list is a comma-separated list con-
taining the names of the parameters received by the function when it is called. There
should be one argument in the function call for each parameter in the function definition.
If a function does not receive any values, the parameter-list is empty (i.e., the function
name is followed by an empty set of parentheses). The declarations and statements in braces
form the function body.

Common Programming Error 7.2
Forgetting to return a value from a function that is supposed to return a value is a logic error.

Common Programming Error 7.3
Placing a semicolon after the right parenthesis enclosing the parameter list of a function defini-
tion results in a JavaScript runtime error.

Common Programming Error 7.4
Redefining a function parameter as a local variable in the function is a logic error.

150 Chapter 7 JavaScript: Functions

Common Programming Error 7.5
Passing to a function an argument that is not compatible with the corresponding parameter’s
expected type is a logic error and may result in a JavaScript runtime error.

Good Programming Practice 7.1
Although it is not incorrect to do so, do not use the same name for an argument passed to a func-
tion and the corresponding parameter in the function definition. Using different names avoids
ambiguity.

Software Engineering Observation 7.4
To promote software reusability, every function should be limited to performing a single, well-
defined task, and the name of the function should express that task effectively. Such functions
make programs easier to write, debug, maintain and modify.

There are three ways to return control to the point at which a function was invoked.
If the function does not return a result, control returns when the program reaches the
function-ending right brace or by executing the statement

return;

If the function does return a result, the statement

return expression;

returns the value of expression to the caller. When a return statement is executed, control
returns immediately to the point at which the function was invoked.

Programmer-Defined Function maximum
The script in our next example (Fig. 7.2) uses a programmer-defined function called max-
imum to determine and return the largest of three floating-point values.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 7.2: maximum.html -->
6 <!-- Programmer-Defined maximum function. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Finding the Maximum of Three Values</title>
10 <script type = "text/javascript">

11 <!--
12 var input1 = window.prompt("Enter first number", "0");
13 var input2 = window.prompt("Enter second number", "0");
14 var input3 = window.prompt("Enter third number", "0");
15
16
17
18

Fig. 7.2 | Programmer-defined maximum function. (Part 1 of 2.)

var value1 = parseFloat(input1);
var value2 = parseFloat(input2);
var value3 = parseFloat(input3);

7.4 Function Definitions 151

The three floating-point values are input by the user via prompt dialogs (lines 12–14).
Lines 16–18 use function parseFloat to convert the strings entered by the user to
floating-point values. The statement in line 20 passes the three floating-point values to
function maximum (defined in lines 28–31), which determines the largest floating-point

19
20 var maxValue = ;
21
22 document.writeln("First number: " + value1 +
23 "
Second number: " + value2 +
24 "
Third number: " + value3 +
25 "
Maximum is: " + maxValue);
26
27 // maximum function definition (called from line 20)
28
29
30
31
32 // -->
33 </script>

34 </head>

35 <body>

36 <p>Click Refresh (or Reload) to run the script again</p>
37 </body>

38 </html>

Fig. 7.2 | Programmer-defined maximum function. (Part 2 of 2.)

maximum(value1, value2, value3)

function maximum(x, y, z)
{

return Math.max(x, Math.max(y, z));
} // end function maximum

152 Chapter 7 JavaScript: Functions

value. This value is returned to line 20 by the return statement in function maximum. The
value returned is assigned to variable maxValue. Lines 22–25 display the three floating-
point values input by the user and the calculated maxValue.

Note the implementation of the function maximum (lines 28–31). The first line indi-
cates that the function’s name is maximum and that the function takes three parameters (x,
y and z) to accomplish its task. Also, the body of the function contains the statement
which returns the largest of the three floating-point values, using two calls to the Math
object’s max method. First, method Math.max is invoked with the values of variables y and
z to determine the larger of the two values. Next, the value of variable x and the result of
the first call to Math.max are passed to method Math.max. Finally, the result of the second
call to Math.max is returned to the point at which maximum was invoked (i.e., line 20). Note
once again that the script terminates before sequentially reaching the definition of func-
tion maximum. The statement in the body of function maximum executes only when the
function is invoked from line 20.

7.5 Random Number Generation
We now take a brief and, it is hoped, entertaining diversion into a popular programming
application, namely simulation and game playing. In this section and the next, we develop
a nicely structured game-playing program that includes multiple functions. The program
uses most of the control statements we’ve studied.

There is something in the air of a gambling casino that invigorates people, from the
high rollers at the plush mahogany-and-felt craps tables to the quarter poppers at the one-
armed bandits. It is the element of chance, the possibility that luck will convert a pocketful
of money into a mountain of wealth. The element of chance can be introduced through
the Math object’s random method. (Remember, we are calling random a method because it
belongs to the Math object.)

Consider the following statement:

var randomValue = Math.random();

Method random generates a floating-point value from 0.0 up to, but not including, 1.0. If
random truly produces values at random, then every value from 0.0 up to, but not includ-
ing, 1.0 has an equal chance (or probability) of being chosen each time random is called.

The range of values produced directly by random is often different than what is needed
in a specific application. For example, a program that simulates coin tossing might require
only 0 for heads and 1 for tails. A program that simulates rolling a six-sided die would
require random integers in the range from 1 to 6. A program that randomly predicts the
next type of spaceship, out of four possibilities, that will fly across the horizon in a video
game might require random integers in the range 0–3 or 1–4.

To demonstrate method random, let us develop a program (Fig. 7.3) that simulates 20
rolls of a six-sided die and displays the value of each roll. We use the multiplication oper-
ator (*) with random as follows:

Math.floor(1 + Math.random() * 6)

First, the preceding expression multiplies the result of a call to Math.random() by 6 to pro-
duce a number in the range 0.0 up to, but not including, 6.0. This is called scaling the

7.5 Random Number Generation 153

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 7.3: RandomInt.html -->
6 <!-- Random integers, shifting and scaling. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Shifted and Scaled Random Integers</title>
10 <style type = "text/css">

11 table { width: 50%;
12 border: 1px solid gray;
13 text-align: center }
14 </style>

15 <script type = "text/javascript">

16 <!--
17 var value;
18
19 document.writeln("<table>");
20 document.writeln("<caption>Random Numbers</caption><tr>");
21
22 for (var i = 1; i <= 20; i++)
23 {
24
25 document.writeln("<td>" + value + "</td>");
26
27 // start a new table row every 5 entries
28 if (i % 5 == 0 && i != 20)
29 document.writeln("</tr><tr>");
30 } // end for
31
32 document.writeln("</tr></table>");
33 // -->
34 </script>

35 </head>

36 <body>

37 <p>Click Refresh (or Reload) to run the script again</p>
38 </body>

39 </html>

Fig. 7.3 | Random integers, shifting and scaling. (Part 1 of 2.)

value = Math.floor(1 + Math.random() * 6);

154 Chapter 7 JavaScript: Functions

range of the random numbers. Next, we add 1 to the result to shift the range of numbers
to produce a number in the range 1.0 up to, but not including, 7.0. Finally, we use method
Math.floor to round the result down to the closest integer not greater than the argument’s
value—for example, 1.75 is rounded to 1. Figure 7.3 confirms that the results are in the
range 1 to 6.

To show that these numbers occur with approximately equal likelihood, let us simu-
late 6000 rolls of a die with the program in Fig. 7.4. Each integer from 1 to 6 should
appear approximately 1000 times. Use your browser’s Refresh (or Reload) button to exe-
cute the script again.

As the output of the program shows, we used Math method random and the scaling
and shifting techniques of the previous example to simulate the rolling of a six-sided die.
Note that we used nested control statements to determine the number of times each side
of the six-sided die occurred. Lines 12–17 declare and initialize counters to keep track of
the number of times each of the six die values appears. Line 18 declares a variable to store
the face value of the die. The for statement in lines 21–46 iterates 6000 times. During

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 7.4: RollDie.html -->
6 <!-- Rolling a Six-Sided Die 6000 times. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Roll a Six-Sided Die 6000 Times</title>
10 <script type = "text/javascript">

11 <!--
12 var frequency1 = 0;
13 var frequency2 = 0;
14 var frequency3 = 0;
15 var frequency4 = 0;
16 var frequency5 = 0;

Fig. 7.4 | Rolling a six-sided die 6000 times. (Part 1 of 3.)

Fig. 7.3 | Random integers, shifting and scaling. (Part 2 of 2.)

7.5 Random Number Generation 155

17 var frequency6 = 0;
18 var face;
19
20 // roll die 6000 times and accumulate results
21 for (var roll = 1; roll <= 6000; roll++)
22
23
24
25 switch (face)
26 {
27 case 1:
28 ++frequency1;
29 break;
30 case 2:
31 ++frequency2;
32 break;
33 case 3:
34 ++frequency3;
35 break;
36 case 4:
37 ++frequency4;
38 break;
39 case 5:
40 ++frequency5;
41 break;
42 case 6:
43 ++frequency6;
44 break;
45 } // end switch
46 } // end for
47
48 document.writeln("<table border = \"1\">");
49 document.writeln("<thead><th>Face</th>" +
50 "<th>Frequency</th></thead>");
51 document.writeln("<tbody><tr><td>1</td><td>" +
52 frequency1 + "</td></tr>");
53 document.writeln("<tr><td>2</td><td>" + frequency2 +
54 "</td></tr>");
55 document.writeln("<tr><td>3</td><td>" + frequency3 +
56 "</td></tr>");
57 document.writeln("<tr><td>4</td><td>" + frequency4 +
58 "</td></tr>");
59 document.writeln("<tr><td>5</td><td>" + frequency5 +
60 "</td></tr>");
61 document.writeln("<tr><td>6</td><td>" + frequency6 +
62 "</td></tr></tbody></table>");
63 // -->
64 </script>
65 </head>

66 <body>

67 <p>Click Refresh (or Reload) to run the script again</p>
68 </body>

69 </html>

Fig. 7.4 | Rolling a six-sided die 6000 times. (Part 2 of 3.)

{
 face = Math.floor(1 + Math.random() * 6);

156 Chapter 7 JavaScript: Functions

each iteration of the loop, line 23 produces a value from 1 to 6, which is stored in face.
The nested switch statement in lines 25–45 uses the face value that was randomly chosen
as its controlling expression. Based on the value of face, the program increments one of
the six counter variables during each iteration of the loop. Note that no default case is
provided in this switch statement, because the statement in line 23 produces only the
values 1, 2, 3, 4, 5 and 6. In this example, the default case would never execute. After we
study Arrays in Chapter 8, we discuss a way to replace the entire switch statement in this
program with a single-line statement.

Run the program several times, and observe the results. Note that the program pro-
duces different random numbers each time the script executes, so the results should vary.

The values returned by random are always in the range

0.0 ≤ Math.random() < 1.0

Previously, we demonstrated the statement

face = Math.floor(1 + Math.random() * 6);

which simulates the rolling of a six-sided die. This statement always assigns an integer (at
random) to variable face, in the range 1 ≤ face ≤ 6. Note that the width of this range
(i.e., the number of consecutive integers in the range) is 6, and the starting number in the
range is 1. Referring to the preceding statement, we see that the width of the range is de-
termined by the number used to scale random with the multiplication operator (6 in the
preceding statement) and that the starting number of the range is equal to the number (1
in the preceding statement) added to Math.random() * 6. We can generalize this result as

face = Math.floor(a + Math.random() * b);

where a is the shifting value (which is equal to the first number in the desired range of con-
secutive integers) and b is the scaling factor (which is equal to the width of the desired
range of consecutive integers).

Fig. 7.4 | Rolling a six-sided die 6000 times. (Part 3 of 3.)

7.6 Example: Game of Chance 157

7.6 Example: Game of Chance
One of the most popular games of chance is a dice game known as craps, which is played
in casinos and back alleys throughout the world. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. These faces contain one, two, three, four,
five and six spots, respectively. After the dice have come to rest, the sum of the spots on
the two upward faces is calculated. If the sum is 7 or 11 on the first throw, the player
wins. If the sum is 2, 3 or 12 on the first throw (called “craps”), the player loses (i.e.,
the “house” wins). If the sum is 4, 5, 6, 8, 9 or 10 on the first throw, that sum becomes
the player’s “point.” To win, you must continue rolling the dice until you “make your
point” (i.e., roll your point value). You lose by rolling a 7 before making the point.

Figure 7.5 simulates the game of craps. The player must roll two dice on the first and all
subsequent rolls. When you execute the script, click the Roll Dice button to play the game.
A message below the Roll Dice button displays the status of the game after each roll.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 7.5: Craps.html -->
6 <!-- Craps game simulation. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Program that Simulates the Game of Craps</title>
10 <style type = "text/css">

11 table { text-align: right }
12 body { font-family: arial, sans-serif }
13 div.red { color: red }
14 </style>

15 <script type = "text/javascript">

16 <!--
17 // variables used to test the state of the game
18 var WON = 0;
19 var LOST = 1;
20 var CONTINUE_ROLLING = 2;
21
22 // other variables used in program
23 var firstRoll = true; // true if current roll is first
24 var sumOfDice = 0; // sum of the dice
25 var myPoint = 0; // point if no win/loss on first roll
26 var gameStatus = CONTINUE_ROLLING; // game not over yet
27
28 // process one roll of the dice
29 function play()
30 {
31 // get the point field on the page
32 var point = document.getElementById("pointfield");
33
34 // get the status div on the page
35 var statusDiv = document.getElementById("status");

Fig. 7.5 | Craps game simulation. (Part 1 of 4.)

158 Chapter 7 JavaScript: Functions

36 if (firstRoll) // first roll of the dice
37 {
38 sumOfDice = rollDice();
39
40 switch (sumOfDice)
41 {
42 case 7: case 11: // win on first roll
43 gameStatus = WON;
44 // clear point field
45 point.value = "";
46 break;
47 case 2: case 3: case 12: // lose on first roll
48 gameStatus = LOST;
49 // clear point field
50 point.value = "";
51 break;
52 default: // remember point
53 gameStatus = CONTINUE_ROLLING;
54 myPoint = sumOfDice;
55 point.value = myPoint;
56 firstRoll = false;
57 } // end switch
58 } // end if
59 else
60 {
61 sumOfDice = rollDice();
62
63 if (sumOfDice == myPoint) // win by making point
64 gameStatus = WON;
65 else
66 if (sumOfDice == 7) // lose by rolling 7
67 gameStatus = LOST;
68 } // end else
69
70 if (gameStatus == CONTINUE_ROLLING)
71 statusDiv.innerHTML = "Roll again";
72 else

73 {
74 if (gameStatus == WON)
75 statusDiv.innerHTML = "Player wins. " +
76 "Click Roll Dice to play again.";
77 else

78 statusDiv.innerHTML = "Player loses. " +
79 "Click Roll Dice to play again.";
80
81 firstRoll = true;
82 } // end else
83 } // end function play
84
85 // roll the dice
86 function rollDice()
87 {
88 var die1;

Fig. 7.5 | Craps game simulation. (Part 2 of 4.)

7.6 Example: Game of Chance 159

89 var die2;
90 var workSum;
91
92 die1 = Math.floor(1 + Math.random() * 6);
93 die2 = Math.floor(1 + Math.random() * 6);
94 workSum = die1 + die2;
95
96 document.getElementById("die1field").value = die1;
97 document.getElementById("die2field").value = die2;
98 document.getElementById("sumfield").value = workSum;
99
100 return workSum;
101 } // end function rollDice
102 // -->
103 </script>

104 </head>

105 <body>

106 <form action = "">

107 <table>

108 <caption>Craps</caption>
109 <tr><td>Die 1</td>
110 <td><input id = "die1field" type = "text" />

111 </td></tr>

112 <tr><td>Die 2</td>
113 <td><input id = "die2field" type = "text" />

114 </td></tr>

115 <tr><td>Sum</td>
116 <td><input id = "sumfield" type = "text" />

117 </td></tr>

118 <tr><td>Point</td>
119 <td><input id = "pointfield" type = "text" />

120 </td></tr>

121 <tr><td /><td><input type = "button" value = "Roll Dice"

122 onclick = "play()" /></td></tr>

123 </table>

124 <div id = "status" class = "red">
125 Click the Roll Dice button to play</div>
126 </form>

127 </body>

128 </html>

Fig. 7.5 | Craps game simulation. (Part 3 of 4.)

160 Chapter 7 JavaScript: Functions

Until now, all user interactions with scripts have been through either a prompt dialog
(in which the user types an input value for the program) or an alert dialog (in which a
message is displayed to the user, and the user can click OK to dismiss the dialog). Although
these dialogs are valid ways to receive input from a user and to display messages, they are
fairly limited in their capabilities. A prompt dialog can obtain only one value at a time from
the user, and a message dialog can display only one message.

sd kf a kl

Fig. 7.5 | Craps game simulation. (Part 4 of 4.)

7.6 Example: Game of Chance 161

XHTML Forms
More frequently, multiple inputs are received from the user at once via an XHTML form
(such as one in which the user enters name and address information) or to display many
pieces of data at once (e.g., the values of the dice, the sum of the dice and the point in this
example). To begin our introduction to more elaborate user interfaces, this program uses
an XHTML form (discussed in Chapter 2) and a new graphical user interface concept—
GUI event handling. This is our first example in which the JavaScript executes in response
to the user’s interaction with a GUI component in an XHTML form. This interaction
causes an event. Scripts are often used to respond to events.

Before we discuss the script code, we discuss the XHTML document’s body element
(lines 105–126). The GUI components in this section are used extensively in the script.

Line 106 begins the definition of an XHTML form element. The XHTML standard
requires that every form contain an action attribute, but because this form does not post
its information to a web server, the empty string ("") is used.

In this example, we have decided to place the form’s GUI components in an XHTML
table element, so line 107 begins the definition of the XHTML table. Lines 109–120
create four table rows. Each row contains a left cell with a text label and an input element
in the right cell.

Four input fields (lines 110, 113, 116 and 119) are created to display the value of the
first die, the second die, the sum of the dice and the current point value, if any. Their id
attributes are set to die1field, die2field, sumfield, and pointfield, respectively. The
id attribute can be used to apply CSS styles and to enable script code to refer to an element
in an XHTML document. Because the id attribute, if specified, must have a unique value,
JavaScript can reliably refer to any single element via its id attribute. We see how this is
done in a moment.

Lines 121–122 create a fifth row with an empty cell in the left column before the Roll
Dice button. The button’s onclick attribute indicates the action to take when the user of
the XHTML document clicks the Roll Dice button. In this example, clicking the button
causes a call to function play.

Event-Driven Programming
This style of programming is known as event-driven programming—the user interacts
with a GUI component, the script is notified of the event and the script processes the
event. The user’s interaction with the GUI “drives” the program. The button click is
known as the event. The function that is called when an event occurs is known as an event-
handling function or event handler. When a GUI event occurs in a form, the browser calls
the specified event-handling function. Before any event can be processed, each GUI com-
ponent must know which event-handling function will be called when a particular event
occurs. Most XHTML GUI components have several different event types. The event
model is discussed in detail in Chapter 11, JavaScript: Events. By specifying onclick =

"play()" for the Roll Dice button, we instruct the browser to listen for events (button-
click events in particular). This registers the event handler for the GUI component, caus-
ing the browser to begin listening for the click event on the component. If no event han-
dler is specified for the Roll Dice button, the script will not respond when the user presses
the button.

Lines 123–125 end the table and form elements, respectively. After the table, a div
element is created with an id attribute of "status". This element will be updated by the

162 Chapter 7 JavaScript: Functions

script to display the result of each roll to the user. A style declaration in line 13 colors the
text contained in this div red.

Discussing the Game’s Script Code
The game is reasonably involved. The player may win or lose on the first roll, or may win
or lose on any subsequent roll. Lines 18–20 create variables that define the three game
states—game won, game lost and continue rolling the dice. Unlike many other program-
ming languages, JavaScript does not provide a mechanism to define a constant (i.e., a vari-
able whose value cannot be modified). For this reason, we use all capital letters for these
variable names, to indicate that we do not intend to modify their values and to make them
stand out in the code—a common industry practice for genuine constants.

Good Programming Practice 7.2
Use only uppercase letters (with underscores between words) in the names of variables that should
be used as constants. This format makes such variables stand out in a program.

Good Programming Practice 7.3
Use meaningfully named variables rather than literal values (such as 2) to make programs more
readable.

Lines 23–26 declare several variables that are used throughout the script. Variable
firstRoll indicates whether the next roll of the dice is the first roll in the current game.
Variable sumOfDice maintains the sum of the dice from the last roll. Variable myPoint
stores the point if the player does not win or lose on the first roll. Variable gameStatus
keeps track of the current state of the game (WON, LOST or CONTINUE_ROLLING).

We define a function rollDice (lines 86–101) to roll the dice and to compute and
display their sum. Function rollDice is defined once, but is called from two places in the
program (lines 38 and 61). Function rollDice takes no arguments, so it has an empty
parameter list. Function rollDice returns the sum of the two dice.

The user clicks the Roll Dice button to roll the dice. This action invokes function play
(lines 29–83) of the script. Lines 32 and 35 create two new variables with objects repre-
senting elements in the XHTML document using the document object’s getElementById
method. The getElementById method, given an id as an argument, finds the XHTML
element with a matching id attribute and returns a JavaScript object representing the ele-
ment. Line 32 stores an object representing the pointfield input element (line 119) in
the variable point. Line 35 gets an object representing the status div from line 124. In
a moment, we show how you can use these objects to manipulate the XHTML document.

Function play checks the variable firstRoll (line 36) to determine whether it is true
or false. If true, the roll is the first roll of the game. Line 38 calls rollDice, which picks
two random values from 1 to 6, displays the value of the first die, the value of the second
die and the sum of the dice in the first three text fields and returns the sum of the dice.
(We discuss function rollDice in detail shortly.) After the first roll (if firstRoll is false),
the nested switch statement in lines 40–57 determines whether the game is won or lost,
or whether it should continue with another roll. After the first roll, if the game is not over,
sumOfDice is saved in myPoint and displayed in the text field point in the XHTML form.

Note how the text field’s value is changed in lines 45, 50 and 55. The object stored in
the variable point allows access to the pointfield text field’s contents. The expression

7.7 Another Example: Random Image Generator 163

point.value accesses the value property of the text field referred to by point. The value
property specifies the text to display in the text field. To access this property, we specify
the object representing the text field (point), followed by a dot (.) and the name of the
property to access (value). This technique for accessing properties of an object (also used
to access methods as in Math.pow) is called dot notation. We discuss using scripts to access
elements in an XHTML page in more detail in Chapter 10.

The program proceeds to the nested if…else statement in lines 70–82, which uses
the statusDiv variable to update the div that displays the game status. Using the object’s
innerHTML property, we set the text inside the div to reflect the most recent status. Lines
71, 75–76 and 78–79 set the div’s innerHTML to

Roll again.

if gameStatus is equal to CONTINUE_ROLLING, to

Player wins. Click Roll Dice to play again.

if gameStatus is equal to WON and to

Player loses. Click Roll Dice to play again.

if gameStatus is equal to LOST. If the game is won or lost, line 81 sets firstRoll to true
to indicate that the next roll of the dice begins the next game.

The program then waits for the user to click the button Roll Dice again. Each time the
user clicks Roll Dice, the program calls function play, which, in turn, calls the rollDice
function to produce a new value for sumOfDice. If sumOfDice matches myPoint,
gameStatus is set to WON, the if…else statement in lines 70–82 executes and the game is
complete. If sum is equal to 7, gameStatus is set to LOST, the if…else statement in lines
70–82 executes and the game is complete. Clicking the Roll Dice button starts a new game.
The program updates the four text fields in the XHTML form with the new values of the
dice and the sum on each roll, and updates the text field point each time a new game
begins.

Function rollDice (lines 86–101) defines its own local variables die1, die2 and
workSum (lines 88–90). Lines 92–93 pick two random values in the range 1 to 6 and assign
them to variables die1 and die2, respectively. Lines 96–98 once again use the document’s
getElementById method to find and update the correct input elements with the values of
die1, die2 and workSum. Note that the integer values are converted automatically to
strings when they are assigned to each text field’s value property. Line 100 returns the
value of workSum for use in function play.

Error-Prevention Tip 7.1
Initializing variables when they are declared in functions helps avoid incorrect results and in-
terpreter messages warning of uninitialized data.

7.7 Another Example: Random Image Generator
Web content that varies randomly adds dynamic, interesting effects to a page. In the next
example, we build a random image generator, a script that displays a randomly selected im-
age every time the page that contains the script is loaded.

164 Chapter 7 JavaScript: Functions

For the script in Fig. 7.6 to function properly, the directory containing the file
RandomPicture.html must also contain seven images with integer filenames (i.e., 1.gif,
2.gif, …, 7.gif). The web page containing this script displays one of these seven images,
selected at random, each time the page loads.

Lines 12–13 randomly select an image to display on a web page. This docu-
ment.write statement creates an image tag in the web page with the src attribute set to a
random integer from 1 to 7, concatenated with ".gif". Thus, the script dynamically sets
the source of the image tag to the name of one of the image files in the current directory.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 7.6: RandomPicture.html -->
6 <!-- Random image generation using Math.random. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Random Image Generator</title>
10 <script type = "text/javascript">

11 <!--
12
13
14 // -->
15 </script>

16 </head>

17 <body>

18 <p>Click Refresh (or Reload) to run the script again</p>
19 </body>

20 </html>

Fig. 7.6 | Random image generation using Math.random.

document.write ("<img src = \"" +
 Math.floor(1 + Math.random() * 7) + ".gif\" />");

7.8 Scope Rules 165

7.8 Scope Rules
Chapters 4–6 used identifiers for variable names. The attributes of variables include name,
value and data type (e.g., string, number or boolean). We also use identifiers as names for
user-defined functions. Each identifier in a program also has a scope.

The scope of an identifier for a variable or function is the portion of the program in
which the identifier can be referenced. Global variables or script-level variables that are
declared in the head element are accessible in any part of a script and are said to have global
scope. Thus every function in the script can potentially use the variables.

Identifiers declared inside a function have function (or local) scope and can be used
only in that function. Function scope begins with the opening left brace ({) of the function
in which the identifier is declared and ends at the terminating right brace (}) of the func-
tion. Local variables of a function and function parameters have function scope. If a local
variable in a function has the same name as a global variable, the global variable is “hidden”
from the body of the function.

Good Programming Practice 7.4
Avoid local-variable names that hide global-variable names. This can be accomplished by simply
avoiding the use of duplicate identifiers in a script.

The script in Fig. 7.7 demonstrates the scope rules that resolve conflicts between
global variables and local variables of the same name. This example also demonstrates the
onload event (line 52), which calls an event handler (start) when the <body> of the
XHTML document is completely loaded into the browser window.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 7.7: scoping.html -->
6 <!-- Scoping example. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>A Scoping Example</title>
10 <script type = "text/javascript">
11 <!--
12 // global variable
13
14 function start()
15 {
16 // variable local to function start
17
18 document.writeln("local x in start is " + x);
19
20 functionA(); // functionA has local x
21 functionB(); // functionB uses global variable x
22 functionA(); // functionA reinitializes local x
23 functionB(); // global variable x retains its value
24

Fig. 7.7 | Scoping example. (Part 1 of 2.)

var x = 1;

var x = 5;

166 Chapter 7 JavaScript: Functions

25 document.writeln(
26 "<p>local x in start is " + x + "</p>");
27 } // end function start
28
29 function functionA()
30 {
31 // initialized each time
32 // functionA is called
33
34 document.writeln("<p>local x in functionA is " +
35 x + " after entering functionA");
36 ++x;
37 document.writeln("
local x in functionA is " +
38 x + " before exiting functionA" + "</p>");
39 } // end functionA
40
41 function functionB()
42 {
43 document.writeln("<p>global variable x is " + x +
44 " on entering functionB");
45 x *= 10;
46 document.writeln("
global variable x is " +
47 x + " on exiting functionB" + "</p>");
48 } // end functionB
49 // -->
50 </script>

51 </head>

52
53 </html>

Fig. 7.7 | Scoping example. (Part 2 of 2.)

var x = 25;

<body onload = "start()"></body>

7.9 JavaScript Global Functions 167

Global variable x (line 12) is declared and initialized to 1. This global variable is
hidden in any block (or function) that declares a variable named x. Function start (line
14–27) declares a local variable x (line 16) and initializes it to 5. This variable is output in
a line of XHTML text to show that the global variable x is hidden in start. The script
defines two other functions—functionA and functionB—that each take no arguments
and return nothing. Each function is called twice from function start.

Function functionA defines local variable x (line 31) and initializes it to 25. When
functionA is called, the variable is output in a line of XHTML text to show that the global
variable x is hidden in functionA; then the variable is incremented and output in a line of
XHTML text again before the function is exited. Each time this function is called, local
variable x is re-created and initialized to 25.

Function functionB does not declare any variables. Therefore, when it refers to vari-
able x, the global variable x is used. When functionB is called, the global variable is output
in a line of XHTML text, multiplied by 10 and output in a line of XHTML text again
before the function is exited. The next time function functionB is called, the global vari-
able has its modified value, 10, which again gets multiplied by 10, and 100 is output.
Finally, the program outputs local variable x in start in a line of XHTML text again, to
show that none of the function calls modified the value of x in start, because the func-
tions all referred to variables in other scopes.

7.9 JavaScript Global Functions
JavaScript provides seven global functions. We have already used two of these functions—
parseInt and parseFloat. The global functions are summarized in Fig. 7.8.

Actually, the global functions in Fig. 7.8 are all part of JavaScript’s Global object. The
Global object contains all the global variables in the script, all the user-defined functions
in the script and all the functions listed in Fig. 7.8. Because global functions and user-
defined functions are part of the Global object, some JavaScript programmers refer to
these functions as methods. We use the term method only when referring to a function
that is called for a particular object (e.g., Math.random()). As a JavaScript programmer,
you do not need to use the Global object directly; JavaScript references it for you.

Global function Description

escape Takes a string argument and returns a string in which all spaces, punctua-
tion, accent characters and any other character that is not in the ASCII
character set are encoded in a hexadecimal format that can be represented
on all platforms.

eval Takes a string argument representing JavaScript code to execute. The
JavaScript interpreter evaluates the code and executes it when the eval
function is called. This function allows JavaScript code to be stored as
strings and executed dynamically. [Caution: It is considered a serious
security risk to use eval to process any data entered by a user because a
malicious user could exploit this to run dangerous code.]

Fig. 7.8 | JavaScript global functions. (Part 1 of 2.)

168 Chapter 7 JavaScript: Functions

7.10 Recursion
The programs we have discussed thus far are generally structured as functions that call one
another in a disciplined, hierarchical manner. A recursive function is a function that calls
itself, either directly, or indirectly through another function. In this section, we present a
simple example of recursion.

We consider recursion conceptually first; then we examine several programs con-
taining recursive functions. Recursive problem-solving approaches have a number of ele-
ments in common. A recursive function is called to solve a problem. The function actually
knows how to solve only the simplest case(s), or base case(s). If the function is called with
a base case, the function returns a result. If the function is called with a more complex
problem, it divides the problem into two conceptual pieces—a piece that the function
knows how to process (the base case) and a piece that the function does not know how to
process. To make recursion feasible, the latter piece must resemble the original problem,
but be a simpler or smaller version of it. Because this new problem looks like the original
problem, the function invokes (calls) a fresh copy of itself to go to work on the smaller

isFinite Takes a numeric argument and returns true if the value of the argument
is not NaN, Number.POSITIVE_INFINITY or Number.NEGATIVE_INFINITY
(values that are not numbers or numbers outside the range that JavaScript
supports)—otherwise, the function returns false.

isNaN Takes a numeric argument and returns true if the value of the argument
is not a number; otherwise, it returns false. The function is commonly
used with the return value of parseInt or parseFloat to determine
whether the result is a proper numeric value.

parseFloat Takes a string argument and attempts to convert the beginning of the
string into a floating-point value. If the conversion is unsuccessful, the
function returns NaN; otherwise, it returns the converted value (e.g.,
parseFloat("abc123.45") returns NaN, and parseFloat("123.45abc")

returns the value 123.45).

parseInt Takes a string argument and attempts to convert the beginning of the
string into an integer value. If the conversion is unsuccessful, the func-
tion returns NaN; otherwise, it returns the converted value (e.g., par-
seInt("abc123") returns NaN, and parseInt("123abc") returns the
integer value 123). This function takes an optional second argument,
from 2 to 36, specifying the radix (or base) of the number. Base 2 indi-
cates that the first argument string is in binary format, base 8 indicates
that the first argument string is in octal format and base 16 indicates that
the first argument string is in hexadecimal format.

unescape Takes a string as its argument and returns a string in which all characters
previously encoded with escape are decoded.

Global function Description

Fig. 7.8 | JavaScript global functions. (Part 2 of 2.)

7.10 Recursion 169

problem; this invocation is referred to as a recursive call, or the recursion step. The recur-
sion step also normally includes the keyword return, because its result will be combined
with the portion of the problem the function knew how to solve to form a result that will
be passed back to the original caller.

The recursion step executes while the original call to the function is still open (i.e., it
has not finished executing). The recursion step can result in many more recursive calls as
the function divides each new subproblem into two conceptual pieces. For the recursion
eventually to terminate, each time the function calls itself with a simpler version of the
original problem, the sequence of smaller and smaller problems must converge on the base
case. At that point, the function recognizes the base case, returns a result to the previous
copy of the function, and a sequence of returns ensues up the line until the original func-
tion call eventually returns the final result to the caller.

As an example of these concepts at work, let us write a recursive program to perform
a popular mathematical calculation. The factorial of a nonnegative integer n, written n!
(and pronounced “n factorial”), is the product

n · (n – 1) · (n – 2) · … · 1

where 1! is equal to 1 and 0! is defined as 1. For example, 5! is the product 5 · 4 · 3 · 2 · 1,
which is equal to 120.

The factorial of an integer (number in the following example) greater than or equal to
zero can be calculated iteratively (nonrecursively) using a for statement, as follows:

var factorial = 1;

for (var counter = number; counter >= 1; --counter)
 factorial *= counter;

A recursive definition of the factorial function is arrived at by observing the following
relationship:

n! = n · (n – 1)!

For example, 5! is clearly equal to 5 * 4!, as is shown by the following equations:

5! = 5 · 4 · 3 · 2 · 1
5! = 5 · (4 · 3 · 2 · 1)
5! = 5 · (4!)

The evaluation of 5! would proceed as shown in Fig. 7.9. Figure 7.9 (a) shows how
the succession of recursive calls proceeds until 1! is evaluated to be 1, which terminates the
recursion. Figure 7.9 (b) shows the values returned from each recursive call to its caller
until the final value is calculated and returned.

Figure 7.10 uses recursion to calculate and print the factorials of the integers 0 to 10.
The recursive function factorial first tests (line 24) whether a terminating condition is
true, i.e., whether number is less than or equal to 1. If so, factorial returns 1, no further
recursion is necessary and the function returns. If number is greater than 1, line 27
expresses the problem as the product of number and the value returned by a recursive call
to factorial evaluating the factorial of number - 1. Note that factorial(number - 1)

is a simpler problem than the original calculation, factorial(number).

170 Chapter 7 JavaScript: Functions

Function factorial (lines 22–28) receives as its argument the value for which to cal-
culate the factorial. As can be seen in the screen capture in Fig. 7.10, factorial values
become large quickly.

Common Programming Error 7.6
Forgetting to return a value from a recursive function when one is needed results in a logic error.

Fig. 7.9 | Recursive evaluation of 5!.

(a) Sequence of recursive calls.

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

(b) Values returned from each recursive call.

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

3! = 3 * 2 = 6 is returned

2! = 2 * 1 = 2 is returned

1 is returned

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 7.10: FactorialTest.html -->
6 <!-- Factorial calculation with a recursive function. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Recursive Factorial Function</title>
10 <script type = "text/javascript">

11 <!--
12 document.writeln("<h1>Factorials of 1 to 10</h1>");
13 document.writeln("<table>");
14
15 for (var i = 0; i <= 10; i++)
16 document.writeln("<tr><td>" + i + "!</td><td>" +
17 + "</td></tr>");

Fig. 7.10 | Factorial calculation with a recursive function. (Part 1 of 2.)

factorial(i)

7.10 Recursion 171

Common Programming Error 7.7
Omitting the base case and writing the recursion step incorrectly so that it does not converge on
the base case are both errors that cause infinite recursion, eventually exhausting memory. This
situation is analogous to the problem of an infinite loop in an iterative (nonrecursive) solution.

Error-Prevention Tip 7.2
Internet Explorer displays an error message when a script seems to be going into infinite recur-
sion. Firefox simply terminates the script after detecting the problem. This allows the user of the
web page to recover from a script that contains an infinite loop or infinite recursion.

18
19 document.writeln("</table>");
20
21 // Recursive definition of function factorial
22
23
24
25
26
27
28
29 // -->
30 </script>

31 </head><body></body>

32 </html>

Fig. 7.10 | Factorial calculation with a recursive function. (Part 2 of 2.)

function factorial(number)
{

if (number <= 1) // base case
 return 1;

else

 return number * factorial(number - 1);
} // end function factorial

172 Chapter 7 JavaScript: Functions

7.11 Recursion vs. Iteration
In the preceding section, we studied a function that can easily be implemented either re-
cursively or iteratively. In this section, we compare the two approaches and discuss why
you might choose one approach over the other in a particular situation.

Both iteration and recursion are based on a control statement: Iteration uses a repeti-
tion statement (e.g., for, while or do…while); recursion uses a selection statement (e.g.,
if, if…else or switch). Both iteration and recursion involve repetition: Iteration explic-
itly uses a repetition statement; recursion achieves repetition through repeated function
calls. Iteration and recursion each involve a termination test: Iteration terminates when the
loop-continuation condition fails; recursion terminates when a base case is recognized.
Iteration both with counter-controlled repetition and with recursion gradually approaches
termination: Iteration keeps modifying a counter until the counter assumes a value that
makes the loop-continuation condition fail; recursion keeps producing simpler versions of
the original problem until the base case is reached. Both iteration and recursion can occur
infinitely: An infinite loop occurs with iteration if the loop-continuation test never
becomes false; infinite recursion occurs if the recursion step does not reduce the problem
each time via a sequence that converges on the base case or if the base case is incorrect.

One negative aspect of recursion is that function calls require a certain amount of time
and memory space not directly spent on executing program instructions. This is known as
function-call overhead. Because recursion uses repeated function calls, this overhead
greatly affects the performance of the operation. In many cases, using repetition statements
in place of recursion is more efficient. However, some problems can be solved more ele-
gantly (and more easily) with recursion.

Software Engineering Observation 7.5
Any problem that can be solved recursively can also be solved iteratively (nonrecursively). A
recursive approach is normally chosen in preference to an iterative approach when the recursive
approach more naturally mirrors the problem and results in a program that is easier to
understand and debug. Another reason to choose a recursive solution is that an iterative solution
may not be apparent.

Performance Tip 7.1
Avoid using recursion in performance-oriented situations. Recursive calls take time and consume
additional memory.

In addition to the factorial function example (Fig. 7.10), Fig. 12.26 uses recursion to
traverse an XML document tree.

8
JavaScript:
Arrays

O B J E C T I V E S
In this chapter you’ll learn:

■ To use arrays to store lists and tables of values.

■ To declare an array, initialize an array and refer to
individual elements of an array.

■ To pass arrays to functions.

■ To sort an array.

■ To declare and manipulate multidimensional arrays.

With sobs and tears he sorted
out
Those of the largest size . . .
—Lewis Carroll

Attempt the end, and never
stand to doubt;
Nothing’s so hard, but search
will find it out.
—Robert Herrick

Now go, write it before them
in a table,
and note it in a book.
—Isaiah 30:8

’Tis in my memory lock’d,
And you yourself shall keep
the key of it.
—William Shakespeare

174 Chapter 8 JavaScript: Arrays

O
u

tl
in

e

8.1 Introduction
Arrays are data structures consisting of related data items (sometimes called collections of
data items). JavaScript arrays are “dynamic” entities in that they can change size after they
are created. Many of the techniques demonstrated in this chapter are used frequently in
Chapters 10–11 as we introduce the collections that allow a script programmer to manip-
ulate every element of an XHTML document dynamically.

8.2 Arrays
An array is a group of memory locations that all have the same name and normally are of
the same type (although this attribute is not required in JavaScript). To refer to a particular
location or element in the array, we specify the name of the array and the position number
of the particular element in the array.

Figure 8.1 shows an array of integer values named c. This array contains 12 elements.
Any one of these elements may be referred to by giving the name of the array followed by
the position number of the element in square brackets ([]). The first element in every
array is the zeroth element. Thus, the first element of array c is referred to as c[0], the
second element of array c is referred to as c[1], the seventh element of array c is referred
to as c[6] and, in general, the ith element of array c is referred to as c[i-1]. Array names
follow the same conventions as other identifiers.

The position number in square brackets is called a subscript (or an index). A subscript
must be an integer or an integer expression. Note that a subscripted array name is a left-
hand-side expression—it can be used on the left side of an assignment to place a new value
into an array element. It can also be used on the right side of an assignment to assign its
value to another left-hand side expression.

Let us examine array c in Fig. 8.1 more closely. The array’s name is c. The length of
array c is 12 and can be found using by the following expression:

c.length

Every array in JavaScript knows its own length. The array’s 12 elements are referred to as
c[0], c[1], c[2], …, c[11]. The value of c[0] is -45, the value of c[1] is 6, the
value of c[2] is 0, the value of c[7] is 62 and the value of c[11] is 78.

8.1 Introduction
8.2 Arrays
8.3 Declaring and Allocating Arrays
8.4 Examples Using Arrays
8.5 Random Image Generator Using Arrays
8.6 References and Reference Parameters
8.7 Passing Arrays to Functions
8.8 Sorting Arrays
8.9 Multidimensional Arrays

8.10 Building an Online Quiz

8.3 Declaring and Allocating Arrays 175

The brackets that enclose the array subscript are a JavaScript operator. Brackets have
the same level of precedence as parentheses. The chart in Fig. 8.2 shows the precedence
and associativity of the operators introduced so far. They are shown from top to bottom
in decreasing order of precedence, alongside their associativity and type.

8.3 Declaring and Allocating Arrays
Arrays occupy space in memory. Actually, an array in JavaScript is an Array object. You
use operator new to dynamically allocate (request memory for) the number of elements re-
quired by each array. Operator new creates an object as the program executes by obtaining

Fig. 8.1 | Array with 12 elements.

Operators Associativity Type

() [] . left to right highest

++ -- ! right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

Fig. 8.2 | Precedence and associativity of the operators discussed so far.

-45

62

-3

1

6453

78

0

-89

1543

72

0

6

c[0]

Name of the array is c

Position number of the
element within the array c

c[7]

c[8]

c[9]

c[10]

c[11]

c[6]

c[5]

c[4]

c[3]

c[2]

c[1]

ValueName of an individual
array element

176 Chapter 8 JavaScript: Arrays

enough memory to store an object of the type specified to the right of new. The process of
creating new objects is also known as creating an instance or instantiating an object, and
operator new is known as the dynamic memory allocation operator. Arrays are objects
must be created with new. To allocate 12 elements for integer array c, use the statement

var c = new Array(12);

The preceding statement can also be performed in two steps, as follows:

var c; // declares the array
c = new Array(12); // allocates the array

When arrays are allocated, the elements are not initialized—they have the value unde-
fined.

Common Programming Error 8.1
Assuming that the elements of an array are initialized when the array is allocated may result in
logic errors.

8.4 Examples Using Arrays
This section presents several examples of creating and manipulating arrays.

Creating and Initializing Arrays
The script in Fig. 8.3 uses operator new to allocate an Array of five elements and an empty
array. The script demonstrates initializing an Array of existing elements and also shows
that an Array can grow dynamically to accommodate new elements. The Array’s values
are displayed in XHTML tables.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 8.3: InitArray.html -->
6 <!-- Initializing the elements of an array. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Initializing an Array</title>
10 <style type = "text/css">

11 table { width: 10em }
12 th { text-align: left }
13 </style>

14 <script type = "text/javascript">

15 <!--
16 // create (declare) two new arrays
17

18

19
20 // assign values to each element of Array n1
21 for (var i = 0; i < n1.length; ++i)
22

Fig. 8.3 | Initializing the elements of an array. (Part 1 of 2.)

var n1 = new Array(5); // allocate five-element Array
var n2 = new Array(); // allocate empty Array

n1[i] = i;

8.4 Examples Using Arrays 177

23
24 // create and initialize five elements in Array n2
25 for (i = 0; i < 5; ++i)
26

27
28 outputArray("Array n1:", n1);
29 outputArray("Array n2:", n2);
30
31 // output the heading followed by a two-column table
32 // containing subscripts and elements of "theArray"
33 function outputArray(heading, theArray)
34 {
35 document.writeln("<h2>" + heading + "</h2>");
36 document.writeln("<table border = \"1\"");
37 document.writeln("<thead><th>Subscript</th>" +
38 "<th>Value</th></thead><tbody>");
39
40 // output the subscript and value of each array element
41
42
43
44
45 document.writeln("</tbody></table>");
46 } // end function outputArray
47 // -->
48 </script>

49 </head><body></body>

50 </html>

Fig. 8.3 | Initializing the elements of an array. (Part 2 of 2.)

n2[i] = i;

for (var i = 0; i < theArray.length; i++)
 document.writeln("<tr><td>" + i + "</td><td>" +
 theArray[i] + "</td></tr>");

178 Chapter 8 JavaScript: Arrays

Line 17 creates Array n1 as an array of five elements. Line 18 creates Array n2 as an
empty array. Lines 21–22 use a for statement to initialize the elements of n1 to their sub-
script numbers (0 to 4). Note the use of the expression n1.length in the condition for the
for statement to determine the length of the array. In this example, the length of the array
is 5, so the loop continues executing as long as the value of control variable i is less than
5. For a five-element array, the subscript values are 0 through 4, so using the less than oper-
ator, <, guarantees that the loop does not attempt to access an element beyond the end of
the array. Zero-based counting is usually used to iterate through arrays.

 Lines 25–26 use a for statement to add five elements to the Array n2 and initialize
each element to its subscript number (0 to 4). Note that Array n2 grows dynamically to
accommodate the values assigned to each element of the array.

Software Engineering Observation 8.1
JavaScript automatically reallocates an Array when a value is assigned to an element that is
outside the bounds of the original Array. Elements between the last element of the original Array
and the new element have undefined values.

Lines 28–29 invoke function outputArray (defined in lines 33–46) to display the
contents of each array in an XHTML table. Function outputArray receives two argu-
ments—a string to be output before the XHTML table that displays the contents of the
array and the array to output. Lines 41–43 use a for statement to output XHTML text
that defines each row of the table.

Common Programming Error 8.2
Referring to an element outside the Array bounds is normally a logic error.

If the values of an Array’s elements are known in advance, the elements can be allo-
cated and initialized in the declaration of the array. There are two ways in which the initial
values can be specified. The statement

var n = [10, 20, 30, 40, 50];

uses a comma-separated initializer list enclosed in square brackets ([and]) to create a five-
element Array with subscripts of 0, 1, 2, 3 and 4. The array size is determined by the num-
ber of values in the initializer list. Note that the preceding declaration does not require the
new operator to create the Array object—this functionality is provided by the interpreter
when it encounters an array declaration that includes an initializer list. The statement

var n = new Array(10, 20, 30, 40, 50);

also creates a five-element array with subscripts of 0, 1, 2, 3 and 4. In this case, the initial
values of the array elements are specified as arguments in the parentheses following new
Array. The size of the array is determined by the number of values in parentheses. It is also
possible to reserve a space in an Array for a value to be specified later by using a comma
as a place holder in the initializer list. For example, the statement

var n = [10, 20, , 40, 50];

creates a five-element array with no value specified for the third element (n[2]).

8.4 Examples Using Arrays 179

Initializing Arrays with Initializer Lists
The script in Fig. 8.4 creates three Array objects to demonstrate initializing arrays with
initializer lists (lines 18–20) and displays each array in an XHTML table using the same
function outputArray discussed in Fig. 8.3. Note that when Array integers2 is displayed
in the web page, the elements with subscripts 1 and 2 (the second and third elements of

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 8.4: InitArray2.html -->
6 <!-- Declaring and initializing arrays. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Initializing an Array with a Declaration</title>
10 <style type = "text/css">

11 table { width: 15em }
12 th { text-align: left }
13 </style>

14 <script type = "text/javascript">

15 <!--
16 // Initializer list specifies the number of elements and
17 // a value for each element.
18

19
20
21
22 outputArray("Array colors contains", colors);
23 outputArray("Array integers1 contains", integers1);
24 outputArray("Array integers2 contains", integers2);
25
26 // output the heading followed by a two-column table
27 // containing the subscripts and elements of theArray
28 function outputArray(heading, theArray)
29 {
30 document.writeln("<h2>" + heading + "</h2>");
31 document.writeln("<table border = \"1\"");
32 document.writeln("<thead><th>Subscript</th>" +
33 "<th>Value</th></thead><tbody>");
34
35 // output the subscript and value of each array element
36 for (var i = 0; i < theArray.length; i++)
37 document.writeln("<tr><td>" + i + "</td><td>" +
38 theArray[i] + "</td></tr>");
39
40 document.writeln("</tbody></table>");
41 } // end function outputArray
42 // -->
43 </script>

44 </head><body></body>

45 </html>

Fig. 8.4 | Declaring and initializing arrays. (Part 1 of 2.)

var colors = new Array("cyan", "magenta","yellow", "black");
var integers1 = [2, 4, 6, 8];
var integers2 = [2, , , 8];

180 Chapter 8 JavaScript: Arrays

the array) appear in the web page as undefined. These are the two elements for which we
did not supply values in the declaration in line 20 in the script.

Summing the Elements of an Array with for and for…in
The script in Fig. 8.5 sums the values contained in theArray, the 10-element integer array
declared, allocated and initialized in line 13. The statement in line 19 in the body of the
first for statement does the totaling. Note that the values supplied as initializers for array
theArray could be read into the program using an XHTML form.

In this example, we introduce JavaScript’s for…in statement, which enables a script
to perform a task for each element in an array (or, as we’ll see in Chapters 10–11, for each
element in a collection). Lines 25-26 show the syntax of a for…in statement. Inside the
parentheses, we declare the element variable used to select each element in the object to
the right of keyword in (theArray in this case). When using for…in, JavaScript automat-
ically determines the number of elements in the array. As the JavaScript interpreter iterates
over theArray’s elements, variable element is assigned a value that can be used as a sub-

Fig. 8.4 | Declaring and initializing arrays. (Part 2 of 2.)

8.4 Examples Using Arrays 181

script for theArray. In the case of an Array, the value assigned is a subscript in the range
from 0 up to, but not including, theArray.length. Each value is added to total2 to pro-
duce the sum of the elements in the array.

Error-Prevention Tip 8.1
When iterating over all the elements of an Array, use a for…in statement to ensure that you
manipulate only the existing elements of the Array. Note that a for…in statement skips any
undefined elements in the array.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 8.5: SumArray.html -->
6 <!-- Summing elements of an array. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Sum the Elements of an Array</title>
10
11 <script type = "text/javascript">

12 <!--
13 var theArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
14 var total1 = 0, total2 = 0;
15
16 // iterates through the elements of the array in order and adds
17 // each element's value to total1
18

19

20
21 document.writeln("Total using subscripts: " + total1);
22
23 // iterates through the elements of the array using a for... in
24 // statement to add each element's value to total2
25

26
27
28 document.writeln("
Total using for...in: " + total2);
29 // -->
30 </script>

31 </head><body></body>

32 </html>

Fig. 8.5 | Summing elements of an array.

for (var i = 0; i < theArray.length; i++)
 total1 += theArray[i];

for (var element in theArray)
 total2 += theArray[element];

182 Chapter 8 JavaScript: Arrays

Using the Elements of an Array as Counters
In Chapter 7, we indicated that there is a more elegant way to implement the dice-rolling
program in Fig. 7.4. The program rolled a single six-sided die 6000 times and used a
switch statement to total the number of times each value was rolled. An array version of
this script is shown in Fig. 8.6. The switch statement in Fig. 7.4 is replaced by line 24 of
this program. This line uses the random face value as the subscript for the array frequen-
cy to determine which element to increment during each iteration of the loop. Because the
random number calculation in line 23 produces numbers from 1 to 6 (the values for a
six-sided die), the frequency array must be large enough to allow subscript values of 1 to
6. The smallest number of elements required for an array to have these subscript values is
seven elements (subscript values from 0 to 6). In this program, we ignore element 0 of ar-
ray frequency and use only the elements that correspond to values on the sides of a die.
Also, lines 32–34 of this program use a loop to generate the table that was written one line
at a time in Fig. 7.4. Because we can loop through array frequency to help produce the
output, we do not have to enumerate each XHTML table row as we did in Fig. 7.4.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 8.6: RollDie.html -->
6 <!-- Dice-rolling program using an array instead of a switch. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Roll a Six-Sided Die 6000 Times</title>
10 <style type = "text/css">

11 table { width: 15em }
12 th { text-align: left }
13 </style>

14 <script type = "text/javascript">
15 <!--
16 var face;
17 var frequency = [, 0, 0, 0, 0, 0, 0]; // leave frequency[0]
18 // uninitialized
19
20 // summarize results
21

22
23

24

25

26
27 document.writeln("<table border = \"1\"><thead>");
28 document.writeln("<th>Face</th>" +
29 "<th>Frequency</th></thead><tbody>");
30
31 // generate entire table of frequencies for each face
32

33

34

Fig. 8.6 | Dice-rolling program using an array instead of a switch. (Part 1 of 2.)

for (var roll = 1; roll <= 6000; ++roll)
{
 face = Math.floor(1 + Math.random() * 6);
 ++frequency[face];
} // end for

for (face = 1; face < frequency.length; ++face)
 document.writeln("<tr><td>" + face + "</td><td>" +
 frequency[face] + "</td></tr>");

8.5 Random Image Generator Using Arrays 183

8.5 Random Image Generator Using Arrays
In Chapter 7, we created a random image generator that required image files to be named
1.gif, 2.gif, …, 7.gif. In this example (Fig. 8.7), we create a more elegant random im-
age generator that does not require the image filenames to be integers. This version of the
random image generator uses an array pictures to store the names of the image files as
strings. The script generates a random integer and uses it as a subscript into the pictures
array. The script outputs an XHTML img element whose src attribute contains the image
filename located in the randomly selected position in the pictures array.

35
36 document.writeln("</tbody></table>");
37 // -->
38 </script>

39 </head>

40 <body>

41 <p>Click Refresh (or Reload) to run the script again</p>
42 </body>

43 </html>

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 8.7: RandomPicture2.html -->
6 <!-- Random image generation using arrays. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Random Image Generator</title>
10 <style type = "text/css">

11 table { width: 15em }
12 th { text-align: left }
13 </style>

Fig. 8.7 | Random image generation using arrays. (Part 1 of 2.)

Fig. 8.6 | Dice-rolling program using an array instead of a switch. (Part 2 of 2.)

184 Chapter 8 JavaScript: Arrays

The script declares the array pictures in lines 16–17 and initializes it with the names
of seven image files. Lines 22–23 create the img tag that displays the random image on the
web page. Line 22 opens the img tag and begins the src attribute. Line 23 generates a
random integer from 0 to 6 as an index into the pictures array, the result of which is a
randomly selected image filename. The expression

pictures[Math.floor(Math.random() * 7)]

evaluates to a string from the pictures array, which then is written to the document (line
23). Line 23 completes the img tag with the extension of the image file (.gif).

8.6 References and Reference Parameters
Two ways to pass arguments to functions (or methods) in many programming languages
are pass-by-value and pass-by-reference. When an argument is passed to a function by val-
ue, a copy of the argument’s value is made and is passed to the called function. In Java-
Script, numbers, boolean values and strings are passed to functions by value.

14 <script type = "text/javascript">

15 <!--
16
17
18
19 // pick a random image from the pictures array and displays by
20 // creating an img tag and appending the src attribute to the
21 // filename
22
23
24 // -->
25 </script>

26 </head>

27 <body>

28 <p>Click Refresh (or Reload) to run the script again</p>
29 </body>

30 </html>

Fig. 8.7 | Random image generation using arrays. (Part 2 of 2.)

var pictures =
 ["CPE", "EPT", "GPP", "GUI", "PERF", "PORT", "SEO"];

document.write ("<img src = \"" +
 pictures[Math.floor(Math.random() * 7)] + ".gif\" />");

8.7 Passing Arrays to Functions 185

With pass-by-reference, the caller gives the called function direct access to the caller’s
data and allows it to modify the data if it so chooses. This procedure is accomplished by
passing to the called function the address of the location in memory where the data resides.
Pass-by-reference can improve performance because it can eliminate the overhead of
copying large amounts of data, but it can weaken security because the called function can
access the caller’s data. In JavaScript, all objects (and thus all Arrays) are passed to func-
tions by reference.

Error-Prevention Tip 8.2
With pass-by-value, changes to the copy of the called function do not affect the original variable’s
value in the calling function. This prevents the accidental side effects that so greatly hinder the
development of correct and reliable software systems.

Software Engineering Observation 8.2
Unlike some other languages, JavaScript does not allow you to choose whether to pass each
argument by value or by reference. Numbers, boolean values and strings are passed by value.
Objects are passed to functions by reference. When a function receives a reference to an object,
the function can manipulate the object directly.

Software Engineering Observation 8.3
When returning information from a function via a return statement, numbers and boolean
values are always returned by value (i.e., a copy is returned), and objects are always returned by
reference. Note that, in the pass-by-reference case, it is not necessary to return the new value, since
the object is already modified.

To pass a reference to an object into a function, simply specify the reference name in
the function call. Normally, the reference name is the identifier that the program uses to
manipulate the object. Mentioning the reference by its parameter name in the body of the
called function actually refers to the original object in memory, which can be accessed
directly by the called function. In the next section, we demonstrate pass-by-value and pass-
by-reference, using arrays.

8.7 Passing Arrays to Functions
To pass an array argument to a function (Fig. 8.8), specify the name of the array (a refer-
ence to the array) without brackets. For example, if array hourlyTemperatures has been
declared as

var hourlyTemperatures = new Array(24);

then the function call

modifyArray(hourlyTemperatures);

passes array hourlyTemperatures to function modifyArray. As stated in Section 8.2, every
array object in JavaScript knows its own size (via the length attribute). Thus, when we
pass an array object into a function, we do not pass the size of the array separately as an
argument. Figure 8.3 illustrated this concept when we passed Arrays n1 and n2 to function
outputArray to display each Array’s contents.

186 Chapter 8 JavaScript: Arrays

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 8.8: PassArray.html -->
6 <!-- Passing arrays and individual array elements to functions. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Passing arrays and individual array
10 elements to functions</title>
11 <script type = "text/javascript">

12 <!--
13 var a = [1, 2, 3, 4, 5];
14
15 document.writeln("<h2>Effects of passing entire " +
16 "array by reference</h2>");
17 outputArray("Original array: ", a);
18
19
20

21 outputArray("Modified array: ", a);
22
23 document.writeln("<h2>Effects of passing array " +
24 "element by value</h2>" +
25 "a[3] before modifyElement: " + a[3]);
26
27
28
29 document.writeln("
a[3] after modifyElement: " + a[3]);
30
31 // outputs heading followed by the contents of "theArray"
32 function outputArray(heading, theArray)
33 {
34 document.writeln(
35 heading + + "
");
36 } // end function outputArray
37
38 // function that modifies the elements of an array
39

40 {
41
42
43 } // end function modifyArray
44
45 // function that modifies the value passed
46

47 {
48

49
50 document.writeln("
value in modifyElement: " + e);
51 } // end function modifyElement
52 // -->

Fig. 8.8 | Passing arrays and individual array elements to functions. (Part 1 of 2.)

modifyArray(a); // array a passed by reference

modifyElement(a[3]); // array element a[3] passed by value

theArray.join(" ")

function modifyArray(theArray)

for (var j in theArray)
 theArray[j] *= 2;

function modifyElement(e)

e *= 2; // scales element e only for the duration of the
 // function

8.7 Passing Arrays to Functions 187

Although entire arrays are passed by reference, individual numeric and boolean array
elements are passed by value exactly as simple numeric and boolean variables are passed (the
objects referred to by individual elements of an Array of objects are still passed by refer-
ence). Such simple single pieces of data are called scalars. To pass an array element to a
function, use the subscripted name of the element as an argument in the function call.

For a function to receive an Array through a function call, the function’s parameter
list must specify a parameter that will refer to the Array in the body of the function. Unlike
other programming languages, JavaScript does not provide a special syntax for this pur-
pose. JavaScript simply requires that the identifier for the Array be specified in the param-
eter list. For example, the function header for function modifyArray might be written as

function modifyArray(b)

indicating that modifyArray expects to receive a parameter named b (the argument sup-
plied in the calling function must be an Array). Arrays are passed by reference, and there-
fore when the called function uses the array name b, it refers to the actual array in the caller
(array hourlyTemperatures in the preceding call). The script in Fig. 8.8 demonstrates the
difference between passing an entire array and passing an array element.

Software Engineering Observation 8.4
JavaScript does not check the number of arguments or types of arguments that are passed to a
function. It is possible to pass any number of values to a function. JavaScript will attempt to
perform conversions when the values are used.

The statement in line 17 invokes function outputArray to display the contents of
array a before it is modified. Function outputArray (defined in lines 32–36) receives a
string to output and the array to output. The statement in lines 34–35 uses Array method
join to create a string containing all the elements in theArray. Method join takes as its

53 </script>

54 </head><body></body>

55 </html>

Fig. 8.8 | Passing arrays and individual array elements to functions. (Part 2 of 2.)

188 Chapter 8 JavaScript: Arrays

argument a string containing the separator that should be used to separate the elements of
the array in the string that is returned. If the argument is not specified, the empty string is
used as the separator.

Line 19 invokes function modifyArray (lines 39–43) and passes it array a. The
modifyArray function multiplies each element by 2. To illustrate that array a’s elements
were modified, the statement in line 21 invokes function outputArray again to display the
contents of array a after it is modified. As the screen capture shows, the elements of a are
indeed modified by modifyArray.

To show the value of a[3] before the call to modifyElement, line 25 outputs the
value of a[3]. Line 27 invokes modifyElement (lines 46–51) and passes a[3] as the
argument. Remember that a[3] actually is one integer value in the array a. Also
remember that numeric values and boolean values are always passed to functions by value.
Therefore, a copy of a[3] is passed. Function modifyElement multiplies its argument by
2 and stores the result in its parameter e. The parameter of function modifyElement is a
local variable in that function, so when the function terminates, the local variable is no
longer accessible. Thus, when control is returned to the main script, the unmodified value
of a[3] is displayed by the statement in line 29.

8.8 Sorting Arrays
The Array object in JavaScript has a built-in method sort for sorting arrays. Figure 8.9
demonstrates the Array object’s sort method.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 8.9: Sort.html -->
6 <!-- Sorting an array with sort. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Sorting an Array with Array Method sort</title>
10 <script type = "text/javascript">

11 <!--
12 var a = [10, 1, 9, 2, 8, 3, 7, 4, 6, 5];
13
14 document.writeln("<h1>Sorting an Array</h1>");
15 outputArray("Data items in original order: ", a);
16
17 outputArray("Data items in ascending order: ", a);
18

19 // output the heading followed by the contents of theArray
20 function outputArray(heading, theArray)
21 {
22 document.writeln("<p>" + heading +
23 theArray.join(" ") + "</p>");
24 } // end function outputArray
25

Fig. 8.9 | Sorting an array with Array method sort. (Part 1 of 2.)

a.sort(compareIntegers); // sort the array

8.8 Sorting Arrays 189

By default, Array method sort (with no arguments) uses string comparisons to deter-
mine the sorting order of the Array elements. The strings are compared by the ASCII
values of their characters. [Note: String comparison is discussed in more detail in
Chapter 9, JavaScript: Objects.] In this example, we’d like to sort an array of integers.

Method sort takes as its optional argument the name of a function (called the com-
parator function) that compares its two arguments and returns one of the following:

• a negative value if the first argument is less than the second argument

• zero if the arguments are equal, or

• a positive value if the first argument is greater than the second argument

This example uses function compareIntegers (defined in lines 27–30) as the comparator
function for method sort. It calculates the difference between the integer values of its two
arguments (function parseInt ensures that the arguments are handled properly as inte-
gers). If the first argument is less than the second argument, the difference will be a nega-
tive value. If the arguments are equal, the difference will be zero. If the first argument is
greater than the second argument, the difference will be a positive value.

Line 16 invokes Array object a’s sort method and passes the name of function
compareIntegers as an argument. Method sort receives function compareIntegers as an
argument, then uses the function to compare elements of the Array a to determine their
sorting order.

Software Engineering Observation 8.5
Functions in JavaScript are considered to be data. Therefore, functions can be assigned to
variables, stored in Arrays and passed to functions just like other data types.

26 // comparison function for use with sort
27

28

29

30

31 // -->
32 </script>

33 </head><body></body>

34 </html>

Fig. 8.9 | Sorting an array with Array method sort. (Part 2 of 2.)

function compareIntegers(value1, value2)
{

return parseInt(value1) - parseInt(value2);
} // end function compareIntegers

190 Chapter 8 JavaScript: Arrays

8.9 Multidimensional Arrays
Multidimensional arrays with two subscripts are often used to represent tables of values
consisting of information arranged in rows and columns. To identify a particular table el-
ement, we must specify the two subscripts; by convention, the first identifies the element’s
row, and the second identifies the element’s column. Arrays that require two subscripts to
identify a particular element are called two-dimensional arrays.

Multidimensional arrays can have more than two dimensions. JavaScript does not
support multidimensional arrays directly, but does allow you to specify arrays whose ele-
ments are also arrays, thus achieving the same effect. When an array contains one-dimen-
sional arrays as its elements, we can imagine these one-dimensional arrays as rows of a
table, and the positions in these arrays as columns. Figure 8.10 illustrates a two-dimen-
sional array named a that contains three rows and four columns (i.e., a three-by-four
array—three one-dimensional arrays, each with 4 elements). In general, an array with m
rows and n columns is called an m-by-n array.

Every element in array a is identified in Fig. 8.10 by an element name of the form
a[i][j]; a is the name of the array, and i and j are the subscripts that uniquely identify
the row and column, respectively, of each element in a. Note that the names of the ele-
ments in the first row all have a first subscript of 0; the names of the elements in the fourth
column all have a second subscript of 3.

Arrays of One-Dimensional Arrays
Multidimensional arrays can be initialized in declarations like a one-dimensional array. Ar-
ray b with two rows and two columns could be declared and initialized with the statement

var b = [[1, 2], [3, 4]];

The values are grouped by row in square brackets. The array [1, 2] initializes element
b[0], and the array [3, 4] initializes element b[1]. So 1 and 2 initialize b[0][0] and
b[0][1], respectively. Similarly, 3 and 4 initialize b[1][0] and b[1][1], respectively. The
interpreter determines the number of rows by counting the number of sub initializer
lists—arrays nested within the outermost array. The interpreter determines the number of
columns in each row by counting the number of values in the sub-array that initializes the
row.

Fig. 8.10 | Two-dimensional array with three rows and four columns.

Row 0

Row 1

Row 2

Column subscript
Row subscript
Array name

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

Column 0 Column 1 Column 2 Column 3

a[1][3]

a[2][3]

8.9 Multidimensional Arrays 191

Two-Dimensional Arrays with Rows of Different Lengths
The rows of a two-dimensional array can vary in length. The declaration

var b = [[1, 2], [3, 4, 5]];

creates array b with row 0 containing two elements (1 and 2) and row 1 containing three
elements (3, 4 and 5).

Creating Two-Dimensional Arrays with new
A multidimensional array in which each row has a different number of columns can be
allocated dynamically, as follows:

var b;
b = new Array(2); // allocate rows
b[0] = new Array(5); // allocate columns for row 0
b[1] = new Array(3); // allocate columns for row 1

The preceding code creates a two-dimensional array with two rows. Row 0 has five col-
umns, and row 1 has three columns.

Two-Dimensional Array Example: Displaying Element Values
Figure 8.11 initializes two-dimensional arrays in declarations and uses nested for…in

loops to traverse the arrays (i.e., manipulate every element of the array).

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 8.11: InitArray3.html -->
6 <!-- Initializing multidimensional arrays. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Initializing Multidimensional Arrays</title>
10 <script type = "text/javascript">

11 <!--
12
13

14

15

16

17
18 outputArray("Values in array1 by row", array1);
19 outputArray("Values in array2 by row", array2);
20
21 function outputArray(heading, theArray)
22 {
23 document.writeln("<h2>" + heading + "</h2><pre>");
24
25 // iterates through the set of one-dimensional arrays
26
27 {

Fig. 8.11 | Initializing multidimensional arrays. (Part 1 of 2.)

var array1 = [[1, 2, 3], // first row
 [4, 5, 6]]; // second row
var array2 = [[1, 2], // first row
 [3], // second row
 [4, 5, 6]]; // third row

for (var i in theArray)

192 Chapter 8 JavaScript: Arrays

The program declares two arrays in main script (in the XHTML head element). The
declaration of array1 (lines 12–13 provides six initializers in two sublists. The first sublist
initializes the first row of the array to the values 1, 2 and 3; the second sublist initializes
the second row of the array to the values 4, 5 and 6. The declaration of array2 (lines 14–
16) provides six initializers in three sublists. The sublist for the first row explicitly initial-
izes the first row to have two elements, with values 1 and 2, respectively. The sublist for
the second row initializes the second row to have one element, with value 3. The sublist
for the third row initializes the third row to the values 4, 5 and 6.

The script calls function outputArray from lines 18–19 to display each array’s ele-
ments in the web page. Function outputArray (lines 21–37) receives two arguments—a
string heading to output before the array and the array to output (called theArray). Note
the use of a nested for…in statement to output the rows of each two-dimensional array.
The outer for…in statement iterates over the rows of the array. The inner for…in state-
ment iterates over the columns of the current row being processed. The nested for…in

statement in this example could have been written with for statements, as follows:

28 // iterates through the elements of each one-dimensional
29 // array
30
31
32
33 document.writeln("
");
34 } // end for
35
36 document.writeln("</pre>");
37 } // end function outputArray
38 // -->
39 </script>

40 </head><body></body>

41 </html>

Fig. 8.11 | Initializing multidimensional arrays. (Part 2 of 2.)

for (var j in theArray[i])
 document.write(theArray[i][j] + " ");

8.9 Multidimensional Arrays 193

for (var i = 0; i < theArray.length; ++i)
{

for (var j = 0; j < theArray[i].length; ++j)
 document.write(theArray[i][j] + " ");

 document.writeln("
");
}

In the outer for statement, the expression theArray.length determines the number of
rows in the array. In the inner for statement, the expression theArray[i].length deter-
mines the number of columns in each row of the array. This condition enables the loop to
determine, for each row, the exact number of columns.

Common Multidimensional-Array Manipulations with for and for…in Statements
Many common array manipulations use for or for…in statements. For example, the fol-
lowing for statement sets all the elements in the third row of array a in Fig. 8.10 to zero:

for (var col = 0; col < a[2].length; ++col)
 a[2][col] = 0;

We specified the third row; therefore, we know that the first subscript is always 2 (0 is the
first row and 1 is the second row). The for loop varies only the second subscript (i.e., the
column subscript). The preceding for statement is equivalent to the statements

a[2][0] = 0;
a[2][1] = 0;
a[2][2] = 0;
a[2][3] = 0;

The following for…in statement is also equivalent to the preceding for statement:

for (var col in a[2])
 a[2][col] = 0;

The following nested for statement determines the total of all the elements in array a:

var total = 0;

for (var row = 0; row < a.length; ++row)

for (var col = 0; col < a[row].length; ++col)
 total += a[row][col];

The for statement totals the elements of the array, one row at a time. The outer for state-
ment begins by setting the row subscript to 0, so that the elements of the first row may be
totaled by the inner for statement. The outer for statement then increments row to 1, so
that the elements of the second row can be totaled. Then the outer for statement incre-
ments row to 2, so that the elements of the third row can be totaled. The result can be dis-
played when the nested for statement terminates. The preceding for statement is
equivalent to the following for…in statement:

var total = 0;

for (var row in a)

for (var col in a[row])
 total += a[row][col];

194 Chapter 8 JavaScript: Arrays

8.10 Building an Online Quiz
Online quizzes and polls are popular web applications often used for educational purposes
or just for fun. Web developers typically build quizzes using simple XHTML forms and
process the results with JavaScript. Arrays allow a programmer to represent several possible
answer choices in a single data structure. Figure 8.12 contains an online quiz consisting of
one question. The quiz page contains one of the tip icons used throughout this book and
an XHTML form in which the user identifies the type of tip the image represents by se-
lecting one of four radio buttons. After the user selects one of the radio button choices and
submits the form, the script determines whether the user selected the correct type of tip to
match the mystery image. The JavaScript function that checks the user’s answer combines
several of the concepts from the current chapter and previous chapters in a concise and
useful script.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 8.12: quiz.html -->
6 <!-- Online quiz graded with JavaScript. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Online Quiz</title>
10 <script type = "text/JavaScript">

11 <!--
12 function checkAnswers()
13 {
14 var myQuiz = document.getElementById("myQuiz");
15
16 // determine whether the answer is correct
17
18 alert("Congratulations, your answer is correct");
19 else // if the answer is incorrect
20 alert("Your answer is incorrect. Please try again");
21 } // end function checkAnswers
22 -->
23 </script>

24 </head>

25 <body>

26 <form id = "myQuiz" onsubmit = "checkAnswers()" action = "">

27 <p>Select the name of the tip that goes with the
28 image shown:

29

30

31
32

33 <label>Common Programming Error</label>
34
35

36 <label>Error-Prevention Tip</label>
37

Fig. 8.12 | Online quiz graded with JavaScript. (Part 1 of 2.)

if (myQuiz.elements[1].checked)

<input type = "radio" name = "radiobutton" value = "CPE" />

<input type = "radio" name = "radiobutton" value = "EPT" />

8.10 Building an Online Quiz 195

38

39 <label>Performance Tip</label>
40
41

42 <label>Portability Tip</label>

43
44 <input type = "submit" name = "submit" value = "Submit" />

45 <input type = "reset" name = "reset" value = "Reset" />

46 </p>

47 </form>

48 </body>

49 </html>

Fig. 8.12 | Online quiz graded with JavaScript. (Part 2 of 2.)

<input type = "radio" name = "radiobutton" value = "PERF" />

<input type = "radio" name = "radiobutton" value = "PORT" />

196 Chapter 8 JavaScript: Arrays

Before we discuss the script code, we first discuss the body element (lines 25–48) of
the XHTML document. The body’s GUI components play an important role in the script.

Lines 26–47 define the form that presents the quiz to users. Line 26 begins the form
element and specifies the onsubmit attribute to "checkAnswers()", indicating that the
interpreter should execute the JavaScript function checkAnswers (lines 12–21) when the
user submits the form (i.e., clicks the Submit button or presses Enter).

Line 29 adds the tip image to the page. Lines 32–42 display the radio buttons and
corresponding labels that display possible answer choices. Lines 44–45 add the submit
and reset buttons to the page.

We now examine the script used to check the answer submitted by the user. Lines 12–
21 declare the function checkAnswers that contains all the JavaScript required to grade
the quiz. The if…else statement in lines 17–20 determines whether the user answered
the question correctly. The image that the user is asked to identify is the Error-Prevention
Tip icon. Thus the correct answer to the quiz corresponds to the second radio button.

An XHTML form’s elements can be accessed individually using getElementById or
through the elements property of the containing form object. The elements property
contains an array of all the form’s controls. The radio buttons are part of the XHTML
form myQuiz, so we access the elements array in line 17 using dot notation
(myQuiz.elements[1]). The array element myQuiz.elements[1] corresponds to the
correct answer (i.e., the second radio button). Finally, line 17 determines whether the
property checked of the second radio button is true. Property checked of a radio button
is true when the radio button is selected, and it is false when the radio button is not
selected. Recall that only one radio button may be selected at any given time. If property
myQuiz.elements[1].checked is true, indicating that the correct answer is selected,
the script alerts a congratulatory message. If property checked of the radio button is false,
then the script alerts an alternate message (line 20).

9
JavaScript:
Objects

O B J E C T I V E S
In this chapter you’ll learn:

■ Object-based programming terminology and concepts.

■ The concepts of encapsulation and data hiding.

■ The value of object orientation.

■ To use the JavaScript objects Math, String, Date,
Boolean and Number.

■ To use the browser’s document and window objects.

■ To use cookies.

■ To represent objects simply using JSON.

My object all sublime
I shall achieve in time.
—W. S. Gilbert

Is it a world to hide virtues
in?
—William Shakespeare

Good as it is to inherit a
library, it is better to collect
one.
—Augustine Birrell

198 Chapter 9 JavaScript: Objects

O
u

tl
in

e

9.1 Introduction
This chapter presents a more formal treatment of objects. We begin by briefly introducing
the concepts of object orientation. The remainder of the chapter overviews several of Java-
Script’s built-in objects and demonstrates many of their capabilities. We also provide a
brief introduction to JavaScript Object Notation (JSON)—a human-readable data format
that is typically used to transmit data between clients and web servers and is also used to
create objects in JavaScript. In the coming chapters on the Document Object Model and
events we discuss the objects provided by the browser that enable scripts to interact with
the elements of an XHTML document.

9.2 Introduction to Object Technology
This section provides a general introduction to object orientation. The terminology and
technologies discussed here support the upcoming chapters. Here, you’ll learn that objects
are a natural way of thinking about the world and about scripts that manipulate XHTML
documents. In Chapters 4–8, we used built-in JavaScript objects—Math and Array—and
objects provided by the web browser—document and window—to perform tasks in our
scripts. JavaScript uses objects to perform many tasks and therefore is referred to as an ob-
ject-based programming language. Our goal is to help you develop an object-oriented
way of thinking. Technologies such as CSS, JavaScript and Ajax are based on at least some
of the concepts introduced in this section.

Basic Object-Technology Concepts
We begin our introduction to object technology with some key terminology. Everywhere
you look in the real world you see objects—people, animals, plants, cars, planes, buildings,

9.1 Introduction
9.2 Introduction to Object Technology
9.3 Math Object
9.4 String Object

9.4.1 Fundamentals of Characters and Strings
9.4.2 Methods of the String Object
9.4.3 Character-Processing Methods
9.4.4 Searching Methods
9.4.5 Splitting Strings and Obtaining Substrings
9.4.6 XHTML Markup Methods

9.5 Date Object
9.6 Boolean and Number Objects
9.7 document Object
9.8 window Object
9.9 Using Cookies

9.10 Multipage HTML and JavaScript Application
9.11 Using JSON to Represent Objects

9.2 Introduction to Object Technology 199

computers, monitors and so on. Humans think in terms of objects. Telephones, houses,
traffic lights, microwave ovens and water coolers are just a few more common objects we
see around us.

We sometimes divide objects into two categories: animate and inanimate. Animate
objects are “alive” in some sense—they move around and do things. Inanimate objects do
not move on their own. Objects of both types, however, have some things in common.
They all have attributes (e.g., size, shape, color and weight), and they all exhibit behaviors
(e.g., a ball rolls, bounces, inflates and deflates; a baby cries, sleeps, crawls, walks and
blinks; a car accelerates, brakes and turns; a towel absorbs water). We’ll study the kinds of
attributes and behaviors that software objects have.

Humans learn about existing objects by studying their attributes and observing their
behaviors. Different objects can have similar attributes and can exhibit similar behaviors.
Comparisons can be made, for example, between babies and adults, and between humans
and chimpanzees.

Object-oriented design (OOD) models software in terms similar to those that people
use to describe real-world objects. It takes advantage of class relationships, where objects
of a certain class, such as a class of vehicles, have the same characteristics—cars, trucks,
little red wagons and roller skates have much in common. OOD takes advantage of inher-
itance relationships, where new classes of objects are derived by absorbing characteristics
of existing classes and adding unique characteristics of their own. An object of class “con-
vertible” certainly has the characteristics of the more general class “automobile,” but more
specifically, the roof goes up and down.

Object-oriented design provides a natural and intuitive way to view the software
design process—namely, modeling objects by their attributes, behaviors and interrelation-
ships, just as we describe real-world objects. OOD also models communication between
objects. Just as people send messages to one another (e.g., a sergeant commands a soldier
to stand at attention), objects also communicate via messages. A bank account object may
receive a message to decrease its balance by a certain amount because the customer has
withdrawn that amount of money.

OOD encapsulates (i.e., wraps) attributes and operations (behaviors) into objects—
an object’s attributes and operations are intimately tied together. Objects have the prop-
erty of information hiding. This means that objects may know how to communicate with
one another across well-defined interfaces, but normally they are not allowed to know how
other objects are implemented—implementation details are hidden within the objects
themselves. We can drive a car effectively, for instance, without knowing the details of how
engines, transmissions, brakes and exhaust systems work internally—as long as we know
how to use the accelerator pedal, the brake pedal, the steering wheel and so on. Informa-
tion hiding, as we’ll see, is crucial to good software engineering.

Like the designers of an automobile, the designers of web browsers have defined a set
of objects that encapsulate an XHTML document’s elements and expose to a JavaScript
programmer the attributes and behaviors that enable a JavaScript program to interact with
(or script) those elements (objects). You’ll soon see that the browser’s document object
contains attributes and behaviors that provide access to every element of an XHTML doc-
ument. Similarly, JavaScript provides objects that encapsulate various capabilities in a
script. For example, the JavaScript Array object provides attributes and behaviors that
enable a script to manipulate a collection of data. The Array object’s length property

200 Chapter 9 JavaScript: Objects

(attribute) contains the number of elements in the Array. The Array object’s sort method
(behavior) orders the elements of the Array.

Some programming languages—like Java, Visual Basic, C# and C++—are object ori-
ented. Programming in such a language is called object-oriented programming (OOP),
and it allows computer programmers to implement object-oriented designs as working
software systems. Languages like C, on the other hand, are procedural, so programming
tends to be action oriented. In procedural languages, the unit of programming is the func-
tion. In object-oriented languages, the unit of programming is the class from which
objects are eventually instantiated (an OOP term for “created”). Classes contain functions
that implement operations and data that comprises attributes.

Procedural programmers concentrate on writing functions. Programmers group
actions that perform some common task into functions, and group functions to form pro-
grams. Data is certainly important in procedural languages, but the view is that data exists
primarily in support of the actions that functions perform. The verbs in a system specifi-
cation help a procedural programmer determine the set of functions that work together to
implement the system.

Classes, Properties and Methods
Object-oriented programmers concentrate on creating their own user-defined types called
classes. Each class contains data as well as the set of functions that manipulate that data
and provide services to clients (i.e., other classes or functions that use the class). The data
components of a class are called properties. For example, a bank account class might in-
clude an account number and a balance. The function components of a class are called
methods. For example, a bank account class might include methods to make a deposit (in-
creasing the balance), make a withdrawal (decreasing the balance) and inquire what the
current balance is. You use built-in types (and other user-defined types) as the “building
blocks” for constructing new user-defined types (classes). The nouns in a system specifi-
cation help you determine the set of classes from which objects are created that work to-
gether to implement the system.

Classes are to objects as blueprints are to houses—a class is a “plan” for building an
object of the class. Just as we can build many houses from one blueprint, we can instantiate
(create) many objects from one class. You cannot cook meals in the kitchen of a blueprint;
you can cook meals in the kitchen of a house. You cannot sleep in the bedroom of a blue-
print; you can sleep in the bedroom of a house.

Classes can have relationships with other classes. For example, in an object-oriented
design of a bank, the “bank teller” class needs to relate to other classes, such as the “cus-
tomer” class, the “cash drawer” class, the “safe” class, and so on. These relationships are
called associations.

Packaging software as classes makes it possible for future software systems to reuse the
classes. Groups of related classes are often packaged as reusable components. Just as real-
tors often say that the three most important factors affecting the price of real estate are
“location, location and location,” some people in the software development community
say that the three most important factors affecting the future of software development are
“reuse, reuse and reuse.”

Indeed, with object technology, you can build much of the new software you’ll need
by combining existing classes, just as automobile manufacturers combine interchangeable
parts. Each new class you create will have the potential to become a valuable software asset

9.3 Math Object 201

that you and other programmers can reuse to speed and enhance the quality of future soft-
ware development efforts.

9.3 Math Object
The Math object’s methods allow you to perform many common mathematical calcula-
tions. As shown previously, an object’s methods are called by writing the name of the ob-
ject followed by a dot (.) and the name of the method. In parentheses following the
method name is the argument (or a comma-separated list of arguments) to the method.
For example, to calculate and display the square root of 900.0 you might write

document.writeln(Math.sqrt(900.0));

which calls method Math.sqrt to calculate the square root of the number contained in the
parentheses (900.0), then outputs the result. The number 900.0 is the argument of the
Math.sqrt method. The preceding statement would display 30.0. Some Math object
methods are summarized in Fig. 9.1.

Method Description Examples

abs(x) absolute value of x abs(7.2) is 7.2
abs(0.0) is 0.0
abs(-5.6) is 5.6

ceil(x) rounds x to the smallest inte-
ger not less than x

ceil(9.2) is 10.0
ceil(-9.8) is -9.0

cos(x) trigonometric cosine of x
(x in radians)

cos(0.0) is 1.0

exp(x) exponential method ex exp(1.0) is 2.71828
exp(2.0) is 7.38906

floor(x) rounds x to the largest integer
not greater than x

floor(9.2) is 9.0
floor(-9.8) is -10.0

log(x) natural logarithm of x (base e) log(2.718282) is 1.0
log(7.389056) is 2.0

max(x, y) larger value of x and y max(2.3, 12.7) is 12.7
max(-2.3, -12.7) is -2.3

min(x, y) smaller value of x and y min(2.3, 12.7) is 2.3
min(-2.3, -12.7) is -12.7

pow(x, y) x raised to power y (xy) pow(2.0, 7.0) is 128.0
pow(9.0, .5) is 3.0

round(x) rounds x to the closest integer round(9.75) is 10
round(9.25) is 9

sin(x) trigonometric sine of x
(x in radians)

sin(0.0) is 0.0

sqrt(x) square root of x sqrt(900.0) is 30.0
sqrt(9.0) is 3.0

tan(x) trigonometric tangent of x
(x in radians)

tan(0.0) is 0.0

Fig. 9.1 | Math object methods.

202 Chapter 9 JavaScript: Objects

Common Programming Error 9.1
Forgetting to invoke a Math method by preceding the method name with the object name Math
and a dot (.) is an error.

Software Engineering Observation 9.1
The primary difference between invoking a standalone function and invoking a method of an
object is that an object name and a dot are not required to call a standalone function.

The Math object defines several commonly used mathematical constants, summarized
in Fig. 9.2. [Note: By convention, the names of constants are written in all uppercase let-
ters so they stand out in a program.]

Good Programming Practice 9.1
Use the mathematical constants of the Math object rather than explicitly typing the numeric value
of the constant.

9.4 String Object
In this section, we introduce JavaScript’s string- and character-processing capabilities. The
techniques discussed here are appropriate for processing names, addresses, telephone num-
bers, and similar items.

9.4.1 Fundamentals of Characters and Strings
Characters are the fundamental building blocks of JavaScript programs. Every program is
composed of a sequence of characters grouped together meaningfully that is interpreted by
the computer as a series of instructions used to accomplish a task.

A string is a series of characters treated as a single unit. A string may include letters,
digits and various special characters, such as +, -, *, /, and $. JavaScript supports the set
of characters called Unicode®, which represents a large portion of the world’s languages.
A string is an object of type String. String literals or string constants (often called anon-
ymous String objects) are written as a sequence of characters in double quotation marks
or single quotation marks, as follows:

Constant Description Value

Math.E Base of a natural logarithm (e). Approximately 2.718
Math.LN2 Natural logarithm of 2 Approximately 0.693
Math.LN10 Natural logarithm of 10 Approximately 2.302
Math.LOG2E Base 2 logarithm of e Approximately 1.442
Math.LOG10E Base 10 logarithm of e Approximately 0.434
Math.PI π—the ratio of a circle’s

circumference to its diameter
Approximately
3.141592653589793

Math.SQRT1_2 Square root of 0.5 Approximately 0.707
Math.SQRT2 Square root of 2.0 Approximately 1.414

Fig. 9.2 | Constants of the Math object.

9.4 String Object 203

"John Q. Doe" (a name)
'9999 Main Street' (a street address)
"Waltham, Massachusetts" (a city and state)
'(201) 555-1212' (a telephone number)

A String may be assigned to a variable in a declaration. The declaration

var color = "blue";

initializes variable color with the String object containing the string "blue". Strings can
be compared via the relational (<, <=, > and >=) and equality operators (== and !=). Strings
are compared using the Unicode values of the corresponding characters. For example, the
expression "hello" < "Hello" evaluates to false because lowercase letters have higher Uni-
code values.

9.4.2 Methods of the String Object
The String object encapsulates the attributes and behaviors of a string of characters. It
provides many methods (behaviors) that accomplish useful tasks such as selecting charac-
ters from a string, combining strings (called concatenation), obtaining substrings of a
string, searching for substrings within a string, tokenizing strings (i.e., splitting strings into
individual words) and converting strings to all uppercase or lowercase letters. The String
object also provides several methods that generate XHTML tags. Figure 9.3 summarizes
many String methods. Figures 9.4–9.7 demonstrate some of these methods.

Method Description

charAt(index) Returns a string containing the character at the specified index. If
there is no character at the index, charAt returns an empty string.
The first character is located at index 0.

charCodeAt(index) Returns the Unicode value of the character at the specified index, or
NaN (not a number) if there is no character at that index.

concat(string) Concatenates its argument to the end of the string that invokes the
method. The string invoking this method is not modified; instead a
new String is returned. This method is the same as adding two
strings with the string-concatenation operator + (e.g., s1.con-
cat(s2) is the same as s1 + s2).

fromCharCode(value1,
 value2, …)

Converts a list of Unicode values into a string containing the corre-
sponding characters.

indexOf(

substring, index)
Searches for the first occurrence of substring starting from position
index in the string that invokes the method. The method returns the
starting index of substring in the source string or –1 if substring is not
found. If the index argument is not provided, the method begins
searching from index 0 in the source string.

Fig. 9.3 | Some String object methods. (Part 1 of 2.)

204 Chapter 9 JavaScript: Objects

lastIndexOf(

substring, index)
Searches for the last occurrence of substring starting from position
index and searching toward the beginning of the string that invokes
the method. The method returns the starting index of substring in
the source string or –1 if substring is not found. If the index argu-
ment is not provided, the method begins searching from the end of
the source string.

replace(searchString,
replaceString)

Searches for the substring searchString, and replaces the first occur-
rence with replaceString and returns the modified string, or the origi-
nal string if no replacement was made.

slice(start, end) Returns a string containing the portion of the string from index start
through index end. If the end index is not specified, the method
returns a string from the start index to the end of the source string. A
negative end index specifies an offset from the end of the string,
starting from a position one past the end of the last character (so –1
indicates the last character position in the string).

split(string) Splits the source string into an array of strings (tokens), where its
string argument specifies the delimiter (i.e., the characters that indi-
cate the end of each token in the source string).

substr(

start, length)
Returns a string containing length characters starting from index start
in the source string. If length is not specified, a string containing
characters from start to the end of the source string is returned.

substring(

start, end)
Returns a string containing the characters from index start up to but
not including index end in the source string.

toLowerCase() Returns a string in which all uppercase letters are converted to lower-
case letters. Nonletter characters are not changed.

toUpperCase() Returns a string in which all lowercase letters are converted to upper-
case letters. Nonletter characters are not changed.

Methods that generate XHTML tags

anchor(name) Wraps the source string in an anchor element (<a>) with name
as the anchor name.

fixed() Wraps the source string in a <tt></tt> element.

link(url) Wraps the source string in an anchor element (<a>) with url as
the hyperlink location.

strike() Wraps the source string in a <strike></strike> element.

sub() Wraps the source string in a element.

sup() Wraps the source string in a element.

Method Description

Fig. 9.3 | Some String object methods. (Part 2 of 2.)

9.4 String Object 205

9.4.3 Character-Processing Methods
The script in Fig. 9.4 demonstrates some of the String object’s character-processing
methods, including charAt (returns the character at a specific position), charCodeAt (re-
turns the Unicode value of the character at a specific position), fromCharCode (returns a
string created from a series of Unicode values), toLowerCase (returns the lowercase version
of a string) and toUpperCase (returns the uppercase version of a string).

Lines 16–17 display the first character in String s ("ZEBRA") using String method
charAt. Method charAt returns a string containing the character at the specified index (0
in this example). Indices for the characters in a string start at 0 (the first character) and go
up to (but do not include) the string’s length (i.e., if the string contains five characters,
the indices are 0 through 4). If the index is outside the bounds of the string, the method
returns an empty string.

Lines 18–19 display the character code for the first character in String s ("ZEBRA")
by calling String method charCodeAt. Method charCodeAt returns the Unicode value of

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 9.4: CharacterProcessing.html -->
6 <!-- String methods charAt, charCodeAt, fromCharCode, toLowercase and
7 toUpperCase. -->
8 <html xmlns = "http://www.w3.org/1999/xhtml">

9 <head>

10 <title>Character Processing Methods</title>
11 <script type = "text/javascript">

12 <!--
13 var s = "ZEBRA";
14 var s2 = "AbCdEfG";
15

16 document.writeln("<p>Character at index 0 in '" +
17 s + "' is " +);
18 document.writeln("
Character code at index 0 in '"
19 + s + "' is " + + "</p>");
20

21 document.writeln("<p>'" +
22 +
23 "' contains character codes 87, 79, 82 and 68</p>")
24
25 document.writeln("<p>'" + s2 + "' in lowercase is '" +
26 + "'");
27 document.writeln("
'" + s2 + "' in uppercase is '"
28 + + "'</p>");
29 // -->
30 </script>

31 </head><body></body>

32 </html>

Fig. 9.4 | String methods charAt, charCodeAt, fromCharCode, toLowercase and
toUpperCase. (Part 1 of 2.)

s.charAt(0)

s.charCodeAt(0)

String.fromCharCode(87, 79, 82, 68)

s2.toLowerCase()

s2.toUpperCase()

206 Chapter 9 JavaScript: Objects

the character at the specified index (0 in this example). If the index is outside the bounds
of the string, the method returns NaN.

String method fromCharCode receives as its argument a comma-separated list of
Unicode values and builds a string containing the character representation of those Uni-
code values. Lines 21–23 display the string "WORD", which consists of the character codes
87, 79, 82 and 68. Note that the String object calls method fromCharCode, rather than a
specific String variable.

The statements in lines 25–26 and 27–28 use String methods toLowerCase and
toUpperCase to display versions of String s2 ("AbCdEfG") in all lowercase letters and all
uppercase letters, respectively.

9.4.4 Searching Methods
Being able to search for a character or a sequence of characters in a string is often useful.
For example, if you are creating your own word processor, you may want to provide a ca-
pability for searching through the document. The script in Fig. 9.5 demonstrates the
String object methods indexOf and lastIndexOf that search for a specified substring in
a string. All the searches in this example are performed on the global string letters (ini-
tialized in line 14 with "abcdefghijklmnopqrstuvwxyzabcdefghijklm" in the script).

The user types a substring in the XHTML form searchForm’s inputVal text field and
presses the Search button to search for the substring in letters. Clicking the Search
button calls function buttonPressed (defined in lines 16–29) to respond to the onclick
event and perform the searches. The results of each search are displayed in the appropriate
text field of searchForm.

Lines 21–22 use String method indexOf to determine the location of the first occur-
rence in string letters of the string inputVal.value (i.e., the string the user typed in the
inputVal text field). If the substring is found, the index at which the first occurrence of
the substring begins is returned; otherwise, –1 is returned.

Lines 23–24 use String method lastIndexOf to determine the location of the last
occurrence in letters of the string in inputVal. If the substring is found, the index at
which the last occurrence of the substring begins is returned; otherwise, –1 is returned.

Fig. 9.4 | String methods charAt, charCodeAt, fromCharCode, toLowercase and
toUpperCase. (Part 2 of 2.)

9.4 String Object 207

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 9.5: SearchingStrings.html -->
6 <!-- String searching with indexOf and lastIndexOf. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>

10 Searching Strings with indexOf and lastIndexOf
11 </title>

12 <script type = "text/javascript">

13 <!--
14 var letters = "abcdefghijklmnopqrstuvwxyzabcdefghijklm";
15

16 function buttonPressed()
17 {
18 var searchForm = document.getElementById("searchForm");
19 var inputVal = document.getElementById("inputVal");
20
21 searchForm.elements[2].value =
22 l
23 searchForm.elements[3].value =
24
25 searchForm.elements[4].value =
26
27 searchForm.elements[5].value =
28
29 } // end function buttonPressed
30 // -->
31 </script>

32 </head>

33 <body>

34 <form id = "searchForm" action = "">

35 <h1>The string to search is:

36 abcdefghijklmnopqrstuvwxyzabcdefghijklm</h1>
37 <p>Enter substring to search for
38 <input id = "inputVal" type = "text" />

39 <input id = "search" type = "button" value = "Search"

40 />
</p>

41

42 <p>First occurrence located at index
43 <input id = "first" type = "text" size = "5" />

44
Last occurrence located at index
45 <input id = "last" type = "text" size = "5" />

46
First occurrence from index 12 located at index
47 <input id = "first12" type = "text" size = "5" />

48
Last occurrence from index 12 located at index
49 <input id = "last12" type = "text" size = "5" /></p>

50 </form>

51 </body>

52 </html>

Fig. 9.5 | String searching with indexOf and lastIndexOf. (Part 1 of 2.)

etters.indexOf(inputVal.value);

letters.lastIndexOf(inputVal.value);

letters.indexOf(inputVal.value, 12);

letters.lastIndexOf(inputVal.value, 12);

onclick = "buttonPressed()"

208 Chapter 9 JavaScript: Objects

Lines 25–26 use String method indexOf to determine the location of the first occur-
rence in string letters of the string in the inputVal text field, starting from index 12 in
letters. If the substring is found, the index at which the first occurrence of the substring
(starting from index 12) begins is returned; otherwise, –1 is returned.

Lines 27–28 use String method lastIndexOf to determine the location of the last
occurrence in letters of the string in the inputVal text field, starting from index 12 in
letters and moving toward the beginning of the input. If the substring is found, the
index at which the first occurrence of the substring (if one appears before index 12) begins
is returned; otherwise, –1 is returned.

Software Engineering Observation 9.2
String methods indexOf and lastIndexOf, with their optional second argument (the starting
index from which to search), are particularly useful for continuing a search through a large
amount of text.

Fig. 9.5 | String searching with indexOf and lastIndexOf. (Part 2 of 2.)

9.4 String Object 209

9.4.5 Splitting Strings and Obtaining Substrings
When you read a sentence, your mind breaks it into individual words, or tokens, each of
which conveys meaning to you. The process of breaking a string into tokens is called to-
kenization. Interpreters also perform tokenization. They break up statements into such in-
dividual pieces as keywords, identifiers, operators and other elements of a programming
language. Figure 9.6 demonstrates String method split, which breaks a string into its
component tokens. Tokens are separated from one another by delimiters, typically white-
space characters such as blanks, tabs, newlines and carriage returns. Other characters may
also be used as delimiters to separate tokens. The XHTML document displays a form con-
taining a text field where the user types a sentence to tokenize. The results of the tokeni-
zation process are displayed in an XHTML textarea GUI component. The script also
demonstrates String method substring, which returns a portion of a string.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 9.6: SplitAndSubString.html -->
6 <!-- String object methods split and substring. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>String Methods split and substring</title>
10 <script type = "text/javascript">

11 <!--
12 function splitButtonPressed()
13 {
14 var inputString = document.getElementById("inputVal").value;
15 var tokens =
16 document.getElementById("output").value =
17 ;
18

19 document.getElementById("outputSubstring").value =
20
21 } // end function splitButtonPressed
22 // -->
23 </script>

24 </head>

25 <body>

26 <form action = "">

27 <p>Enter a sentence to split into words

28 <input id = "inputVal" type = "text" size = "40" />

29 <input type = "button" value = "Split"

30 onclick = "splitButtonPressed()" /></p>

31
32 <p>The sentence split into words is

33 <textarea id = "output" rows = "8" cols = "34">

34 </textarea></p>
35
36 <p>The first 10 characters of the input string are

Fig. 9.6 | String object methods split and substring. (Part 1 of 2.)

inputString.split(" ");

tokens.join("\n")

inputString.substring(0, 10);

210 Chapter 9 JavaScript: Objects

The user types a sentence into the text field with id inputVal text field and presses
the Split button to tokenize the string. Function splitButtonPressed (lines 12–21) han-
dles the button’s onclick event.

Line 14 gets the value of the input field and stores it in variable inputString. Line 15
calls String method split to tokenize inputString. The argument to method split is
the delimiter string—the string that determines the end of each token in the original
string. In this example, the space character delimits the tokens. The delimiter string can
contain multiple characters that should be used as delimiters. Method split returns an
array of strings containing the tokens. Line 17 uses Array method join to combine the
tokens in array tokens and separate each token with a newline character (\n). The
resulting string is assigned to the value property of the XHTML form’s output GUI com-
ponent (an XHTML textarea).

Lines 19–20 use String method substring to obtain a string containing the first 10
characters of the string the user entered (still stored in inputString). The method returns
the substring from the starting index (0 in this example) up to but not including the
ending index (10 in this example). If the ending index is greater than the length of the
string, the substring returned includes the characters from the starting index to the end of
the original string.

9.4.6 XHTML Markup Methods
The script in Fig. 9.7 demonstrates the String object’s methods that generate XHTML
markup tags. When a String object invokes a markup method, the method wraps the

37 <input id = "outputSubstring" type = "text"

38 size = "15" /></p>

39 </form>

40 </body>

41 </html>

Fig. 9.6 | String object methods split and substring. (Part 2 of 2.)

9.4 String Object 211

String’s contents in the appropriate XHTML tag. These methods are particularly useful
for generating XHTML dynamically during script processing.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 9.7: MarkupMethods.html -->
6 <!-- String object XHTML markup methods. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>XHTML Markup Methods of the String Object</title>
10 <script type = "text/javascript">

11 <!--
12 var anchorText = "This is an anchor";
13 var fixedText = "This is monospaced text";
14 var linkText = "Click here to go to anchorText";
15 var strikeText = "This is strike out text";
16 var subText = "subscript";
17 var supText = "superscript";
18
19 document.writeln();
20 document.writeln("
" +);
21 document.writeln("
" +);
22 document.writeln(
23 "
This is text with a " +);
24 document.writeln(
25 "
This is text with a " +);
26 document.writeln("
" +);
27 // -->
28 </script>

29 </head><body></body>

30 </html>

Fig. 9.7 | String object XHTML markup methods. (Part 1 of 2.)

anchorText.anchor("top")
fixedText.fixed()
strikeText.strike()

subText.sub()

supText.sup()
linkText.link("#top")

212 Chapter 9 JavaScript: Objects

Lines 12–17 define the strings that call each of the XHTML markup methods of the
String object. Line 19 uses String method anchor to format the string in variable
anchorText ("This is an anchor") as

This is an anchor

The name of the anchor is the argument to the method. This anchor will be used later in
the example as the target of a hyperlink.

Line 20 uses String method fixed to display text in a fixed-width font by formatting
the string in variable fixedText ("This is monospaced text") as

<tt>This is monospaced text</tt>

Line 21 uses String method strike to display text with a line through it by format-
ting the string in variable strikeText ("This is strike out text") as

<strike>This is strike out text</strike>

Lines 22–23 use String method sub to display subscript text by formatting the string
in variable subText ("subscript") as

_{subscript}

Note that the resulting line in the XHTML document displays the word subscript small-
er than the rest of the line and slightly below the line.

Lines 24–25 call String method sup to display superscript text by formatting the
string in variable supText ("superscript") as

^{superscript}

Note that the resulting line in the XHTML document displays the word superscript
smaller than the rest of the line and slightly above the line.

Line 26 uses String method link to create a hyperlink by formatting the string in
variable linkText ("Click here to go to anchorText") as

Click here to go to anchorText

The target of the hyperlink (#top in this example) is the argument to the method and can
be any URL. In this example, the hyperlink target is the anchor created in line 19. If you

Fig. 9.7 | String object XHTML markup methods. (Part 2 of 2.)

9.5 Date Object 213

make your browser window short and scroll to the bottom of the web page, then click this
link, the browser will reposition to the top of the web page.

9.5 Date Object
JavaScript’s Date object provides methods for date and time manipulations. Date and time
processing can be performed based on the computer’s local time zone or based on World
Time Standard’s Coordinated Universal Time (abbreviated UTC)—formerly called
Greenwich Mean Time (GMT). Most methods of the Date object have a local time zone
and a UTC version. The methods of the Date object are summarized in Fig. 9.8.

Method Description

getDate()
getUTCDate()

Returns a number from 1 to 31 representing the day of the
month in local time or UTC.

getDay()
getUTCDay()

Returns a number from 0 (Sunday) to 6 (Saturday) represent-
ing the day of the week in local time or UTC.

getFullYear()
getUTCFullYear()

Returns the year as a four-digit number in local time or UTC.

getHours()
getUTCHours()

Returns a number from 0 to 23 representing hours since mid-
night in local time or UTC.

getMilliseconds()
getUTCMilliSeconds()

Returns a number from 0 to 999 representing the number of
milliseconds in local time or UTC, respectively. The time is
stored in hours, minutes, seconds and milliseconds.

getMinutes()
getUTCMinutes()

Returns a number from 0 to 59 representing the minutes for
the time in local time or UTC.

getMonth()
getUTCMonth()

Returns a number from 0 (January) to 11 (December) repre-
senting the month in local time or UTC.

getSeconds()
getUTCSeconds()

Returns a number from 0 to 59 representing the seconds for
the time in local time or UTC.

getTime() Returns the number of milliseconds between January 1, 1970,
and the time in the Date object.

getTimezoneOffset() Returns the difference in minutes between the current time on
the local computer and UTC (Coordinated Universal Time).

setDate(val)
setUTCDate(val)

Sets the day of the month (1 to 31) in local time or UTC.

setFullYear(y, m, d)
setUTCFullYear(y, m, d)

Sets the year in local time or UTC. The second and third argu-
ments representing the month and the date are optional. If an
optional argument is not specified, the current value in the
Date object is used.

Fig. 9.8 | Date object methods. (Part 1 of 2.)

214 Chapter 9 JavaScript: Objects

The script of Fig. 9.9 demonstrates many of the local time zone methods in Fig. 9.8.
Line 12 creates a new Date object. The new operator allocates the memory for the Date
object. The empty parentheses indicate a call to the Date object’s constructor with no
arguments. A constructor is an initializer method for an object. Constructors are called
automatically when an object is allocated with new. The Date constructor with no argu-
ments initializes the Date object with the local computer’s current date and time.

setHours(h, m, s, ms)
setUTCHours(h, m, s, ms)

Sets the hour in local time or UTC. The second, third and
fourth arguments, representing the minutes, seconds and milli-
seconds, are optional. If an optional argument is not specified,
the current value in the Date object is used.

setMilliSeconds(ms)
setUTCMilliseconds(ms)

Sets the number of milliseconds in local time or UTC.

setMinutes(m, s, ms)
setUTCMinutes(m, s, ms)

Sets the minute in local time or UTC. The second and third
arguments, representing the seconds and milliseconds, are
optional. If an optional argument is not specified, the current
value in the Date object is used.

setMonth(m, d)
setUTCMonth(m, d)

Sets the month in local time or UTC. The second argument,
representing the date, is optional. If the optional argument is
not specified, the current date value in the Date object is used.

setSeconds(s, ms)
setUTCSeconds(s, ms)

Sets the second in local time or UTC. The second argument,
representing the milliseconds, is optional. If this argument is
not specified, the current millisecond value in the Date object
is used.

setTime(ms) Sets the time based on its argument—the number of elapsed
milliseconds since January 1, 1970.

toLocaleString() Returns a string representation of the date and time in a form
specific to the computer’s locale. For example, September 13,
2007, at 3:42:22 PM is represented as 09/13/07 15:47:22 in
the United States and 13/09/07 15:47:22 in Europe.

toUTCString() Returns a string representation of the date and time in the
form: 15 Sep 2007 15:47:22 UTC

toString() Returns a string representation of the date and time in a form
specific to the locale of the computer (Mon Sep 17 15:47:22
EDT 2007 in the United States).

valueOf() The time in number of milliseconds since midnight, January 1,
1970. (Same as getTime.)

Method Description

Fig. 9.8 | Date object methods. (Part 2 of 2.)

9.5 Date Object 215

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 9.9: DateTime.html -->
6 <!-- Date and time methods of the Date object. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Date and Time Methods</title>
10 <script type = "text/javascript">

11 <!--
12

13
14 document.writeln(
15 "<h1>String representations and valueOf</h1>");
16 document.writeln("toString: " + +
17 "
toLocaleString: " + +
18 "
toUTCString: " + +
19 "
valueOf: " +);
20
21 document.writeln(
22 "<h1>Get methods for local time zone</h1>");
23 document.writeln("getDate: " + +
24 "
getDay: " + +
25 "
getMonth: " + +
26 "
getFullYear: " + +
27 "
getTime: " + +
28 "
getHours: " + +
29 "
getMinutes: " + +
30 "
getSeconds: " + +
31 "
getMilliseconds: " + +
32 "
getTimezoneOffset: " + ;
33
34 document.writeln(
35 "<h1>Specifying arguments for a new Date</h1>");
36 var anotherDate = new Date(2007, 2, 18, 1, 5, 0, 0);
37 document.writeln("Date: " + anotherDate);
38

39 document.writeln("<h1>Set methods for local time zone</h1>");
40

41

42

43

44

45

46 document.writeln("Modified date: " + anotherDate);
47 // -->
48 </script>

49 </head><body></body>

50 </html>

Fig. 9.9 | Date and time methods of the Date object. (Part 1 of 2.)

var current = new Date();

current.toString()
current.toLocaleString()

current.toUTCString()
current.valueOf()

current.getDate()
current.getDay()
current.getMonth()

current.getFullYear()
current.getTime()
current.getHours()

current.getMinutes()
current.getSeconds()

current.getMilliseconds()
current.getTimezoneOffset())

anotherDate.setDate(31);
anotherDate.setMonth(11);
anotherDate.setFullYear(2007);
anotherDate.setHours(23);
anotherDate.setMinutes(59);
anotherDate.setSeconds(59);

216 Chapter 9 JavaScript: Objects

Software Engineering Observation 9.3
When an object is allocated with new, the object’s constructor is called automatically to initialize
the object before it is used in the program.

Lines 16–19 demonstrate the methods toString, toLocaleString, toUTCString and
valueOf. Note that method valueOf returns a large integer value representing the total
number of milliseconds between midnight, January 1, 1970, and the date and time stored
in Date object current.

Lines 23–32 demonstrate the Date object’s get methods for the local time zone. Note
that method getFullYear returns the year as a four-digit number. Note as well that
method getTimeZoneOffset returns the difference in minutes between the local time zone

Fig. 9.9 | Date and time methods of the Date object. (Part 2 of 2.)

9.5 Date Object 217

and UTC time (i.e., a difference of four hours in our time zone when this example was
executed).

Line 36 demonstrates creating a new Date object and supplying arguments to the Date
constructor for year, month, date, hours, minutes, seconds and milliseconds. Note that the
hours, minutes, seconds and milliseconds arguments are all optional. If any one of these argu-
ments is not specified, a zero is supplied in its place. For the hours, minutes and seconds
arguments, if the argument to the right of any of these arguments is specified, it too must
be specified (e.g., if the minutes argument is specified, the hours argument must be speci-
fied; if the milliseconds argument is specified, all the arguments must be specified).

Lines 40–45 demonstrate the Date object set methods for the local time zone. Date
objects represent the month internally as an integer from 0 to 11. These values are off by
one from what you might expect (i.e., 1 for January, 2 for February, …, and 12 for
December). When creating a Date object, you must specify 0 to indicate January, 1 to
indicate February, …, and 11 to indicate December.

Common Programming Error 9.2
Assuming that months are represented as numbers from 1 to 12 leads to off-by-one errors when
you are processing Dates.

The Date object provides two other methods that can be called without creating a new
Date object—Date.parse and Date.UTC. Method Date.parse receives as its argument a
string representing a date and time, and returns the number of milliseconds between mid-
night, January 1, 1970, and the specified date and time. This value can be converted to a
Date object with the statement

var theDate = new Date(numberOfMilliseconds);

which passes to the Date constructor the number of milliseconds since midnight, January
1, 1970, for the Date object.

Method parse converts the string using the following rules:

• Short dates can be specified in the form MM-DD-YY, MM-DD-YYYY, MM/DD/YY or MM/
DD/YYYY. The month and day are not required to be two digits.

• Long dates that specify the complete month name (e.g., “January”), date and year
can specify the month, date and year in any order.

• Text in parentheses within the string is treated as a comment and ignored. Com-
mas and white-space characters are treated as delimiters.

• All month and day names must have at least two characters. The names are not
required to be unique. If the names are identical, the name is resolved as the last
match (e.g., “Ju” represents “July” rather than “June”).

• If the name of the day of the week is supplied, it is ignored.

• All standard time zones (e.g., EST for Eastern Standard Time), Coordinated
Universal Time (UTC) and Greenwich Mean Time (GMT) are recognized.

• When specifying hours, minutes and seconds, separate each by colons.

• When using a 24-hour-clock format, “PM” should not be used for times after 12
noon.

218 Chapter 9 JavaScript: Objects

Date method UTC returns the number of milliseconds between midnight, January 1,
1970, and the date and time specified as its arguments. The arguments to the UTC method
include the required year, month and date, and the optional hours, minutes, seconds and
milliseconds. If any of the hours, minutes, seconds or milliseconds arguments is not specified,
a zero is supplied in its place. For the hours, minutes and seconds arguments, if the argument
to the right of any of these arguments in the argument list is specified, that argument must
also be specified (e.g., if the minutes argument is specified, the hours argument must be
specified; if the milliseconds argument is specified, all the arguments must be specified). As
with the result of Date.parse, the result of Date.UTC can be converted to a Date object by
creating a new Date object with the result of Date.UTC as its argument.

9.6 Boolean and Number Objects
JavaScript provides the Boolean and Number objects as object wrappers for boolean true/
false values and numbers, respectively. These wrappers define methods and properties
useful in manipulating boolean values and numbers. Wrappers provide added functional-
ity for working with simple data types.

When a JavaScript program requires a boolean value, JavaScript automatically creates
a Boolean object to store the value. JavaScript programmers can create Boolean objects
explicitly with the statement

var b = new Boolean(booleanValue);

The constructor argument booleanValue specifies whether the value of the Boolean object
should be true or false. If booleanValue is false, 0, null, Number.NaN or an empty string
(""), or if no argument is supplied, the new Boolean object contains false. Otherwise,
the new Boolean object contains true. Figure 9.10 summarizes the methods of the Bool-
ean object.

JavaScript automatically creates Number objects to store numeric values in a Java-
Script program. JavaScript programmers can create a Number object with the statement

var n = new Number(numericValue);

The constructor argument numericValue is the number to store in the object. Although
you can explicitly create Number objects, normally the JavaScript interpreter creates them
as needed. Figure 9.11 summarizes the methods and properties of the Number object.

Method Description

toString() Returns the string "true" if the value of the Boolean object is true; otherwise,
returns the string "false".

valueOf() Returns the value true if the Boolean object is true; otherwise, returns false.

Fig. 9.10 | Boolean object methods.

9.7 document Object 219

9.7 document Object
The document object is used to manipulate the document that is currently visible in the
browser window. The document object has many properties and methods, such as methods
document.write and document.writeln, which have both been used in prior JavaScript
examples. Figure 9.12 shows the methods and properties of the document objects that are
used in this chapter. You can learn more about the properties and methods of the docu-
ment object in our JavaScript Resource Center (www.deitel.com/javascript).

Method or property Description

toString(radix) Returns the string representation of the number. The optional
radix argument (a number from 2 to 36) specifies the number’s
base. For example, radix 2 results in the binary representation of
the number, 8 results in the octal representation, 10 results in the
decimal representation and 16 results in the hexadecimal represen-
tation.

valueOf() Returns the numeric value.

Number.MAX_VALUE This property represents the largest value that can be stored in a
JavaScript program—approximately 1.79E+308.

Number.MIN_VALUE This property represents the smallest value that can be stored in a
JavaScript program—approximately 5.00E–324.

Number.NaN This property represents not a number—a value returned from an
arithmetic expression that does not result in a number (e.g., the
expression parseInt("hello") cannot convert the string "hello"
into a number, so parseInt would return Number.NaN. To deter-
mine whether a value is NaN, test the result with function isNaN,
which returns true if the value is NaN; otherwise, it returns false.

Number.NEGATIVE_INFINITY

This property represents a value less than -Number.MAX_VALUE.

Number.POSITIVE_INFINITY

This property represents a value greater than Number.MAX_VALUE.

Fig. 9.11 | Number object methods and properties.

Method or property Description

getElementById(id) Returns the DOM node representing the XHTML element whose
id attribute matches id.

Fig. 9.12 | Important document object methods and properties. (Part 1 of 2.)

www.deitel.com/javascript

220 Chapter 9 JavaScript: Objects

9.8 window Object
The window object provides methods for manipulating browser windows. The following
script shows many of the commonly used properties and methods of the window object and
uses them to create a website that spans multiple browser windows. Figure 9.13 allows the
user to create a new, fully customized browser window by completing an XHTML form
and clicking the Submit button. The script also allows the user to add text to the new win-
dow and navigate the window to a different URL.

The script starts in line 10. Line 12 declares a variable to refer to the new window. We
refer to the new window as the child window because it is created and controlled by the
main, or parent, window in this script. Lines 14–50 define the createChildWindow func-
tion, which determines the features that have been selected by the user and creates a child
window with those features (but does not add any content to the window). Lines 18–20
declare several variables to store the status of the checkboxes on the page. Lines 23–38 set
each variable to "yes" or "no" based on whether the corresponding checkbox is checked
or unchecked.

write(string) Writes the string to the XHTML document as XHTML code.

writeln(string) Writes the string to the XHTML document as XHTML code and
adds a newline character at the end.

cookie A string containing the values of all the cookies stored on the user’s
computer for the current document. See Section 9.9, Using Cookies.

lastModified The date and time that this document was last modified.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 9.13: window.html -->
6 <!-- Using the window object to create and modify child windows. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Using the Window Object</title>
10 <script type = "text/javascript">

11 <!--
12 var childWindow; // variable to control the child window
13
14 function createChildWindow()
15 {

Fig. 9.13 | Using the window object to create and modify child windows. (Part 1 of 4.)

Method or property Description

Fig. 9.12 | Important document object methods and properties. (Part 2 of 2.)

9.8 window Object 221

16 // these variables all contain either "yes" or "no"
17 // to enable or disable a feature in the child window
18 var toolBar;
19 var menuBar;
20 var scrollBars;
21
22 // determine whether the Tool Bar checkbox is checked
23 if (document.getElementById("toolBarCheckBox").checked)
24 toolBar = "yes";
25 else

26 toolBar = "no";
27
28 // determine whether the Menu Bar checkbox is checked
29 if (document.getElementById("menuBarCheckBox").checked)
30 menuBar = "yes";
31 else

32 menuBar = "no";
33
34 // determine whether the Scroll Bar checkbox is checked
35 if (document.getElementById("scrollBarsCheckBox").checked)
36 scrollBars = "yes";
37 else

38 scrollBars = "no";
39
40
41
42
43
44

45
46 // disable buttons
47 document.getElementById("closeButton").disabled = false;
48 document.getElementById("modifyButton").disabled = false;
49 document.getElementById("setURLButton").disabled = false;
50 } // end function createChildWindow
51
52 // insert text from the textbox in the child window
53 function modifyChildWindow()
54 {
55 if ()
56 alert("You attempted to interact with a closed window");
57 else

58
59
60 } // end function modifyChildWindow
61
62 // close the child window
63 function closeChildWindow()
64 {
65 if ()
66 alert("You attempted to interact with a closed window");

Fig. 9.13 | Using the window object to create and modify child windows. (Part 2 of 4.)

//display window with selected features
childWindow = window.open("", "",

",toolbar = " + toolBar +
",menubar = " + menuBar +

 ",scrollbars = " + scrollBars);

childWindow.closed

childWindow.document.write(
 document.getElementById("textForChild").value);

childWindow.closed

222 Chapter 9 JavaScript: Objects

67 else

68
69
70 document.getElementById("closeButton").disabled = true;
71 document.getElementById("modifyButton").disabled = true;
72 document.getElementById("setURLButton").disabled = true;
73 } // end function closeChildWindow
74
75 // set the URL of the child window to the URL
76 // in the parent window's myChildURL
77 function setChildWindowURL()
78 {
79 if ()
80 alert("You attempted to interact with a closed window");
81 else

82
83
84 } // end function setChildWindowURL
85 //-->
86 </script>

87 </head>

88 <body>

89 <h1>Hello, this is the main window</h1>
90 <p>Please check the features to enable for the child window

91 <input id = "toolBarCheckBox" type = "checkbox" value = ""

92 checked = "checked" />

93 <label>Tool Bar</label>
94 <input id = "menuBarCheckBox" type = "checkbox" value = ""

95 checked = "checked" />

96 <label>Menu Bar</label>
97 <input id = "scrollBarsCheckBox" type = "checkbox" value = ""

98 checked = "checked" />

99 <label>Scroll Bars</label></p>
100
101 <p>Please enter the text that you would like to display
102 in the child window

103 <input id = "textForChild" type = "text"

104 value = "<h1>Hello, I am a child window.</h1> " />

105 <input id = "createButton" type = "button"

106 value = "Create Child Window" />

107 <input id= "modifyButton" type = "button" value = "Modify Child Window"

108 disabled = "disabled" />

109 <input id = "closeButton" type = "button" value = "Close Child Window"

110 disabled = "disabled" /></p>

111
112 <p>The other window's URL is:

113 <input id = "myChildURL" type = "text" value = "./" />

114 <input id = "setURLButton" type = "button" value = "Set Child URL"

115 disabled = "disabled" /></p>

116 </body>

117 </html>

Fig. 9.13 | Using the window object to create and modify child windows. (Part 3 of 4.)

childWindow.close();

childWindow.closed

childWindow.location =
 document.getElementById("myChildURL").value;

onclick = "createChildWindow()"

onclick = "modifyChildWindow()"

onclick = "closeChildWindow()"

onclick = "setChildWindowURL()"

9.8 window Object 223

Lines 41–44 use the window object’s open method to create the child window.
Method open has three parameters. The first parameter is the URL of the page to open in
the new window, and the second parameter is the name of the window. If you specify the
target attribute of an a (anchor) element to correspond to the name of a window, the

Fig. 9.13 | Using the window object to create and modify child windows. (Part 4 of 4.)

224 Chapter 9 JavaScript: Objects

href of the link will be opened in the window. In our example, we pass window.open
empty strings as the first two parameter values because we want the new window to open
a blank page, and we use a different method to manipulate the child window’s URL.

The third parameter of the open method is a string of comma-separated, all-lowercase
feature names, each followed by an = sign and either "yes" or "no" to determine whether
that feature should be displayed in the new window. If these parameters are omitted, the
browser defaults to a new window containing an empty page, no title and all features vis-
ible. [Note: If your menu bar is normally hidden in IE7, it will not appear in the child
window. Press the Alt key to display it.] Lines 47–49 enable the buttons for manipulating
the child window—these are initially disabled when the page loads.

Lines 53–60 define the function modifyChildWindow, which adds a line of text to the
content of the child window. In line 55, the script determines whether the child window
is closed. Function modifyChildWindow uses property childWindow.closed to obtain a
boolean value that is true if childWindow is closed and false if the window is still open.
If the window is closed, an alert box is displayed notifying the user that the window is cur-
rently closed and cannot be modified. If the child window is open, lines 58–59 obtain text
from the textForChild input (lines 103–104) in the XHTML form in the parent window
and uses the child’s document.write method to write this text to the child window.

Function closeChildWindow (lines 63–73) also determines whether the child window
is closed before proceeding. If the child window is closed, the script displays an alert box
telling the user that the window is already closed. If the child window is open, line 68
closes it using the childWindow.close method. Lines 70–72 disable the buttons that
interact with the child window.

Look-and-Feel Observation 9.1
Popup windows should be used sparingly. Many users dislike websites that open additional win-
dows, or that resize or reposition the browser. Some users have popup blockers that will prevent
new windows from opening.

Software Engineering Observation 9.4
window.location is a property that always contains a string representation of the URL displayed
in the current window. Typically, web browsers will allow a script to retrieve the
window.location property of another window only if the script belongs to the same website as
the page in the other window.

Function setChildWindowURL (lines 77–84) copies the contents of the myChildURL
text field to the location property of the child window. If the child window is open, lines
81–82 set property location of the child window to the string in the myChildURL textbox.
This action changes the URL of the child window and is equivalent to typing a new URL
into the window’s address bar and clicking Go (or pressing Enter).

The script ends in line 86. Lines 88–116 contain the body of the XHTML document,
comprising a form that contains checkboxes, buttons, textboxes and form field labels. The
script uses the form elements defined in the body to obtain input from the user. Lines 106,
108, 110, and 115 specify the onclick attributes of XHTML buttons. Each button is set
to call a corresponding JavaScript function when clicked.

Figure 9.14 contains a list of some commonly used methods and properties of the
window object.

9.9 Using Cookies 225

9.9 Using Cookies
Cookies provide web developers with a tool for personalizing web pages. A cookie is a piece
of data that is stored on the user’s computer to maintain information about the client dur-
ing and between browser sessions. A website may store a cookie on the client’s computer
to record user preferences or other information that the website can retrieve during the cli-
ent’s subsequent visits. For example, a website can retrieve the user’s name from a cookie
and use it to display a personalized greeting.

Microsoft Internet Explorer and Mozilla Firefox store cookies as small text files on the
client’s hard drive. When a user visits a website, the browser locates any cookies written by
scripts on that site and makes them available to any scripts located on the site. Note that
cookies may be accessed only by scripts belonging to the same website from which they
originated (i.e., a cookie set by a script on amazon.com can be read only by other scripts on
amazon.com).

Cookies are accessible in JavaScript through the document object’s cookie property.
JavaScript treats a cookie as a string of text. Any standard string function or method can
manipulate a cookie. A cookie has the syntax “identifier=value,” where identifier is any
valid JavaScript variable identifier, and value is the value of the cookie variable. When mul-
tiple cookies exist for one website, identifier-value pairs are separated by semicolons in the
document.cookie string.

Cookies differ from ordinary strings in that each cookie has an expiration date, after
which the web browser deletes it. This date can be defined by setting the expires property

Method or property Description

open(url, name, options) Creates a new window with the URL of the window set to url,
the name set to name to refer to it in the script, and the visible
features set by the string passed in as option.

prompt(prompt, default) Displays a dialog box asking the user for input. The text of the
dialog is prompt, and the default value is set to default.

close() Closes the current window and deletes its object from memory.

focus() This method gives focus to the window (i.e., puts the window
in the foreground, on top of any other open browser windows).

blur() This method takes focus away from the window (i.e., puts the
window in the background).

window.document This property contains the document object representing the
document currently inside the window.

window.closed This property contains a boolean value that is set to true if the
window is closed, and false if it is not.

window.opener This property contains the window object of the window that
opened the current window, if such a window exists.

Fig. 9.14 | Important window object methods and properties.

226 Chapter 9 JavaScript: Objects

in the cookie string. If a cookie’s expiration date is not set, then the cookie expires by
default after the user closes the browser window. A cookie can be deleted immediately by
setting the expires property to a date and time in the past.

The assignment operator does not overwrite the entire list of cookies, but appends a
cookie to the end of it. Thus, if we set two cookies

document.cookie = "name1=value1;";
document.cookie = "name2=value2;";

document.cookie will contain "name1=value1; name2=value2".
Figure 9.15 uses a cookie to store the user’s name and displays a personalized greeting.

This example improves upon the functionality in the dynamic welcome page example of
Fig. 4.11 by requiring the user to enter a name only during the first visit to the web page.
On each subsequent visit, the script can display the user name that is stored in the cookie.

Line 10 begins the script. Lines 12–13 declare the variables needed to obtain the time,
and line 14 declares the variable that stores the name of the user. Lines 16–27 contain the
same if…else statement used in Fig. 4.11 to display a time-sensitive greeting.

Lines 30–66 contain the code used to manipulate the cookie. Line 30 determines
whether a cookie exists on the client computer. The expression document.cookie evalu-
ates to true if a cookie exists. If a cookie does not exist, then the script prompts the user
to enter a name (line 45). The script creates a cookie containing the string "name=", fol-
lowed by a copy of the user’s name produced by the built-in JavaScript function escape
(line 49). The function escape converts any non-alphanumeric characters, such as spaces
and semicolons, in a string to their equivalent hexadecimal escape sequences of the form
“%XX,” where XX is the two-digit hexadecimal ASCII value of a special character. For
example, if name contains the value "David Green", the statement escape(name) evalu-
ates to "David%20Green", because the hexadecimal ASCII value of a blank space is 20. It

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 9.15: cookie.html -->
6 <!-- Using cookies to store user identification data. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Using Cookies</title>
10 <script type = "text/javascript">

11 <!--

12 var now = new Date(); // current date and time
13 var hour = now.getHours(); // current hour (0-23)
14 var name;
15
16 if (hour < 12) // determine whether it is morning
17 document.write("<h1>Good Morning, ");
18 else

19 {
20 hour = hour - 12; // convert from 24-hour clock to PM time
21

Fig. 9.15 | Using cookies to store user identification data. (Part 1 of 3.)

9.9 Using Cookies 227

22 // determine whether it is afternoon or evening
23 if (hour < 6)
24 document.write("<h1>Good Afternoon, ");
25 else

26 document.write("<h1>Good Evening, ");
27 } // end else
28
29 // determine whether there is a cookie
30 if ()
31 {
32 // convert escape characters in the cookie string to their
33 // English notation
34

35
36 // split the cookie into tokens using = as delimiter
37

38
39 // set name to the part of the cookie that follows the = sign
40
41 } // end if
42 else

43 {
44 // if there was no cookie, ask the user to input a name
45 name = window.prompt("Please enter your name", "Paul");
46
47 // escape special characters in the name string
48 // and add name to the cookie
49
50 } // end else
51
52 document.writeln(
53 name + ", welcome to JavaScript programming!</h1>");
54 document.writeln(" " +
55 "Click here if you are not " + name + "");
56
57 // reset the document's cookie if wrong person
58 function wrongPerson()
59 {
60 // reset the cookie
61
62

63
64 // reload the page to get a new name after removing the cookie
65
66 } // end function wrongPerson
67
68 // -->
69 </script>

70 </head>

71 <body>

72 <p>Click Refresh (or Reload) to run the script again</p>
73 </body>

74 </html>

Fig. 9.15 | Using cookies to store user identification data. (Part 2 of 3.)

document.cookie

var myCookie = unescape(document.cookie);

var cookieTokens = myCookie.split("=");

name = cookieTokens[1];

document.cookie = "name=" + escape(name);

document.cookie= "name=null;" +
" expires=Thu, 01-Jan-95 00:00:01 GMT";

location.reload();

228 Chapter 9 JavaScript: Objects

is a good idea to always escape cookie values before writing them to the client. This con-
version prevents any special characters in the cookie from being misinterpreted as having
a special meaning in the code, rather than being a character in a cookie value. For instance,
a semicolon in a cookie value could be misinterpreted as a semicolon separating two adja-
cent identifier-value pairs. Applying the function unescape to cookies when they are read
out of the document.cookie string converts the hexadecimal escape sequences back to
English characters for display in a web page.

Fig. 9.15 | Using cookies to store user identification data. (Part 3 of 3.)

AFter "refresh" is clicked, the website recalls the previously input data.

9.10 Multipage HTML and JavaScript Application 229

Good Programming Practice 9.2
Always store values in cookies with self-documenting identifiers. Do not forget to include the
identifier followed by an = sign before the value being stored.

If a cookie exists (i.e., the user has been to the page before), then the script parses the
user name out of the cookie string and stores it in a local variable. Parsing generally refers
to the act of splitting a string into smaller, more useful components. Line 34 uses the Java-
Script function unescape to replace all the escape sequences in the cookie with their equiv-
alent English-language characters. The script stores the unescaped cookie value in the
variable myCookie (line 34) and uses the JavaScript function split (line 37), introduced
in Section 9.4.5, to break the cookie into identifier and value tokens. At this point in the
script, myCookie contains a string of the form "name=value". We call split on myCookie
with = as the delimiter to obtain the cookieTokens array, with the first element equal to
the name of the identifier and the second element equal to the value of the identifier. Line
40 assigns the value of the second element in the cookieTokens array (i.e., the actual value
stored in the cookie) to the variable name. Lines 52–53 add the personalized greeting to
the web page, using the user’s name stored in the cookie.

The script allows the user to reset the cookie, which is useful in case someone new is
using the computer. Lines 54–55 create a hyperlink that, when clicked, calls the JavaScript
function wrongPerson (lines 58–66). Lines 61–62 set the cookie name to null and the
expires property to January 1, 1995 (though any date in the past will suffice). Internet
Explorer detects that the expires property is set to a date in the past and deletes the cookie
from the user’s computer. The next time this page loads, no cookie will be found. The
reload method of the location object forces the page to refresh (line 65), and, unable to
find an existing cookie, the script prompts the user to enter a new name.

9.10 Multipage HTML and JavaScript Application
The past few chapters have explored many JavaScript concepts and how they can be ap-
plied on the web. The next JavaScript example combines many of these concepts into a
single web page. Figure 9.16 uses functions, cookies, arrays, loops, the Date object, the
window object and the document object to create a sample welcome screen containing a
personalized greeting, a short quiz, a random image and a random quotation. We have
seen all of these concepts before, but this example illustrates how they work together on
one web page.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 9.16: final.html -->
6 <!-- Rich welcome page using several JavaScript concepts. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Putting It All Together</title>
10 <script type = "text/javascript">

11 <!--

Fig. 9.16 | Rich welcome page using several JavaScript concepts. (Part 1 of 5.)

230 Chapter 9 JavaScript: Objects

12 var now = new Date(); // current date and time
13 var hour = now.getHours(); // current hour
14
15 // array with names of the images that will be randomly selected
16 var pictures =
17 ["CPE", "EPT", "GPP", "GUI", "PERF", "PORT", "SEO"];
18
19 // array with the quotes that will be randomly selected
20 var quotes = ["Form ever follows function.
" +
21 " Louis Henri Sullivan", "E pluribus unum." +
22 " (One composed of many.)
 Virgil", "Is it a" +
23 " world to hide virtues in?
 William Shakespeare"];
24
25 // write the current date and time to the web page
26 document.write("<p>" + + "
</p>");
27
28 // determine whether it is morning
29 if (hour < 12)
30 document.write("<h2>Good Morning, ");
31 else

32 {
33 hour = hour - 12; // convert from 24-hour clock to PM time
34
35 // determine whether it is afternoon or evening
36 if (hour < 6)
37 document.write("<h2>Good Afternoon, ");
38 else

39 document.write("<h2>Good Evening, ");
40 } // end else
41
42 // determine whether there is a cookie
43 if (document.cookie)
44 {
45 // convert escape characters in the cookie string to their
46 // English notation
47 var myCookie = unescape(document.cookie);
48
49 // split the cookie into tokens using = as delimiter
50 var cookieTokens = myCookie.split("=");
51
52 // set name to the part of the cookie that follows the = sign
53 name = cookieTokens[1];
54 } // end if
55 else

56 {
57 // if there was no cookie, ask the user to input a name
58 name = window.prompt("Please enter your name", "Paul");
59
60 // escape special characters in the name string
61 // and add name to the cookie
62 document.cookie = "name =" + escape(name);
63 } // end else

Fig. 9.16 | Rich welcome page using several JavaScript concepts. (Part 2 of 5.)

now.toLocaleString()

9.10 Multipage HTML and JavaScript Application 231

64
65 // write the greeting to the page
66 document.writeln(
67 name + ", welcome to JavaScript programming!</h2>");
68
69 // write the link for deleting the cookie to the page
70 document.writeln(" " +
71 "Click here if you are not " + name + "
");
72
73 // write the random image to the page
74 document.write ("<img src = \"" +
75 pictures[Math.floor(Math.random() * 7)] +
76 ".gif\" />
");
77
78 // write the random quote to the page
79 document.write (quotes[Math.floor(Math.random() * 3)]);
80
81 // create a window with all the quotes in it
82 function allQuotes()
83 {
84 // create the child window for the quotes
85 var quoteWindow = window.open("", "", "resizable=yes, " +
86 "toolbar=no, menubar=no, status=no, location=no," +
87 " scrollBars=yes");
88 quoteWindow.document.write("<p>")
89
90
91
92
93
94
95 // write a close link to the new window
96 quoteWindow.document.write("</p>
<a href = " +
97 "\"javascript:window.close()\">Close this window");
98 } // end function allQuotes
99
100 // reset the document's cookie if wrong person
101 function wrongPerson()
102 {
103 // reset the cookie
104 document.cookie= "name=null;" +
105 " expires=Thu, 01-Jan-95 00:00:01 GMT";
106
107 // reload the page to get a new name after removing the cookie
108 location.reload();
109 } // end function wrongPerson
110
111 // open a new window with the quiz2.html file in it
112 function openQuiz()
113 {
114 window.open("quiz2.html", "", "toolbar = no, " +
115 "menubar = no, scrollBars = no");
116 } // end function openQuiz

Fig. 9.16 | Rich welcome page using several JavaScript concepts. (Part 3 of 5.)

// loop through all quotes and write them in the new window
for (var i = 0; i < quotes.length; i++)
 quoteWindow.document.write((i + 1) + ".) " +
 quotes[i] + "

");

232 Chapter 9 JavaScript: Objects

117 // -->
118 </script>

119 </head>

120 <body>

121 <p>View all quotes</p>
122
123

124

125
126 <script type = "text/javascript">

127 // variable that gets the last modification date and time
128 var modDate = new Date();
129
130 // write the last modified date and time to the page
131 document.write ("This page was last modified " +
132 modDate.toLocaleString());
133 </script>

134 </body>

135 </html>

Fig. 9.16 | Rich welcome page using several JavaScript concepts. (Part 4 of 5.)

<p id = "quizSpot">

 Please take our quiz</p>

document.lastModified

9.10 Multipage HTML and JavaScript Application 233

The script that builds most of this page starts in line 10. Lines 12–13 declare variables
needed for determining the time of day. Lines 16–23 create two arrays from which content
is randomly selected. This web page contains both an image (whose filename is randomly
selected from the pictures array) and a quote (whose text is randomly selected from the
quotes array). Line 26 writes the user’s local date and time to the web page using the Date
object’s toLocaleString method. Lines 29–40 display a time-sensitive greeting using the
same code as Fig. 4.11. The script either uses an existing cookie to obtain the user’s name
(lines 43–54) or prompts the user for a name, which the script then stores in a new cookie
(lines 55–63). Lines 66–67 write the greeting to the web page, and lines 70–71 produce
the link for resetting the cookie. This is the same code used in Fig. 9.15 to manipulate
cookies. Lines 74–79 write the random image and random quote to the web page. The
script chooses each by randomly selecting an index into each array. This code is similar to
the code used in Fig. 8.7 to display a random image using an array.

Function allQuotes (lines 82–98) uses the window object and a for loop to open a
new window containing all the quotes in the quotes array. Lines 85–87 create a new
window called quoteWindow. The script does not assign a URL or a name to this window,
but it does specify the window features to display. Line 88 opens a new paragraph in
quoteWindow. A for loop (lines 91–93) traverses the quotes array and writes each quote to
quoteWindow. Lines 96–97 close the paragraph in quoteWindow, insert a new line and add
a link at the bottom of the page that allows the user to close the window. Note that
allQuotes generates a web page and opens it in an entirely new window with JavaScript.

Fig. 9.16 | Rich welcome page using several JavaScript concepts. (Part 5 of 5.)

234 Chapter 9 JavaScript: Objects

Function wrongPerson (lines 101–109) resets the cookie storing the user’s name. This
function is identical to function wrongPerson in Fig. 9.15.

Function openQuiz (lines 112–116) opens a new window to display a sample quiz.
Using the window.open method, the script creates a new window containing quiz2.html
(lines 114–115). We discuss quiz2.html later in this section.

The primary script ends in line 118, and the body of the XHTML document begins
in line 120. Line 121 creates the link that calls function allQuotes when clicked. Lines
123–124 create a paragraph element containing the attribute id = "quizSpot". This para-
graph contains a link that calls function openQuiz.

Lines 126–133 contain a second script. This script appears in the XHTML docu-
ment’s body because it adds a dynamic footer to the page, which must appear after the
static XHTML content contained in the first part of the body. This script creates another
instance of the Date object, but the date is set to the last modified date and time of the
XHTML document, rather than the current date and time (line 128). The script obtains
the last modified date and time using property document.lastModified. Lines 131–132
add this information to the web page. Note that the last modified date and time appear at
the bottom of the page, after the rest of the body content. If this script were in the head
element, this information would be displayed before the entire body of the XHTML doc-
ument. Lines 133–135 close the script, the body and the XHTML document.

The Quiz Page
The quiz used in this example is in a separate XHTML document named quiz2.html
(Fig. 9.17). This document is similar to quiz.html in Fig. 8.12. The quiz in this example
differs from the quiz in Fig. 8.12 in that it shows the result in the main window in the
example, whereas the earlier quiz example alerts the result. After the Submit button in the
quiz window is clicked, the main window changes to reflect that the quiz was taken, and
the quiz window closes.

Lines 15–22 of this script check the user’s answer and output the result to the main
window. Lines 16–17 use window.opener to write to the main window. The property
window.opener always contains a reference to the window that opened the current
window, if such a window exists. Lines 16–17 write to property window.opener.docu-
ment.getElementById("quizSpot").innerHTML. Recall that quizSpot is the id of the
paragraph in the main window that contains the link to open the quiz. Property
innerHTML refers to the HTML code inside the quizSpot paragraph (i.e., the code between
<p> and </p>). Modifying the innerHTML property dynamically changes the XHTML
code in the paragraph. Thus, when lines 16–17 execute, the link in the main window dis-
appears, and the string "Congratulations, your answer is correct." appears. Lines 19–
22 modify window.opener.document.getElementById("quizSpot").innerHTML. Lines
19–22 use the same technique to display "Your answer is incorrect. Please try again",
followed by a link to try the quiz again.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Fig. 9.17 | Online quiz in a child window. (Part 1 of 3.)

9.10 Multipage HTML and JavaScript Application 235

4
5 <!-- Fig. 9.17: quiz2.html -->
6 <!-- Online quiz in a child window. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Online Quiz</title>
10 <script type = "text/JavaScript">

11 <!--
12 function checkAnswers()
13 {
14 // determine whether the answer is correct
15 if (document.getElementById("myQuiz").elements[1].checked)
16
17
18 else // if the answer is incorrect
19
20
21
22

23
24
25 window.close();
26 } // end function checkAnswers
27 //-->
28 </script>

29 </head>

30 <body>

31 <form id = "myQuiz" action = "javascript:checkAnswers()">

32 <p>Select the name of the tip that goes with the
33 image shown:

34

35

36
37 <input type = "radio" name = "radiobutton" value = "CPE" />

38 <label>Common Programming Error</label>
39
40 <input type = "radio" name = "radiobutton" value = "EPT" />

41 <label>Error-Prevention Tip</label>
42
43 <input type = "radio" name = "radiobutton" value = "PERF" />

44 <label>Performance Tip</label>
45
46 <input type = "radio" name = "radiobutton" value = "PORT" />

47 <label>Portability Tip</label>

48
49 <input type = "submit" name = "Submit" value = "Submit" />

50 <input type = "reset" name = "reset" value = "Reset" />

51 </p>

52 </form>

53 </body>

54 </html>

Fig. 9.17 | Online quiz in a child window. (Part 2 of 3.)

window.opener.document.getElementById("quizSpot").
 innerHTML = "Congratulations, your answer is correct";

window.opener.document.getElementById("quizSpot").
 innerHTML = "Your answer is incorrect. " +

"Please try again
 <a href = " +
 \"javascript:openQuiz()\">Please take our quiz";

window.opener.focus();

236 Chapter 9 JavaScript: Objects

Fig. 9.17 | Online quiz in a child window. (Part 3 of 3.)

9.11 Using JSON to Represent Objects 237

After checking the quiz answer, the script gives focus to the main window (i.e., puts
the main window in the foreground, on top of any other open browser windows), using
the method focus of the main window’s window object. The property window.opener ref-
erences the main window, so window.opener.focus() (line 24) gives the main window
focus, allowing the user to see the changes made to the text of the main window’s quiz-
Spot paragraph. Finally, the script closes the quiz window, using method window.close
(line 25).

Lines 28–29 close the script and head elements of the XHTML document. Line 30
opens the body of the XHTML document. The body contains the form, image, text labels
and radio buttons that comprise the quiz. Lines 52–54 close the form, the body and the
XHTML document.

9.11 Using JSON to Represent Objects
JSON (JavaScript Object Notation)—a simple way to represent JavaScript objects as
strings—is an alternative to XML as a data-exchange technique. JSON has gained acclaim
due to its simple format, making objects easy to read, create and parse. Each JSON object
is represented as a list of property names and values contained in curly braces, in the fol-
lowing format:

{ propertyName1 : value1, propertyName2 : value2 }

Arrays are represented in JSON with square brackets in the following format:

[value1, value2, value3]

Each value can be a string, a number, a JSON object, true, false or null. To appreciate
the simplicity of JSON data, examine this representation of an array of address-book en-
tries:

[{ first: 'Cheryl', last: 'Black' },
 { first: 'James', last: 'Blue' },
 { first: 'Mike', last: 'Brown' },
 { first: 'Meg', last: 'Gold' }]

JSON provides a straightforward way to manipulate objects in JavaScript, and many
other programming languages now support this format. In addition to simplifying object
creation, JSON allows programs to manipulate data easily and to efficiently transmit data
across the Internet. JSON integrates well with Ajax applications—see Section 13.7 for a
more detailed discussion of JSON and an Ajax-specific example. For more information on
JSON, visit our JSON Resource Center at www.deitel.com/json.

www.deitel.com/json

10
Document
Object Model
(DOM): Objects
and Collections

O B J E C T I V E S
In this chapter you’ll learn:

■ To use JavaScript and the W3C Document Object Model
to create dynamic web pages.

■ The concepts of DOM nodes and DOM trees.

■ To traverse, edit and modify elements in an XHTML
document.

■ To change CSS styles dynamically.

■ To create JavaScript animations.

Our children may learn about
heroes of the past. Our task is
to make ourselves architects of
the future.
—Jomo Mzee Kenyatta

Though leaves are many, the
root is one.
—William Butler Yeats

The thing that impresses me
most about America is the way
parents obey their children.
—Duke of Windsor

Most of us become parents long
before we have stopped being
children.
—Mignon McLaughlin

To write it, it took three
months; to conceive it three
minutes; to collect the data in
it—all my life.
—F. Scott Fitzgerald

Sibling rivalry is inevitable.
The only sure way to avoid it is
to have one child.
—Nancy Samalin

10.1 Introduction 239

O
u

tl
in

e

10.1 Introduction
In this chapter we introduce the Document Object Model (DOM). The DOM gives you
access to all the elements on a web page. Inside the browser, the whole web page—para-
graphs, forms, tables, etc.—is represented in an object hierarchy. Using JavaScript, you can
create, modify and remove elements in the page dynamically.

Previously, both Internet Explorer and Netscape had different versions of Dynamic
HTML, which provided similar functionality to the DOM. However, while they provided
many of the same capabilities, these two models were incompatible with each other. In an
effort to encourage cross-browser websites, the W3C created the standardized Document
Object Model. Firefox, Internet Explorer 7, and many other major browsers implement
most of the features of the W3C DOM.

This chapter begins by formally introducing the concept of DOM nodes and DOM
trees. We then discuss properties and methods of DOM nodes and cover additional
methods of the document object. We also discuss how to dynamically change style prop-
erties, which enables you to create many types of effects, such as user-defined background
colors and animations. Then, we present a diagram of the extensive object hierarchy, with
explanations of the various objects and properties, and we provide links to websites with
further information on the topic.

Software Engineering Observation 10.1
With the DOM, XHTML elements can be treated as objects, and many attributes of XHTML
elements can be treated as properties of those objects. Then, objects can be scripted (through their
id attributes) with JavaScript to achieve dynamic effects.

10.2 Modeling a Document: DOM Nodes and Trees
As we saw in previous chapters, the document’s getElementById method is the simplest
way to access a specific element in a page. In this section and the next, we discuss more
thoroughly the objects returned by this method.

The getElementById method returns objects called DOM nodes. Every element in an
XHTML page is modeled in the web browser by a DOM node. All the nodes in a docu-
ment make up the page’s DOM tree, which describes the relationships among elements.
Nodes are related to each other through child-parent relationships. An XHTML element
inside another element is said to be a child of the containing element. The containing ele-
ment is known as the parent. A node may have multiple children, but only one parent.
Nodes with the same parent node are referred to as siblings.

10.1 Introduction
10.2 Modeling a Document: DOM Nodes and Trees
10.3 Traversing and Modifying a DOM Tree
10.4 DOM Collections
10.5 Dynamic Styles
10.6 Summary of the DOM Objects and Collections

240 Chapter 10 Document Object Model (DOM): Objects and Collections

Some browsers have tools that allow you to see a visual representation of the DOM
tree of a document. When installing Firefox, you can choose to install a tool called the
DOM Inspector, which allows you to view the DOM tree of an XHTML document. To
inspect a document, Firefox users can access the DOM Inspector from the Tools menu of
Firefox. If the DOM inspector is not in the menu, run the Firefox installer and choose
Custom in the Setup Type screen, making sure the DOM Inspector box is checked in the
Optional Components window.

Microsoft provides a Developer Toolbar for Internet Explorer that allows you to
inspect the DOM tree of a document. The toolbar can be downloaded from Microsoft at
go.microsoft.com/fwlink/?LinkId=92716. Once the toolbar is installed, restart the
browser, then click the icon at the right of the toolbar and choose IE Developer Toolbar
from the menu. Figure 10.1 shows an XHTML document and its DOM tree displayed in
Firefox’s DOM Inspector and in IE’s Web Developer Toolbar.

The XHTML document contains a few simple elements. We explain the example
based on the Firefox DOM Inspector—the IE Toolbar displays the document with only
minor differences. A node can be expanded and collapsed using the + and - buttons next
to the node’s name. Figure 10.1(b) shows all the nodes in the document fully expanded.
The document node (shown as #document) at the top of the tree is called the root node,
because it has no parent. Below the document node, the HTML node is indented from the
document node to signify that the HTML node is a child of the #document node. The HTML
node represents the html element (lines 7–24).

The HEAD and BODY nodes are siblings, since they are both children of the HTML
node. The HEAD contains two #comment nodes, representing lines 5–6. The TITLE node

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 10.1: domtree.html -->
6 <!-- Demonstration of a document's DOM tree. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>DOM Tree Demonstration</title>
10 </head>

11 <body>

12 <h1>An XHTML Page</h1>
13 <p>This page contains some basic XHTML elements. We use the Firefox
14 DOM Inspector and the IE Developer Toolbar to view the DOM tree
15 of the document, which contains a DOM node for every element in
16 the document.</p>
17 <p>Here's a list:</p>
18

19 One
20 Two
21 Three
22

23 </body>

24 </html>

Fig. 10.1 | Demonstration of a document’s DOM tree. (Part 1 of 3.)

10.2 Modeling a Document: DOM Nodes and Trees 241

Fig. 10.1 | Demonstration of a document’s DOM tree. (Part 2 of 3.)

a) The XHTML document is rendered in Firefox.

b) The Firefox DOM inspector displays the document tree in the left panel. The
right panel shows information about the currently selected node.

242 Chapter 10 Document Object Model (DOM): Objects and Collections

has a child text node (#text) containing the text DOM Tree Demonstration, visible in the
right pane of the DOM inspector when the text node is selected. The BODY node contains
nodes representing each of the elements in the page. Note that the LI nodes are children
of the UL node, since they are nested inside it.

Also, notice that, in addition to the text nodes representing the text inside the body,
paragraphs and list elements, a number of other text nodes appear in the document. These
text nodes contain nothing but white space. When Firefox parses an XHTML document
into a DOM tree, the white space between sibling elements is interpreted as text and
placed inside text nodes. Internet Explorer ignores white space and does not convert it into
empty text nodes. If you run this example on your own computer, you will notice that the
BODY node has a #comment child node not present above in both the Firefox and Internet
Explorer DOM trees. This is a result of the copyright line at the end of the example file
that you downloaded.

This section introduced the concept of DOM nodes and DOM trees. The next sec-
tion considers DOM nodes in more detail, discussing methods and properties of DOM
nodes that allow you to modify the DOM tree of a document using JavaScript.

10.3 Traversing and Modifying a DOM Tree
The DOM gives you access to the elements of a document, allowing you to modify the
contents of a page dynamically using event-driven JavaScript. This section introduces

Fig. 10.1 | Demonstration of a document’s DOM tree. (Part 3 of 3.)

c) The Internet Explorer Web Developer Toolbar displays much of the same information
as the DOM inspector in Firefox in a panel at the bottom of the browser window.

10.3 Traversing and Modifying a DOM Tree 243

properties and methods of all DOM nodes that enable you to traverse the DOM tree,
modify nodes and create or delete content dynamically.

Figure 10.2 shows some of the functionality of DOM nodes, as well as two additional
methods of the document object. The program allows you to highlight, modify, insert and
remove elements.

Lines 117–132 contain basic XHTML elements and content. Each element has an id
attribute, which is also displayed at the beginning of the element in square brackets. For
example, the id of the h1 element in lines 117–118 is set to bigheading, and the heading
text begins with [bigheading]. This allows the user to see the id of each element in the
page. The body also contains an h3 heading, several p elements, and an unordered list.

A div element (lines 133–162) contains the remainder of the XHTML body. Line
134 begins a form element, assigning the empty string to the required action attribute
(because we’re not submitting to a server) and returning false to the onsubmit attribute.
When a form’s onsubmit handler returns false, the navigation to the address specified in
the action attribute is aborted. This allows us to modify the page using JavaScript event
handlers without reloading the original, unmodified XHTML.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 10.2: dom.html -->
6 <!-- Basic DOM functionality. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Basic DOM Functionality</title>
10 <style type = "text/css">

11 h1, h3 { text-align: center;
12 font-family: tahoma, geneva, sans-serif }
13 p { margin-left: 5%;
14 margin-right: 5%;
15 font-family: arial, helvetica, sans-serif }
16 ul { margin-left: 10% }
17 a { text-decoration: none }
18 a:hover { text-decoration: underline }
19 .nav { width: 100%;
20 border-top: 3px dashed blue;
21 padding-top: 10px }
22
23 .submit { width: 120px }
24 </style>
25 <script type = "text/javascript">

26 <!--
27 var currentNode; // stores the currently highlighted node
28 var idcount = 0; // used to assign a unique id to new elements
29
30 // get and highlight an element by its id attribute
31 function byId()
32 {

Fig. 10.2 | Basic DOM functionality. (Part 1 of 8.)

.highlighted { background-color: yellow }

244 Chapter 10 Document Object Model (DOM): Objects and Collections

33 var id = document.getElementById("gbi").value;
34 var target = document.getElementById(id);
35
36 if (target)
37 switchTo(target);
38 } // end function byId
39
40 // insert a paragraph element before the current element
41 // using the insertBefore method
42 function insert()
43 {
44 var newNode = createNewNode(
45 document.getElementById("ins").value);
46
47 switchTo(newNode);
48 } // end function insert
49
50 // append a paragraph node as the child of the current node
51 function appendNode()
52 {
53 var newNode = createNewNode(
54 document.getElementById("append").value);
55 currentNode.appendChild(newNode);
56 switchTo(newNode);
57 } // end function appendNode
58
59 // replace the currently selected node with a paragraph node
60 function replaceCurrent()
61 {
62 var newNode = createNewNode(
63 document.getElementById("replace").value);
64
65 switchTo(newNode);
66 } // end function replaceCurrent
67
68 // remove the current node
69 function remove()
70 {
71 if (currentNode.parentNode == document.body)
72 alert("Can't remove a top-level element.");
73 else
74 {
75 var oldNode = currentNode;
76 switchTo(oldNode.parentNode);
77
78 } // end else
79 } // end function remove
80
81 // get and highlight the parent of the current node
82 function parent()
83 {
84 var target = currentNode.parentNode;
85

Fig. 10.2 | Basic DOM functionality. (Part 2 of 8.)

currentNode.parentNode.insertBefore(newNode, currentNode);

currentNode.parentNode.replaceChild(newNode, currentNode);

currentNode.removeChild(oldNode);

10.3 Traversing and Modifying a DOM Tree 245

86 if (target != document.body)
87 switchTo(target);
88 else
89 alert("No parent.");
90 } // end function parent
91
92 // helper function that returns a new paragraph node containing
93 // a unique id and the given text
94 function createNewNode(text)
95 {
96
97 nodeId = "new" + idcount;
98 ++idcount;
99 newNode.id = nodeId;
100 text = "[" + nodeId + "] " + text;
101
102 return newNode;
103 } // end function createNewNode
104
105 // helper function that switches to a new currentNode
106 function switchTo(newNode)
107 {
108 // remove old highlighting
109 currentNode = newNode;
110 currentNode.className = "highlighted"; // highlight new node
111 document.getElementById("gbi").value = ;
112 } // end function switchTo
113 // -->
114 </script>

115 </head>

116 <body onload = "currentNode = document.getElementById('bigheading')">

117 <h1 id = "bigheading" class = "highlighted">

118 [bigheading] DHTML Object Model</h1>
119 <h3 id = "smallheading">[smallheading] Element Functionality</h3>
120 <p id = "para1">[para1] The Document Object Model (DOM) allows for
121 quick, dynamic access to all elements in an XHTML document for
122 manipulation with JavaScript.</p>
123 <p id = "para2">[para2] For more information, check out the
124 "JavaScript and the DOM" section of Deitel's
125

126 [link] JavaScript Resource Center.</p>
127 <p id = "para3">[para3] The buttons below demonstrate:(list)</p>
128 <ul id = "list">

129 <li id = "item1">[item1] getElementById and parentNode
130 <li id = "item2">[item2] insertBefore and appendChild
131 <li id = "item3">[item3] replaceChild and removeChild
132

133 <div id = "nav" class = "nav">

134 <form onsubmit = "return false" action = "">

135 <table>

136 <tr>

137 <td><input type = "text" id = "gbi"

138 value = "bigheading" /></td>

Fig. 10.2 | Basic DOM functionality. (Part 3 of 8.)

var newNode = document.createElement("p");

newNode.appendChild(document.createTextNode(text));

currentNode.className = "";

currentNode.id

246 Chapter 10 Document Object Model (DOM): Objects and Collections

139 <td><input type = "submit" value = "Get By id"
140 onclick = "byId()" class = "submit" /></td>

141 </tr><tr>
142 <td><input type = "text" id = "ins" /></td>

143 <td><input type = "submit" value = "Insert Before"
144 onclick = "insert()" class = "submit" /></td>

145 </tr><tr>
146 <td><input type = "text" id = "append" /></td>

147 <td><input type = "submit" value = "Append Child"

148 onclick = "appendNode()" class = "submit" /></td>

149 </tr><tr>
150 <td><input type = "text" id = "replace" /></td>

151 <td><input type = "submit" value = "Replace Current"

152 onclick = "replaceCurrent()" class = "submit" /></td>

153 </tr><tr><td />
154 <td><input type = "submit" value = "Remove Current"

155 onclick = "remove()" class = "submit" /></td>

156 </tr><tr><td />

157 <td><input type = "submit" value = "Get Parent"
158 onclick = "parent()" class = "submit" /></td>

159 </tr>
160 </table>

161 </form>

162 </div>

163 </body>

164 </html>

Fig. 10.2 | Basic DOM functionality. (Part 4 of 8.)

a) This is the page when it first loads. It begins with the large heading highlighted.

10.3 Traversing and Modifying a DOM Tree 247

Fig. 10.2 | Basic DOM functionality. (Part 5 of 8.)

b) This is the document after using the Get By id button to select para3.

c) This is the document after inserting a new paragraph before the selected one.

248 Chapter 10 Document Object Model (DOM): Objects and Collections

Fig. 10.2 | Basic DOM functionality. (Part 6 of 8.)

d) Using the Append Child button, a child paragraph is created.

e) The selected paragraph is replaced with a new one.

10.3 Traversing and Modifying a DOM Tree 249

Fig. 10.2 | Basic DOM functionality. (Part 7 of 8.)

f) The Get Parent button gets the parent of the selected node.

g) Now we select the first list item.

250 Chapter 10 Document Object Model (DOM): Objects and Collections

A table (lines 135–160) contains the controls for modifying and manipulating the
elements on the page. Each of the six buttons calls its own event-handling function to per-
form the action described by its value.

The JavaScript code begins by declaring two variables. The variable currentNode (line
27) keeps track of the currently highlighted node, because the functionality of the buttons
depends on which node is currently selected. The body’s onload attribute (line 116) ini-
tializes currentNode to the h1 element with id bigheading. Variable idcount (line 28) is
used to assign a unique id to any new elements that are created. The remainder of the Java-
Script code contains event handling functions for the XHTML buttons and two helper
functions that are called by the event handlers. We now discuss each button and its corre-
sponding event handler in detail.

Finding and Highlighting an Element Using getElementById and className
The first row of the table (lines 136-141) allows the user to enter the id of an element into
the text field (lines 137–138) and click the Get By Id button (lines 139–140) to find and
highlight the element, as shown in Fig. 10.2(b) and (g). The onclick attribute sets the
button’s event handler to function byId.

The byId function is defined in lines 31–38. Line 33 uses getElementById to assign
the contents of the text field to variable id. Line 34 uses getElementById again to find the
element whose id attribute matches the contents of variable id, and assign it to variable
target. If an element is found with the given id, getElementById returns an object rep-

Fig. 10.2 | Basic DOM functionality. (Part 8 of 8.)

h) The Remove Current button removes the current node and selects its parent.

10.3 Traversing and Modifying a DOM Tree 251

resenting that element. If no element is found, getElementById returns null. Line 36
checks whether target is an object—recall that any object used as a boolean expression is
true, while null is false. If target evaluates to true, line 37 calls the switchTo function
with target as its argument.

The switchTo function, defined in lines 106–112, is used throughout the program
to highlight a new element in the page. The current element is given a yellow background
using the style class highlighted, defined in line 22. Line 108 sets the current node’s
className property to the empty string. The className property allows you to change
an XHTML element’s class attribute. In this case, we clear the class attribute in order
to remove the highlighted class from the currentNode before we highlight the new one.

Line 109 assigns the newNode object (passed into the function as a parameter) to vari-
able currentNode. Line 110 adds the highlighted style class to the new currentNode
using the className property.

Finally, line 111 uses the id property to assign the current node’s id to the input
field’s value property. Just as className allows access to an element’s class attribute, the
id property controls an element’s id attribute. While this isn’t necessary when switchTo
is called by byId, we will see shortly that other functions call switchTo. This line makes
sure that the text field’s value is consistent with the currently selected node’s id. Having
found the new element, removed the highlighting from the old element, updated the cur-
rentNode variable and highlighted the new element, the program has finished selecting a
new node by a user-entered id.

Creating and Inserting Elements Using insertBefore and appendChild
The next two table rows allow the user to create a new element and insert it before the
current node or as a child of the current node. The second row (lines 141–145) allows the
user to enter text into the text field and click the Insert Before button. The text is placed
in a new paragraph element, which is then inserted into the document before the currently
selected element, as in Fig. 10.2(c). The button in lines 143–144 calls the insert func-
tion, defined in lines 42–48.

Lines 44–45 call the function createNewNode, passing it the value of the input field
(whose id is ins) as an argument. Function createNewNode, defined in lines 94–103, cre-
ates a paragraph node containing the text passed to it. Line 96 creates a p element using
the document object’s createElement method. The createElement method creates a new
DOM node, taking the tag name as an argument. Note that while createElement creates
an element, it does not insert the element on the page.

Line 97 creates a unique id for the new element by concatenating "new" and the value
of idcount before incrementing idcount in line 98. Line 99 assigns the id to the new ele-
ment. Line 100 concatenates the element’s id in square brackets to the beginning of text
(the parameter containing the paragraph’s text).

Line 101 introduces two new methods. The document’s createTextNode method cre-
ates a node that can contain only text. Given a string argument, createTextNode inserts
the string into the text node. In line 101, we create a new text node containing the contents
of variable text. This new node is then used (still in line 101) as the argument to the
appendChild method, which is called on the paragraph node. Method appendChild is
called on a parent node to insert a child node (passed as an argument) after any existing
children.

252 Chapter 10 Document Object Model (DOM): Objects and Collections

After the p element is created, line 102 returns the node to the calling function
insert, where it is assigned to variable newNode in lines 44–45. Line 46 inserts the newly
created node before the currently selected node. The parentNode property of any DOM
node contains the node’s parent. In line 46, we use the parentNode property of current-
Node to get its parent.

We call the insertBefore method (line 46) on the parent with newNode and cur-
rentNode as its arguments to insert newNode as a child of the parent directly before cur-
rentNode. The general syntax of the insertBefore method is

parent.insertBefore(newChild, existingChild);

The method is called on a parent with the new child and an existing child as arguments.
The node newChild is inserted as a child of parent directly before existingChild. Line 47
uses the switchTo function (discussed earlier in this section) to update the currentNode
to the newly inserted node and highlight it in the XHTML page.

The third table row (lines 145–149) allows the user to append a new paragraph node
as a child of the current element, demonstrated in Fig. 10.2(d). This feature uses a similar
procedure to the insertBefore functionality. Lines 53–54 in function appendNode create
a new node, line 55 inserts it as a child of the current node, and line 56 uses switchTo to
update currentNode and highlight the new node.

Replacing and Removing Elements Using replaceChild and removeChild
The next two table rows (lines 149–156) allow the user to replace the current element with
a new p element or simply remove the current element. Lines 150–152 contain a text field
and a button that replaces the currently highlighted element with a new paragraph node
containing the text in the text field. This feature is demonstrated in Fig. 10.2(e).

The button in lines 151–152 calls function replaceCurrent, defined in lines 60–66.
Lines 62–63 call createNewNode, in the same way as in insert and appendNode, getting
the text from the correct input field. Line 64 gets the parent of currentNode, then calls
the replaceChild method on the parent. The replaceChild method works as follows:

parent.replaceChild(newChild, oldChild);

The parent’s replaceChild method inserts newChild into its list of children in place of old-
Child.

The Remove Current feature, shown in Fig. 10.2(h), removes the current element
entirely and highlights the parent. No text field is required because a new element is not
being created. The button in lines 154-155 calls the remove function, defined in lines 69–
79. If the node’s parent is the body element, line 72 alerts an error—the program does not
allow the entire body element to be selected. Otherwise, lines 75–77 remove the current
element. Line 75 stores the old currentNode in variable oldNode. We do this to maintain
a reference to the node to be removed after we’ve changed the value of currentNode. Line
76 calls switchTo to highlight the parent node.

Line 77 uses the removeChild method to remove the oldNode (a child of the new
currentNode) from its place in the XHTML document. In general,

parent.removeChild(child);

looks in parent’s list of children for child and removes it.

10.4 DOM Collections 253

The final button (lines 157–158) selects and highlights the parent element of the cur-
rently highlighted element by calling the parent function, defined in lines 82–90. Func-
tion parent simply gets the parent node (line 84), makes sure it is not the body element,
(line 86) and calls switchTo to highlight it (line 87). Line 89 alerts an error if the parent
node is the body element. This feature is shown in Fig. 10.2(f).

This section introduced the basics of DOM tree traversal and manipulation. Next, we
introduce the concept of collections, which give you access to multiple elements in a page.

10.4 DOM Collections
Included in the Document Object Model is the notion of collections, which are groups of
related objects on a page. DOM collections are accessed as properties of DOM objects
such as the document object or a DOM node. The document object has properties con-
taining the images collection, links collection, forms collection and anchors collection.
These collections contain all the elements of the corresponding type on the page.
Figure 10.3 gives an example that uses the links collection to extract all of the links on a
page and display them together at the bottom of the page.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 10.3: collections.html -->
6 <!-- Using the links collection. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Using Links Collection</title>
10 <style type = "text/css">

11 body { font-family: arial, helvetica, sans-serif }
12 h1 { font-family: tahoma, geneva, sans-serif;
13 text-align: center }
14 p { margin: 5% }
15 p a { color: #aa0000 }
16 .links { font-size: 14px;
17 text-align: justify;
18 margin-left: 10%;
19 margin-right: 10% }
20 .link a { text-decoration: none }
21 .link a:hover { text-decoration: underline }
22 </style>

23 <script type = "text/javascript">

24 <!--
25 function processlinks()
26 {
27 // get the document's links
28 var contents = "Links in this page:\n
| ";
29
30 // concatenate each link to contents
31 for (var i = 0; i < ; i++)
32 {

Fig. 10.3 | Using the links collection. (Part 1 of 2.)

var linkslist = document.links;

linkslist.length

254 Chapter 10 Document Object Model (DOM): Objects and Collections

33
34 contents += "" +
35
36 " | ";
37 } // end for
38
39 document.getElementById("links").innerHTML = contents;
40 } // end function processlinks
41 // -->
42 </script>

43 </head>

44 <body onload = "processlinks()">

45 <h1>Deitel Resource Centers</h1>
46 <p>Deitel's website contains
47 a rapidly growing
48 list of
49 Resource Centers on a wide range of topics. Many Resource
50 centers related to topics covered in this book,
51 Internet and World Wide
52 Web How to Program, 4th Edition. We have Resouce Centers on
53 Web 2.0,
54 Firefox and
55 Internet Explorer 7,
56 XHTML, and
57 JavaScript.
58 Watch the list of Deitel Resource Centers for related new
59 Resource Centers.</p>
60 <div id = "links" class = "links"></div>

61 </body>

62 </html>

Fig. 10.3 | Using the links collection. (Part 2 of 2.)

var currentLink = linkslist[i];

currentLink.innerHTML.link(currentLink.href) +

10.5 Dynamic Styles 255

The XHTML body contains a paragraph (lines 46–59) with links at various places in
the text and an empty div (line 60) with id links. The body’s onload attribute specifies
that the processlinks method is called when the body finishes loading.

Method processlinks declares variable linkslist (line 27) to store the document’s
links collection, which is accessed as the links property of the document object. Line 28
creates the string (contents) that will contain all the document’s links, to be inserted into
the links div later. Line 31 begins a for statement to iterate through each link. To find
the number of elements in the collection, we use the collection’s length property.

Line 33 inside the for statement creates a variable (currentlink) that stores the cur-
rent link. Note that we can access the collection stored in linkslist using indices in
square brackets, just as we did with arrays. DOM collections are stored in objects which
have only one property and two methods—the length property, the item method and the
namedItem method. The item method—an alternative to the square bracketed indices—
can be used to access specific elements in a collection by taking an index as an argument.
The namedItem method takes a name as a parameter and finds the element in the collec-
tion, if any, whose id attribute or name attribute matches it.

Lines 34–36 add a span element to the contents string containing the current link.
Recall that the link method of a string object returns the string as a link to the URL passed
to the method. Line 35 uses the link method to create an a (anchor) element containing
the proper text and href attribute.

Notice that variable currentLink (a DOM node representing an a element) has a spe-
cialized href property to refer to the link’s href attribute. Many types of XHTML ele-
ments are represented by special types of nodes that extend the functionality of a basic
DOM node. Line 39 inserts the contents into the empty div with id "links" (line 60) in
order to show all the links on the page in one location.

Collections allow easy access to all elements of a single type in a page. This is useful
for gathering elements into one place and for applying changes across an entire page. For
example, the forms collection could be used to disable all form inputs after a submit
button has been pressed to avoid multiple submissions while the next page loads. The next
section discusses how to dynamically modify CSS styles using JavaScript and DOM nodes.

10.5 Dynamic Styles
An element’s style can be changed dynamically. Often such a change is made in response
to user events, which we discuss in Chapter 11. Such style changes can create many effects,
including mouse hover effects, interactive menus, and animations. Figure 10.4 is a simple
example that changes the background-color style property in response to user input.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 10.4: dynamicstyle.html -->
6 <!-- Dynamic styles. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

Fig. 10.4 | Dynamic styles. (Part 1 of 2.)

256 Chapter 10 Document Object Model (DOM): Objects and Collections

Function start (lines 12–17) prompts the user to enter a color name, then sets the
background color to that value. [Note: An error occurs if the value entered is not a valid
color.] We refer to the background color as document.body.style.backgroundColor—
the body property of the document object refers to the body element. We then use the
style property (a property of most XHTML elements) to set the background-color CSS
property. This is referred to as backgroundColor in JavaScript—the hyphen is removed to
avoid confusion with the subtraction (-) operator. This naming convention is consistent
for most CSS properties. For example, borderWidth correlates to the border-width CSS
property, and fontFamily correlates to the font-family CSS property. In general, CSS
properties are accessed in the format node.style.styleproperty.

Figure 10.5 introduces the setInterval and clearInterval methods of the window
object, combining them with dynamic styles to create animated effects. This example is a
basic image viewer that allows you to select a Deitel book cover and view it in a larger size.
When one of the thumbnail images on the right is clicked, the larger version grows from
the top-left corner of the main image area.

The body (lines 66–85) contains two div elements, both floated left using styles
defined in lines 14 and 17 in order to present them side by side. The left div contains the
full-size image iw3htp4.jpg, which appears when the page loads. The right div contains

9 <title>Dynamic Styles</title>
10 <script type = "text/javascript">

11 <!--
12 function start()
13 {
14

15
16

17 } // end function start
18 // -->
19 </script>

20 </head>

21 <body id = "body" onload = "start()">

22 <p>Welcome to our website!</p>
23 </body>

24 </html>

Fig. 10.4 | Dynamic styles. (Part 2 of 2.)

var inputColor = prompt("Enter a color name for the " +
"background of this page", "");

document.body.style.backgroundColor = inputColor;

a)

b)

10.5 Dynamic Styles 257

six thumbnail images which respond to the click event by calling the display method and
passing it the filename of the corresponding full-size image.

The display function (lines 46–62) dynamically updates the image in the left div to
the one corresponding to the user’s click. Lines 48–49 prevent the rest of the function
from executing if interval is defined (i.e., an animation is in progress.) Line 51 gets the
left div by its id, imgCover. Line 52 creates a new img element. Lines 53–55 set its id to
imgCover, set its src to the correct image file in the fullsize directory, and set its
required alt attribute. Lines 56–59 do some additional initialization before beginning the
animation in line 61. To create the growing animation effect, lines 57–58 set the image
width and height to 0. Line 59 replaces the current bigImage node with newNode (created
in line 52), and line 60 sets count, the variable that controls the animation, to 0.

Line 61 introduces the window object’s setInterval method, which starts the anima-
tion. This method takes two parameters—a statement to execute repeatedly, and an
integer specifying how often to execute it, in milliseconds. We use setInterval to call

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 10.5: coverviewer.html -->
6 <!-- Dynamic styles used for animation. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Deitel Book Cover Viewer</title>
10 <style type = "text/css">

11 .thumbs { width: 192px;
12 height: 370px;
13 padding: 5px;
14 float: left }
15 .mainimg { width: 289px;
16 padding: 5px;
17 float: left }
18 .imgCover { height: 373px }
19 img { border: 1px solid black }
20 </style>

21 <script type = "text/javascript">

22 <!--
23 var interval = null; // keeps track of the interval
24 var speed = 6; // determines the speed of the animation
25 var count = 0; // size of the image during the animation
26
27 // called repeatedly to animate the book cover
28 function run()
29 {
30 count += speed;
31
32 // stop the animation when the image is large enough
33 if (count >= 375)
34 {

Fig. 10.5 | Dynamic styles used for animation. (Part 1 of 4.)

258 Chapter 10 Document Object Model (DOM): Objects and Collections

35
36
37 } // end if
38
39 var bigImage = document.getElementById("imgCover");
40 bigImage.style.width = .7656 * count + "px";
41 bigImage.style.height = count + "px";
42 } // end function run
43
44 // inserts the proper image into the main image area and
45 // begins the animation
46 function display(imgfile)
47 {
48 if (interval)
49 return;
50
51 var bigImage = document.getElementById("imgCover");
52 var newNode = document.createElement("img");
53 newNode.id = "imgCover";
54 newNode.src = "fullsize/" + imgfile;
55 newNode.alt = "Large image";
56 newNode.className = "imgCover";
57 newNode.style.width = "0px";
58 newNode.style.height = "0px";
59 bigImage.parentNode.replaceChild(newNode, bigImage);
60 count = 0; // start the image at size 0
61 // animate
62 } // end function display
63 // -->
64 </script>

65 </head>

66 <body>

67 <div id = "mainimg" class = "mainimg">
68 <img id = "imgCover" src = "fullsize/iw3htp4.jpg"

69 alt = "Full cover image" class = "imgCover" />

70 </div>
71 <div id = "thumbs" class = "thumbs" >
72 <img src = "thumbs/iw3htp4.jpg" alt = "iw3htp4"

73 onclick = "display('iw3htp4.jpg')" />

74 <img src = "thumbs/chtp5.jpg" alt = "chtp5"

75 onclick = "display('chtp5.jpg')" />

76 <img src = "thumbs/cpphtp6.jpg" alt = "cpphtp6"

77 onclick = "display('cpphtp6.jpg')" />

78 <img src = "thumbs/jhtp7.jpg" alt = "jhtp7"

79 onclick = "display('jhtp7.jpg')" />

80 <img src = "thumbs/vbhtp3.jpg" alt = "vbhtp3"

81 onclick = "display('vbhtp3.jpg')" />

82 <img src = "thumbs/vcsharphtp2.jpg" alt = "vcsharphtp2"

83 onclick = "display('vcsharphtp2.jpg')" />

84 </div>

85 </body>

86 </html>

Fig. 10.5 | Dynamic styles used for animation. (Part 2 of 4.)

window.clearInterval(interval);
interval = null;

interval = window.setInterval("run()", 10);

10.5 Dynamic Styles 259

Fig. 10.5 | Dynamic styles used for animation. (Part 3 of 4.)

a) The cover viewer page loads with the cover of this book.

b) When the user clicks the thumbnail of C How to Program, the full-size image begins
growing from the top-left corner of the window.

260 Chapter 10 Document Object Model (DOM): Objects and Collections

Fig. 10.5 | Dynamic styles used for animation. (Part 4 of 4.)

c) The cover continues to grow.

d) The animation finishes when the cover reaches its full size.

10.6 Summary of the DOM Objects and Collections 261

function run every 10 milliseconds. The setInterval method returns a unique identifier
to keep track of that particular interval—we assign this identifier to the variable interval.
We use this identifier to stop the animation when the image has finished growing.

The run function, defined in lines 28–42, increases the height of the image by the
value of speed and updates its width accordingly to keep the aspect ratio consistent.
Because the run function is called every 10 milliseconds, this increase happens repeatedly
to create an animated growing effect. Line 30 adds the value of speed (declared and ini-
tialized to 6 in line 24) to count, which keeps track of the animation’s progress and dictates
the current size of the image. If the image has grown to its full height (375), line 35 uses
the window’s clearInterval method to stop the repetitive calls of the run method. We
pass to clearInterval the interval identifier (stored in interval) that setInterval cre-
ated in line 61. Although it seems unnecessary in this script, this identifier allows the script
to keep track of multiple intervals running at the same time and to choose which interval
to stop when calling clearInterval.

Line 39 gets the image and lines 40–41 set its width and height CSS properties. Note
that line 40 multiplies count by a scaling factor of .7656 in order to keep the ratio of the
image’s dimensions consistent with the actual dimensions of the image. Run the code
example and click on a thumbnail image to see the full animation effect.

This section demonstrated the concept of dynamically changing CSS styles using
JavaScript and the DOM. We also discussed the basics of how to create scripted anima-
tions using setInterval and clearInterval.

10.6 Summary of the DOM Objects and Collections
As you’ve seen in the preceding sections, the objects and collections in the W3C DOM
give you flexibility in manipulating the elements of a web page. We’ve shown how to ac-
cess the objects in a page, how to access the objects in a collection, and how to change el-
ement styles dynamically.

The W3C DOM allows you to access every element in an XHTML document. Each
element in a document is represented by a separate object. The diagram in Fig. 10.6 shows
many of the important objects and collections provided by the W3C DOM. Figure 10.7
provides a brief description of each object and collection in Fig. 10.6.

Fig. 10.6 | W3C Document Object Model.

applets

anchors

forms

images

links
collection

body

document

history

location

object

window

Key

262 Chapter 10 Document Object Model (DOM): Objects and Collections

For a complete reference on the W3C Document Object Model, see the DOM Level
3 recommendation from the W3C at http://www.w3.org/TR/DOM-Level-3-Core/. The
DOM Level 2 HTML Specification (the most recent HTML DOM standard), available
at http://www.w3.org/TR/DOM-Level-2-HTML/, describes additional DOM functionality
specific to HTML, such as objects for various types of XHTML elements. Keep in mind
that not all web browsers implement all features included in the specification.

Object or collection Description

Objects
window Represents the browser window and provides access to the window’s

document object. Also contains history and location objects.
document Represents the XHTML document rendered in a window. Provides

access to every element in the document and allows dynamic modifica-
tion of it. Contains collections for accessing all elements of a given type.

body Provides access to the body element of an XHTML document.
history Keeps track of the sites visited by the browser user. The object provides

a script programmer with the ability to move forward and backward
through the visited sites.

location Contains the URL of the rendered document. When this object is set
to a new URL, the browser immediately navigates to the new location.

Collections
anchors Collection contains all the anchor elements (a) that have a name or id

attribute. The elements appear in the collection in the order in which
they were defined in the XHTML document.

forms Contains all the form elements in the XHTML document. The ele-
ments appear in the collection in the order in which they were defined
in the XHTML document.

images Contains all the img elements in the XHTML document. The ele-
ments appear in the collection in the order in which they were defined
in the XHTML document.

links Contains all the anchor elements (a) with an href property. The ele-
ments appear in the collection in the order in which they were defined
in the XHTML document.

Fig. 10.7 | Objects and collections in the W3C Document Object Model.

http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/DOM-Level-2-HTML/

11
JavaScript:
Events

O B J E C T I V E S
In this chapter you’ll learn:

■ The concepts of events, event handlers and event
bubbling.

■ To create and register event handlers that respond to
mouse and keyboard events.

■ To use the event object to get information about an
event.

■ To recognize and respond to common events, including
onload, onmousemove, onmouseover, onmouseout,
onfocus, onblur, onsubmit and onreset.

The wisest prophets make
sure of the event first.
—Horace Walpole

Do you think I can listen all
day to such stuff?
—Lewis Carroll

The user should feel in
control of the computer; not
the other way around. This
is achieved in applications
that embody three qualities:
responsiveness,
permissiveness, and
consistency.
—Inside Macintosh, Volume 1
Apple Computer, Inc., 1985

We are responsible for
actions performed in
response to circumstances for
which we are not
responsible.
—Allan Massie

264 Chapter 11 JavaScript: Events

O
u

tl
in

e

11.1 Introduction
We’ve seen that XHTML pages can be controlled via scripting, and we’ve already used a
few events to trigger scripts, such as the onclick and onsubmit events. This chapter goes
into more detail on JavaScript events, which allow scripts to respond to user interactions
and modify the page accordingly. Events allow scripts to respond to a user who is moving
the mouse, entering form data or pressing keys. Events and event handling help make web
applications more responsive, dynamic and interactive.

In this chapter, we discuss how to set up functions to react when an event fires
(occurs). We give examples of event handling for nine common events, including mouse
events and form-processing events. A the end of the chapter, we provide a table of the
events covered in this chapter and other useful events.

11.2 Registering Event Handlers
Functions that handle events are called event handlers. Assigning an event handler to an
event on a DOM node is called registering an event handler. Previously, we have registered
event handlers using the inline model, treating events as attributes of XHTML elements
(e.g., <p onclick = "myfunction()">). Another model, known as the traditional model,
for registering event handlers is demonstrated alongside the inline model in Fig. 11.1.

In the earliest event-capable browsers, the inline model was the only way to handle
events. Later, Netscape developed the traditional model and Internet Explorer adopted it.
Since then, both Netscape and Microsoft have developed separate (incompatible)
advanced event models with more functionality than either the inline or the traditional
model. Netscape’s advanced model was adapted by the W3C to create a DOM Events
Specification. Most browsers support the W3C model, but Internet Explorer 7 does not.

11.1 Introduction
11.2 Registering Event Handlers
11.3 Event onload
11.4 Event onmousemove, the event Object and this
11.5 Rollovers with onmouseover and onmouseout
11.6 Form Processing with onfocus and onblur
11.7 Form Processing with onsubmit and onreset
11.8 Event Bubbling
11.9 More Events

11.10 Web Resources

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 11.1: registering.html -->
6 <!-- Event registration models. -->

Fig. 11.1 | Event registration models. (Part 1 of 3.)

11.2 Registering Event Handlers 265

7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Event Registration Models</title>
10 <style type = "text/css">

11 div { padding: 5px;
12 margin: 10px;
13 border: 3px solid #0000BB;
14 width: 12em }
15 </style>

16 <script type = "text/javascript">

17 <!--
18 // handle the onclick event regardless of how it was registered
19 function handleEvent()
20 {
21 alert("The event was successfully handled.");
22 } // end function handleEvent
23
24 // register the handler using the traditional model
25 function registerHandler()
26 {
27 var traditional = document.getElementById("traditional");
28
29 } // end function registerHandler
30 // -->
31 </script>

32 </head>

33 <body onload = "registerHandler()">

34 <!-- The event handler is registered inline -->
35 <div id = "inline" >

36 Inline registration model</div>
37
38 <!-- The event handler is registered by function registerHandler -->
39 <div id = "traditional">Traditional registration model</div>
40 </body>

41 </html>

Fig. 11.1 | Event registration models. (Part 2 of 3.)

traditional.onclick = handleEvent;

onclick = "handleEvent()"

a) The user clicks the div for which the event handler was registered using the inline model.

266 Chapter 11 JavaScript: Events

This means that to create cross-browser websites, we are mostly limited to the traditional
and inline event models. While the advanced models provide more convenience and func-
tionality, most of the features can be implemented with the traditional model.

Line 35 assigns "handleEvent()" to the onclick attribute of the div in lines 35–36.
This is the inline model for event registration we’ve seen in previous examples. The div in
line 39 is assigned an event handler using the traditional model. When the body element
(lines 33–40) loads, the registerHandler function is called.

Function registerHandler (lines 25–29) uses JavaScript to register the function han-
dleEvent as the event handler for the onclick event of the div with the id "tradi-

tional". Line 27 gets the div, and line 28 assigns the function handleEvent to the div’s
onclick property.

Notice that in line 28, we do not put handleEvent in quotes or include parentheses
at the end of the function name, as we do in the inline model in line 35. In the inline
model, the value of the XHTML attribute is a JavaScript statement to execute when the
event occurs. The value of the onclick property of a DOM node is not an executable state-
ment, but the name of a function to be called when the event occurs. Recall that JavaScript
functions can be treated as data (i.e., passed into methods, assigned to variables, etc.).

Fig. 11.1 | Event registration models. (Part 3 of 3.)

b) The event handler displays an alert dialog

c) The user clicks the div for which the event handler was registered using the traditional model.

d) The event handler displays an alert dialog.

11.3 Event onload 267

Common Programming Error 11.1
Putting quotes around the function name when registering it using the inline model would assign
a string to the onclick property of the node—a string cannot be called.

Common Programming Error 11.2
Putting parentheses after the function name when registering it using the inline model would
call the function immediately and assign its return value to the onclick property.

Once the event handler is registered in line 28, the div in line 39 has the same
behavior as the div in lines 35–36, because handleEvent (lines 19–22) is set to handle the
onclick event for both divs. When either div is clicked, an alert will display "The event
was successfully handled."

The traditional model allows us to register event handlers in JavaScript code. This has
important implications for what we can do with JavaScript events. For example, tradi-
tional event-handler registration allows us to assign event handlers to many elements
quickly and easily using repetition statements, instead of adding an inline event handler to
each XHTML element. In the remaining examples in this chapter, we use both the inline
and traditional registration models depending on which is more convenient.

11.3 Event onload
The onload event fires whenever an element finishes loading successfully (i.e., all its chil-
dren are loaded). Frequently, this event is used in the body element to initiate a script after
the page loads in the client’s browser. Figure 11.2 uses the onload event for this purpose.
The script called by the onload event updates a timer that indicates how many seconds
have elapsed since the document was loaded.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 11.2: onload.html -->
6 <!-- Demonstrating the onload event. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>onload Event</title>
10 <script type = "text/javascript">

11 <!--
12 var seconds = 0;
13
14 // called when the page loads to begin the timer
15 function startTimer()
16 {
17 // 1000 milliseconds = 1 second
18

19 } // end function startTimer
20

Fig. 11.2 | Demonstrating the onload event. (Part 1 of 2.)

window.setInterval("updateTime()", 1000);

268 Chapter 11 JavaScript: Events

Our use of the onload event occurs in line 30. After the body section loads, the
browser triggers the onload event. This calls function startTimer (lines 15–19), which in
turn uses method window.setInterval to specify that function updateTime (lines 22–26)
should be called every 1000 milliseconds. The updateTime function increments variable
seconds and updates the counter on the page.

Note that we could not have created this program without the onload event, because
elements in the XHTML page cannot be accessed until the page has loaded. If a script in
the head attempts to get a DOM node for an XHTML element in the body, getElement-
ById returns null because the body has not yet loaded. Other uses of the onload event
include opening a pop-up window once a page has loaded and triggering a script when an
image or Java applet loads.

Common Programming Error 11.3
Trying to get an element in a page before the page has loaded is a common error. Avoid this by
putting your script in a function using the onload event to call the function.

11.4 Event onmousemove, the event Object and this
This section introduces the onmousemove event, which fires repeatedly whenever the user
moves the mouse over the web page. We also discuss the event object and the keyword
this, which permit more advanced event-handling capabilities. Figure 11.3 uses on-
mousemove and this to create a simple drawing program that allows the user to draw inside
a box in red or blue by holding down the Shift or Ctrl keys.

21 // called every 1000 ms to update the timer
22 function updateTime()
23 {
24

25

26 } // end function updateTime
27 // -->
28 </script>

29 </head>

30
31 <p>Seconds you have spent viewing this page so far:
32 <strong id = "soFar">0</p>
33 </body>

34 </html>

Fig. 11.2 | Demonstrating the onload event. (Part 2 of 2.)

++seconds;
document.getElementById("soFar").innerHTML = seconds;

<body onload = "startTimer()">

11.4 Event onmousemove, the event Object and this 269

The XHTML body has a table with a tbody containing one row that gives the user
instructions on how to use the program. The body’s onload attribute (line 61) calls func-
tion createCanvas, which initializes the program by filling in the table.

The createCanvas function (lines 23–41) fills in the table with a grid of cells. The
CSS rule in lines 14–15 sets the width and height of every td element to 4px. Line 11

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 11.3: draw.html -->
6 <!-- A simple drawing program. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Simple Drawing Program</title>
10 <style type = "text/css">
11 #canvas { width: 400px;
12 border: 1px solid #999999;
13 }
14 td { width: 4px;
15 height: 4px }
16 th.key { font-family: arial, helvetica, sans-serif;
17 font-size: 12px;
18 border-bottom: 1px solid #999999 }
19 </style>

20 <script type = "text/javascript">
21 <!--
22 //initialization function to insert cells into the table
23 function createCanvas ()
24 {
25 var side = 100;
26 var tbody = document.getElementById("tablebody");
27
28 for (var i = 0; i < side; i++)
29 {
30 var row = document.createElement("tr");
31
32 for (var j = 0; j < side; j++)
33 {
34 var cell = document.createElement("td");
35
36 row.appendChild(cell);
37 } // end for
38
39 tbody.appendChild(row);
40 } // end for
41 } // end function createCanvas
42
43 // processes the onmousemove event
44 function processMouseMove(e)
45 {

Fig. 11.3 | Simple drawing program. (Part 1 of 3.)

border-collapse: collapse

cell.onmousemove = processMouseMove;

270 Chapter 11 JavaScript: Events

46 // get the event object from IE
47 if (!e)
48 var e = window.event;
49
50 // turn the cell blue if the Ctrl key is pressed
51 if (e.ctrlKey)
52 this.style.backgroundColor = "blue";
53
54 // turn the cell red if the Shift key is pressed
55 if (e.shiftKey)
56 this.style.backgroundColor = "red";
57 } // end function processMouseMove
58 // -->
59 </script>

60 </head>

61 <body onload = "createCanvas()">

62 <table id = "canvas" class = "canvas"><tbody id = "tablebody">

63 <tr><th class = "key" colspan = "100">Hold <tt>ctrl</tt>
64 to draw blue. Hold <tt>shift</tt> to draw red.</th></tr>
65 </tbody></table>
66 </body>

67 </html>

Fig. 11.3 | Simple drawing program. (Part 2 of 3.)

a) The page loads and
fills with white cells.

With no keys held down,
moving the mouse does

not draw anything.

b) The user holds the Ctrl
key and moves the mouse

to draw a blue line.

11.4 Event onmousemove, the event Object and this 271

dictates that the table is 400px wide. Line 13 uses the border-collapse CSS property to
eliminate space between the table cells.

Line 25 defines variable side, which determines the number of cells in each row and
the number of rows created by the nested for statements in lines 28–40. We set side to
100 in order to fill the table with 10,000 4px cells. Line 26 stores the tbody element so that
we can append rows to it as they are generated.

Common Programming Error 11.4
Although you can omit the tbody element in an XHTML table, without it you cannot append
tr elements as children of a table using JavaScript. While Firefox treats appended rows as mem-
bers of the table body, Internet Explorer will not render any table cells that are dynamically add-
ed to a table outside a thead, tbody or tfoot element.

The nested for statements in lines 28–40 fill the table with a 100 × 100 grid of cells.
The outer loop creates each table row, while the inner loop creates each cell. The inner
loop uses the createElement method to create a table cell, assigns function process-
MouseMove as the event handler for the cell’s onmousemove event and appends the cell as a
child of the row. The onmousemove event of an element fires whenever the user moves the
mouse over that element.

At this point, the program is initialized and simply calls processMouseMove whenever
the mouse moves over any table cell. The function processMouseMove (lines 44–57) colors
the cell the mouse moves over, depending on the key that is pressed when the event occurs.
Lines 44–48 get the event object, which stores information about the event that called the
event-handling function.

Fig. 11.3 | Simple drawing program. (Part 3 of 3.)

c) The user holds the Shift key and moves the mouse to draw a red line.

272 Chapter 11 JavaScript: Events

Internet Explorer and Firefox do not implement the same event models, so we need
to account for some differences in how the event object can be handled and used. Firefox
and other W3C-compliant browsers (e.g., Safari, Opera) pass the event object as an argu-
ment to the event-handling function. Internet Explorer, on the other hand, stores the
event object in the event property of the window object. To get the event object regardless
of the browser, we use a two-step process. Function processMouseMove takes the param-
eter e in line 44 to get the event object from Firefox. Then, if e is undefined (i.e., if the
client is Internet Explorer), we assign the object in window.event to e in line 48.

In addition to providing different ways to access the event object, Firefox and
Internet Explorer also implement different functionality in the event object itself. How-
ever, there are several event properties that both browsers implement with the same name,
and some that both browsers implement with different names. In this book, we use prop-
erties that are implemented in both event models, or we write our code to use the correct
property depending on the browser—all of our code runs properly in IE7 and Firefox 2
(and higher).

Once e contains the event object, we can use it to get information about the event.
Lines 51–56 do the actual drawing. The event object’s ctrlKey property contains a
boolean which reflects whether the Ctrl key was pressed during the event. If ctrlKey is
true, line 52 executes, changing the color of a table cell.

To determine which table cell to color, we introduce the this keyword. The meaning
of this depends on its context. In an event-handling function, this refers to the DOM
object on which the event occurred. Our function uses this to refer to the table cell over
which the mouse moved. The this keyword allows us to use one event handler to apply a
change to one of many DOM elements, depending on which one received the event.

Lines 51–52 change the background color of this table cell to blue if the Ctrl key is
pressed during the event. Similarly, lines 55–56 color the cell red if the Shift key is pressed.
To determine this, we use the shiftKey property of the event object. This simple func-
tion allows the user to draw inside the table on the page in red and blue.

This example demonstrated the ctrlKey and shiftKey properties of the event object.
Figure 11.4 lists some important cross-browser properties of the event object.

This section introduced the event onmousemove and the keyword this. We also dis-
cussed more advanced event handling using the event object to get information about the
event. The next section continues our introduction of events with the onmouseover and
onmouseout events.

Property Description

altKey This value is true if the Alt key was pressed when the event fired.

cancelBubble Set to true to prevent the event from bubbling. Defaults to false.
(See Section 11.8, Event Bubbling.)

clientX and clientY The coordinates of the mouse cursor inside the client area (i.e., the
active area where the web page is displayed, excluding scrollbars,
navigation buttons, etc.).

Fig. 11.4 | Some event object properties. (Part 1 of 2.)

11.5 Rollovers with onmouseover and onmouseout 273

11.5 Rollovers with onmouseover and onmouseout
Two more events fired by mouse movements are onmouseover and onmouseout. When the
mouse cursor moves into an element, an onmouseover event occurs for that element.
When the cursor leaves the element, an onmouseout event occurs. Figure 11.5 uses these
events to achieve a rollover effect that updates text when the mouse cursor moves over it.
We also introduce a technique for creating rollover images.

ctrlKey This value is true if the Ctrl key was pressed when the event fired.

keyCode The ASCII code of the key pressed in a keyboard event.

screenX and screenY The coordinates of the mouse cursor on the screen coordinate sys-
tem.

shiftKey This value is true if the Shift key was pressed when the event fired.

type The name of the event that fired, without the prefix "on".

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 11.5: onmouseoverout.html -->
6 <!-- Events onmouseover and onmouseout. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Events onmouseover and onmouseout</title>
10 <style type = "text/css">

11 body { background-color: wheat }
12 table { border-style: groove;
13 text-align: center;
14 font-family: monospace;
15 font-weight: bold }
16 td { width: 6em }
17 </style>

18 <script type = "text/javascript">

19 <!--
20
21
22
23
24
25 function mouseOver(e)
26 {
27 if (!e)
28 var e = window.event;

Fig. 11.5 | Events onmouseover and onmouseout. (Part 1 of 4.)

Property Description

Fig. 11.4 | Some event object properties. (Part 2 of 2.)

image1 = new Image();
image1.src = "heading1.gif";
image2 = new Image();
image2.src = "heading2.gif";

274 Chapter 11 JavaScript: Events

29
30
31
32 // swap the image when the mouse moves over it
33 if (target.id == "heading")
34 {
35
36 return;
37 } // end if
38
39 // if an element's id is defined, assign the id to its color
40 // to turn hex code's text the corresponding color
41 if (target.id)
42
43 } // end function mouseOver
44
45 function mouseOut(e)
46 {
47 if (!e)
48 var e = window.event;
49
50 var target = getTarget(e);
51
52 // put the original image back when the mouse moves away
53 if (target.id == "heading")
54 {
55
56 return;
57 } // end if
58
59 // if an element's id is defined, assign id to innerHTML
60 // to display the color name
61 if (target.id)
62
63 } // end function mouseOut
64
65 // return either e.srcElement or e.target, whichever exists
66 function getTarget(e)
67 {
68 if (e.srcElement)
69
70 else
71
72 } // end function getTarget
73
74
75
76 // -->
77 </script>

78 </head>

79 <body>

80

Fig. 11.5 | Events onmouseover and onmouseout. (Part 2 of 4.)

var target = getTarget(e);

target.src = image2.src;

target.style.color = target.id;

target.src = image1.src;

target.innerHTML = target.id;

return e.srcElement;

return e.target;

document.onmouseover = mouseOver;
document.onmouseout = mouseOut;

11.5 Rollovers with onmouseover and onmouseout 275

81 <p>Can you tell a color from its hexadecimal RGB code
82 value? Look at the hex code, guess its color. To see
83 what color it corresponds to, move the mouse over the
84 hex code. Moving the mouse out of the hex code’s table
85 cell will display the color name.</p>
86 <table>

87 <tr>

88 <td id = "Black">#000000</td>
89 <td id = "Blue">#0000FF</td>
90 <td id = "Magenta">#FF00FF</td>
91 <td id = "Gray">#808080</td>
92 </tr>

93 <tr>

94 <td id = "Green">#008000</td>
95 <td id = "Lime">#00FF00</td>
96 <td id = "Maroon">#800000</td>
97 <td id = "Navy">#000080</td>
98 </tr>

99 <tr>

100 <td id = "Olive">#808000</td>
101 <td id = "Purple">#800080</td>
102 <td id = "Red">#FF0000</td>
103 <td id = "Silver">#C0C0C0</td>
104 </tr>

105 <tr>

106 <td id = "Cyan">#00FFFF</td>
107 <td id = "Teal">#008080</td>
108 <td id = "Yellow">#FFFF00</td>
109 <td id = "White">#FFFFFF</td>
110 </tr>

111 </table>

112 </body>

113 </html>

Fig. 11.5 | Events onmouseover and onmouseout. (Part 3 of 4.)

a) The page loads with the blue heading image and all the hex codes in black.

276 Chapter 11 JavaScript: Events

Fig. 11.5 | Events onmouseover and onmouseout. (Part 4 of 4.)

b) The heading
image switches to

an image with
green text when
the mouse rolls

over it.

c) When mouse rolls
over a hex code, the

text color changes to
the color represented

by the hex code.
Notice that the

heading image has
become blue again

because the mouse is
no longer over it.

d) When the mouse
leaves the hex

code’s table cell, the
text changes to the
name of the color.

11.6 Form Processing with onfocus and onblur 277

To create a rollover effect for the image in the heading, lines 20–23 create two new
JavaScript Image objects—image1 and image2. Image image2 displays when the mouse
hovers over the image. Image image1 displays when the mouse is outside the image. The
script sets the src properties of each Image in lines 21 and 23, respectively. Creating Image
objects preloads the images (i.e., loads the images in advance), so the browser does not
need to download the rollover image the first time the script displays the image. If the
image is large or the connection is slow, downloading would cause a noticeable delay in
the image update.

Performance Tip 11.1
Preloading images used in rollover effects prevents a delay the first time an image is displayed.

Functions mouseOver and mouseOut are set to process the onmouseover and
onmouseout events, respectively, in lines 74–75. Both functions begin (lines 25–28 and
45–48) by getting the event object and using function getTarget to find the element that
received the action. Because of browser event model differences, we need getTarget
(defined in lines 66–72) to return the DOM node targeted by the action. In Internet
Explorer, this node is stored in the event object’s srcElement property. In Firefox, it is
stored in the event object’s target property. Lines 68–71 return the node using the cor-
rect property to hide the browser differences from the rest of our program. We must use
function getTarget instead of this because we do not define an event handler for each
specific element in the document. In this case, using this would return the entire docu-
ment. In both mouseOver and mouseOut, we assign the return value of getTarget to vari-
able target (lines 30 and 50).

Lines 33–37 in the mouseOver function handle the onmouseover event for the heading
image by setting its src attribute (target.src) to the src property of the appropriate
Image object (image2.src). The same task occurs with image1 in the mouseOut function
(lines 53–57).

The script handles the onmouseover event for the table cells in lines 41–42. This code
tests whether an id is specified, which is true only for our hex code table cells and the
heading image in this example. If the element receiving the action has an id, the code
changes the color of the element to match the color name stored in the id. As you can see
in the code for the table (lines 86–111), each td element containing a color code has an
id attribute set to one of the 16 basic XHTML colors. Lines 61–62 handle the onmouseout
event by changing the text in the table cell the mouse cursor just left to match the color
that it represents.

11.6 Form Processing with onfocus and onblur
The onfocus and onblur events are particularly useful when dealing with form elements
that allow user input (Fig. 11.6). The onfocus event fires when an element gains focus
(i.e., when the user clicks a form field or uses the Tab key to move between form elements),
and onblur fires when an element loses focus, which occurs when another control gains
the focus. In lines 31–32, the script changes the text inside the div below the form (line
58) based on the messageNum passed to function helpText (lines 29–33). Each of the ele-
ments of the form, such as the name input in lines 40–41, passes a different value to the
helpText function when it gains focus (and its onfocus event fires). These values are used

278 Chapter 11 JavaScript: Events

as indices for helpArray, which is declared and initialized in lines 17–27 and stores help
messages. When elements lose focus, they all pass the value 6 to helpText to clear the tip
div (note that the empty string "" is stored in the last element of the array).

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 11.6: onfocusblur.html -->
6 <!-- Demonstrating the onfocus and onblur events. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>A Form Using onfocus and onblur</title>
10 <style type = "text/css">

11 .tip { font-family: sans-serif;
12 color: blue;
13 font-size: 12px }
14 </style>

15 <script type = "text/javascript">

16 <!--
17 var helpArray =
18 ["Enter your name in this input box.", // element 0
19 "Enter your e-mail address in this input box, " +
20 "in the format user@domain.", // element 1
21 "Check this box if you liked our site.", // element 2
22 "In this box, enter any comments you would " +
23 "like us to read.", // element 3
24 "This button submits the form to the " +
25 "server-side script.", // element 4
26 "This button clears the form.", // element 5
27 ""]; // element 6
28
29 function helpText(messageNum)
30 {
31

32
33 } // end function helpText
34 // -->
35 </script>

36 </head>

37 <body>

38 <form id = "myForm" action = "">

39 <div>

40

41

42 E-mail: <input type = "text" name = "e-mail"
43 onfocus = "helpText(1)" onblur = "helpText(6)" />

44 Click here if you like this site
45 <input type = "checkbox" name = "like" onfocus =

46 "helpText(2)" onblur = "helpText(6)" />
<hr />

47
48 Any comments?

Fig. 11.6 | Demonstrating the onfocus and onblur events. (Part 1 of 2.)

document.getElementById("tip").innerHTML =
 helpArray[messageNum];

Name: <input type = "text" name = "name"
 onfocus = "helpText(0)" onblur = "helpText(6)" />

11.6 Form Processing with onfocus and onblur 279

49 <textarea name = "comments" rows = "5" cols = "45"

50 onfocus = "helpText(3)" onblur = "helpText(6)"></textarea>

51

52 <input type = "submit" value = "Submit" onfocus =

53 "helpText(4)" onblur = "helpText(6)" />

54 <input type = "reset" value = "Reset" onfocus =

55 "helpText(5)" onblur = "helpText(6)" />

56 </div>
57 </form>
58 <div id = "tip" class = "tip"></div>
59 </body>

60 </html>

Fig. 11.6 | Demonstrating the onfocus and onblur events. (Part 2 of 2.)

a) The blue message
at the bottom of

 the page instructs
the user to enter
 an e-mail when
 the e-mail field

 has focus.

b) The message
changes depending
on which field has

focus. Now
 it gives instructions

 for the comments
box.

280 Chapter 11 JavaScript: Events

11.7 Form Processing with onsubmit and onreset
Two more useful events for processing forms are onsubmit and onreset. These events fire
when a form is submitted or reset, respectively (Fig. 11.7). Function registerEvents
(lines 35–46) registers the event handlers for the form after the body has loaded.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 11.7: onsubmitreset.html -->
6 <!-- Demonstrating the onsubmit and onreset events. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>A Form Using onsubmit and onreset</title>
10 <style type = "text/css">

11 .tip { font-family: sans-serif;
12 color: blue;
13 font-size: 12px }
14 </style>

15 <script type = "text/javascript">

16 <!--
17 var helpArray =
18 ["Enter your name in this input box.",
19 "Enter your e-mail address in this input box, " +
20 "in the format user@domain.",
21 "Check this box if you liked our site.",
22 "In this box, enter any comments you would " +
23 "like us to read.",
24 "This button submits the form to the " +
25 "server-side script.",
26 "This button clears the form.",
27 ""];
28
29 function helpText(messageNum)
30 {
31 document.getElementById("tip").innerHTML =
32 helpArray[messageNum];
33 } // end function helpText
34
35 function registerEvents()
36 {
37

38
39

40

41
42

43
44

45

46 } // end function registerEvents

Fig. 11.7 | Demonstrating the onsubmit and onreset events. (Part 1 of 2.)

document.getElementById("myForm").onsubmit = function()
{
 return confirm("Are you sure you want to submit?");
} // end anonymous function

document.getElementById("myForm").onreset = function()
{
 return confirm("Are you sure you want to reset?");
} // end anonymous function

11.7 Form Processing with onsubmit and onreset 281

47 // -->
48 </script>

49 </head>

50 <body onload = "registerEvents()">

51 <form id = "myForm" action = "">

52 <div>

53 Name: <input type = "text" name = "name"
54 onfocus = "helpText(0)" onblur = "helpText(6)" />

55 E-mail: <input type = "text" name = "e-mail"
56 onfocus = "helpText(1)" onblur = "helpText(6)" />

57 Click here if you like this site
58 <input type = "checkbox" name = "like" onfocus =

59 "helpText(2)" onblur = "helpText(6)" />
<hr />

60
61 Any comments?

62 <textarea name = "comments" rows = "5" cols = "45"

63 onfocus = "helpText(3)" onblur = "helpText(6)"></textarea>

64

65 <input type = "submit" value = "Submit" onfocus =

66 "helpText(4)" onblur = "helpText(6)" />

67 <input type = "reset" value = "Reset" onfocus =

68 "helpText(5)" onblur = "helpText(6)" />

69 </div>
70 </form>
71 <div id = "tip" class = "tip"></div>
72 </body>

73 </html>

Fig. 11.7 | Demonstrating the onsubmit and onreset events. (Part 2 of 2.)

282 Chapter 11 JavaScript: Events

Lines 37–40 and 42–45 introduce several new concepts. Line 37 gets the form ele-
ment ("myForm", lines 51–70), then lines 37–40 assign an anonymous function to its
onsubmit property. An anonymous function is defined with no name—it is created in
nearly the same way as any other function, but with no identifier after the keyword func-
tion. This notation is useful when creating a function for the sole purpose of assigning it
to an event handler. We never call the function ourselves, so we don’t need to give it a
name, and it’s more concise to create the function and register it as an event handler at the
same time.

The anonymous function (lines 37–40) assigned to the onsubmit property of myForm
executes in response to the user submitting the form (i.e., clicking the Submit button or
pressing the Enter key). Line 39 introduces the confirm method of the window object. As
with alert, we do not need to prefix the call with the object name window and the dot (.)
operator. The confirm dialog asks the users a question, presenting them with an OK button
and a Cancel button. If the user clicks OK, confirm returns true; otherwise, confirm
returns false.

Our event handlers for the form’s onsubmit and onreset events simply return the
value of the confirm dialog, which asks the users if they are sure they want to submit or
reset (lines 39 and 44, respectively). By returning either true or false, the event handlers
dictate whether the default action for the event—in this case submitting or resetting the
form—is taken. (Recall that we also returned false from some event-handling functions
to prevent forms from submitting in Chapter 10.) Other default actions, such as following
a hyperlink, can be prevented by returning false from an onclick event handler on the
link. If an event handler returns true or does not return a value, the default action is taken
once the event handler finishes executing.

11.8 Event Bubbling
Event bubbling is the process by which events fired in child elements “bubble” up to their
parent elements. When an event is fired on an element, it is first delivered to the element’s
event handler (if any), then to the parent element’s event handler (if any). This might re-
sult in event handling that was not intended. If you intend to handle an event in a child
element alone, you should cancel the bubbling of the event in the child element’s event-
handling code by using the cancelBubble property of the event object, as shown in
Fig. 11.8.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 11.8: bubbling.html -->
6 <!-- Canceling event bubbling. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Event Bubbling</title>
10 <script type = "text/javascript">
11 <!--

Fig. 11.8 | Canceling event bubbling. (Part 1 of 3.)

11.8 Event Bubbling 283

12 function documentClick()
13 {
14 alert("You clicked in the document.");
15 } // end function documentClick
16
17 function bubble(e)
18 {
19 if (!e)
20 var e = window.event;
21
22 alert("This will bubble.");
23
24 } // end function bubble
25
26 function noBubble(e)
27 {
28 if (!e)
29 var e = window.event;
30
31 alert("This will not bubble.");
32
33 } // end function noBubble
34
35 function registerEvents()
36 {
37
38
39
40 } // end function registerEvents
41 // -->
42 </script>

43 </head>

44 <body onload = "registerEvents()">

45 <p id = "bubble">Bubbling enabled.</p>
46 <p id = "noBubble">Bubbling disabled.</p>
47 </body>

48 </html>

Fig. 11.8 | Canceling event bubbling. (Part 2 of 3.)

e.cancelBubble = false;

e.cancelBubble = true;

document.onclick = documentClick;
document.getElementById("bubble").onclick = bubble;
document.getElementById("noBubble").onclick = noBubble;

a) The user clicks the
first paragraph, for
which bubbling is

enabled.

284 Chapter 11 JavaScript: Events

Clicking the first p element (line 45) triggers a call to bubble. Then, because line 37
registers the document’s onclick event, documentClick is also called. This occurs because
the onclick event bubbles up to the document. This is probably not the desired result.
Clicking the second p element (line 46) calls noBubble, which disables the event bubbling
for this event by setting the cancelBubble property of the event object to true. [Note:
The default value of cancelBubble is false, so the statement in line 23 is unnecessary.]

Common Programming Error 11.5
Forgetting to cancel event bubbling when necessary may cause unexpected results in your scripts.

11.9 More Events
The events we covered in this chapter are among the most commonly used. A list of some
events supported by both Firefox and Internet Explorer is given with descriptions in
Fig. 11.9.

Fig. 11.8 | Canceling event bubbling. (Part 3 of 3.)

b) The paragraph’s
event handler

causes an alert.

c) The document’s
event handler

causes another
alert, because the
event bubbles up
to the document.

d) The user clicks the
second paragraph,

 for which bubbling
 is disabled.

b) The paragraph’s
event handler

causes an alert.
 The document’s

 event handler
 is not called.

11.10 Web Resources 285

11.10 Web Resources
http://www.quirksmode.org/js/introevents.html

An introduction and reference site for JavaScript events. Includes comprehensive information on
history of events, the different event models, and making events work across multiple browsers.
wsabstract.com/dhtmltutors/domevent1.shtml

This JavaScript Kit tutorial introduces event handling and discusses the W3C DOM advanced event
model.
http://www.w3schools.com/jsref/jsref_events.asp

The W3 School’s JavaScript Event Reference site has a comprehensive list of JavaScript events, a de-
scription of their usage and their browser compatibilities.
http://www.brainjar.com/dhtml/events/

BrainJar.com’s DOM Event Model site provdes a comprehensive introduction to the DOM event
model, and has example code to demonstrate several different ways of assigning and using events.

Event Fires when

onabort Image transfer has been interrupted by user.

onchange A new choice is made in a select element, or when a text input is changed
and the element loses focus.

onclick The user clicks using the mouse.

ondblclick The mouse is double clicked.

onfocus A form element gains focus.

onkeydown The user pushes down a key.

onkeypress The user presses then releases a key.

onkeyup The user releases a key.

onload An element and all its children have loaded.

onmousedown A mouse button is pressed down.

onmousemove The mouse moves.

onmouseout The mouse leaves an element.

onmouseover The mouse enters an element.

onmouseup A mouse button is released.

onreset A form resets (i.e., the user clicks a reset button).

onresize The size of an object changes (i.e., the user resizes a window or frame).

onselect A text selection begins (applies to input or textarea).

onsubmit A form is submitted.

onunload A page is about to unload.

Fig. 11.9 | Cross-browser events.

http://www.quirksmode.org/js/introevents.html
http://www.w3schools.com/jsref/jsref_events.asp
http://www.brainjar.com/dhtml/events/

12
XML and RSS

O B J E C T I V E S
In this chapter you’ll learn:

■ To mark up data using XML.

■ How XML namespaces help provide unique XML
element and attribute names.

■ To create DTDs and schemas for specifying and
validating the structure of an XML document.

■ To create and use simple XSL style sheets to render XML
document data.

■ To retrieve and manipulate XML data programmatically
using JavaScript.

■ RSS and how to programmatically apply an XSL
transformation to an RSS document using JavaScript.

Knowing trees, I understand
the meaning of patience.
Knowing grass, I can
appreciate persistence.
—Hal Borland

Like everything
metaphysical, the harmony
between thought and reality
is to be found in the
grammar of the language.
—Ludwig Wittgenstein

I played with an idea, and
grew willful; tossed it into
the air; transformed it; let it
escape and recaptured it;
made it iridescent with
fancy, and winged it with
paradox.
—Oscar Wilde

12.1 Introduction 287

O
u

tl
in

e

12.1 Introduction
The Extensible Markup Language (XML) was developed in 1996 by the World Wide
Web Consortium’s (W3C’s) XML Working Group. XML is a widely supported open
technology (i.e., nonproprietary technology) for describing data that has become the stan-
dard format for data exchanged between applications over the Internet.

Web applications use XML extensively and web browsers provide many XML-related
capabilities. Sections 12.2–12.7 introduce XML and XML-related technologies—XML
namespaces for providing unique XML element and attribute names, and Document
Type Definitions (DTDs) and XML Schemas for validating XML documents.
Sections 12.8–12.9 present additional XML technologies and key JavaScript capabilities
for loading and manipulating XML programmatically—this material is optional but is rec-
ommended if you plan to use XML in your own applications. Finally, Section 12.10 intro-
duces RSS—an XML format used to syndicate simple website content—and shows how
to format RSS elements using JavaScript and other technologies presented in this chapter.

12.2 XML Basics
XML permits document authors to create markup (i.e., a text-based notation for describ-
ing data) for virtually any type of information. This enables document authors to create
entirely new markup languages for describing any type of data, such as mathematical for-
mulas, software-configuration instructions, chemical molecular structures, music, news,
recipes and financial reports. XML describes data in a way that both human beings and
computers can understand.

Figure 12.1 is a simple XML document that describes information for a baseball
player. We focus on lines 5–9 to introduce basic XML syntax. You’ll learnyou’ll learn
about the other elements of this document in Section 12.3.

XML documents contain text that represents content (i.e., data), such as John (line 6
of Fig. 12.1), and elements that specify the document’s structure, such as firstName (line
6 of Fig. 12.1). XML documents delimit elements with start tags and end tags. A start tag
consists of the element name in angle brackets (e.g., <player> and <firstName> in lines

12.1 Introduction
12.2 XML Basics
12.3 Structuring Data
12.4 XML Namespaces
12.5 Document Type Definitions (DTDs)
12.6 W3C XML Schema Documents
12.7 XML Vocabularies

12.7.1 MathML™
12.7.2 Other Markup Languages

12.8 Extensible Stylesheet Language and XSL Transformations
12.9 Document Object Model (DOM)

12.10 RSS
12.11 Web Resources

288 Chapter 12 XML and RSS

5 and 6, respectively). An end tag consists of the element name preceded by a forward
slash (/) in angle brackets (e.g., </firstName> and </player> in lines 6 and 9, respec-
tively). An element’s start and end tags enclose text that represents a piece of data (e.g., the
player’s firstName—John—in line 6, which is enclosed by the <firstName> start tag and
</firstName> end tag). Every XML document must have exactly one root element that
contains all the other elements. In Fig. 12.1, the root element is player (lines 5–9).

XML-based markup languages—called XML vocabularies—provide a means for
describing data in standardized, structured ways. Some XML vocabularies include
XHTML (Extensible HyperText Markup Language), MathML (for mathematics),
VoiceXML™ (for speech), CML (Chemical Markup Language—for chemistry), XBRL
(Extensible Business Reporting Language—for financial data exchange) and others that we
discuss in Section 12.7.

Massive amounts of data are currently stored on the Internet in many formats (e.g.,
databases, web pages, text files). Much of this data, especially that which is passed between
systems, will soon take the form of XML. Organizations see XML as the future of data
encoding. Information technology groups are planning ways to integrate XML into their
systems. Industry groups are developing custom XML vocabularies for most major indus-
tries that will allow business applications to communicate in common languages. For
example, many web services allow web-based applications to exchange data seamlessly
through standard protocols based on XML.

The next generation of the web is being built on an XML foundation, enabling you
to develop more sophisticated web-based applications. XML allows you to assign meaning
to what would otherwise be random pieces of data. As a result, programs can “understand”
the data they manipulate. For example, a web browser might view a street address in a
simple web page as a string of characters without any real meaning. In an XML document,
however, this data can be clearly identified (i.e., marked up) as an address. A program that
uses the document can recognize this data as an address and provide links to a map of that
location, driving directions from that location or other location-specific information.
Likewise, an application can recognize names of people, dates, ISBN numbers and any
other type of XML-encoded data. The application can then present users with other
related information, providing a richer, more meaningful user experience.

Viewing and Modifying XML Documents
XML documents are highly portable. Viewing or modifying an XML document—which
is a text file that usually ends with the .xml filename extension—does not require special
software, although many software tools exist, and new ones are frequently released that

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.1: player.xml -->
4 <!-- Baseball player structured with XML -->
5 <player>

6 <firstName>John</firstName>
7 <lastName>Doe</lastName>
8 <battingAverage>0.375</battingAverage>
9 </player>

Fig. 12.1 | XML that describes a baseball player’s information.

12.2 XML Basics 289

make it more convenient to develop XML-based applications. Any text editor that sup-
ports ASCII/Unicode characters can open XML documents for viewing and editing. Also,
most web browsers can display XML documents in a formatted manner that shows the
XML’s structure. Section 12.3 demonstrates this in Internet Explorer and Firefox. An im-
portant characteristic of XML is that it is both human and machine readable.

Processing XML Documents
Processing an XML document requires software called an XML parser (or XML proces-
sor). A parser makes the document’s data available to applications. While reading an XML
document’s contents, a parser checks that the document follows the syntax rules specified
by the W3C’s XML Recommendation (www.w3.org/XML). XML syntax requires a single
root element, a start tag and end tag for each element, and properly nested tags (i.e., the
end tag for a nested element must appear before the end tag of the enclosing element). Fur-
thermore, XML is case sensitive, so the proper capitalization must be used in elements. A
document that conforms to this syntax is a well-formed XML document and is syntacti-
cally correct. We present fundamental XML syntax in Section 12.3. If an XML parser can
process an XML document successfully, that XML document is well-formed. Parsers can
provide access to XML-encoded data in well-formed documents only.

Often, XML parsers are built into software or available for download over the
Internet. Some popular parsers include Microsoft XML Core Services (MSXML)—
which is included with Internet Explorer, the Apache Software Foundation’s Xerces
(xml.apache.org) and the open-source Expat XML Parser (expat.sourceforge.net).

Validating XML Documents
An XML document can reference a Document Type Definition (DTD) or a schema that
defines the proper structure of the XML document. When an XML document references
a DTD or a schema, some parsers (called validating parsers) can read the DTD/schema
and check that the XML document follows the structure defined by the DTD/schema. If
the XML document conforms to the DTD/schema (i.e., the document has the appropriate
structure), the XML document is valid. For example, if in Fig. 12.1 we were referencing a
DTD that specified that a player element must have firstName, lastName and batting-
Average elements, then omitting the lastName element (line 7 in Fig. 12.1) would invali-
date the XML document player.xml. However, the XML document would still be well-
formed, because it follows proper XML syntax (i.e., it has one root element, each element
has a start tag and an end tag, and the elements are nested properly). By definition, a valid
XML document is well-formed. Parsers that cannot check for document conformity
against DTDs/schemas are nonvalidating parsers—they determine only whether an XML
document is well-formed, not whether it is valid.

We discuss validation, DTDs and schemas, as well as the key differences between
these two types of structural specifications, in Sections 12.5–12.6. For now, note that
schemas are XML documents themselves, whereas DTDs are not. As you’ll learn in
Section 12.6, this difference presents several advantages in using schemas over DTDs.

Software Engineering Observation 12.1
DTDs and schemas are essential for business-to-business (B2B) transactions and mission-critical
systems. Validating XML documents ensures that disparate systems can manipulate data
structured in standardized ways and prevents errors caused by missing or malformed data.

www.w3.org/XML

290 Chapter 12 XML and RSS

Formatting and Manipulating XML Documents
Most XML documents contain only data, not formatting instructions, so applications that
process XML documents must decide how to manipulate or display the data. For example,
a PDA (personal digital assistant) may render an XML document differently than a wire-
less phone or a desktop computer. You can use Extensible Stylesheet Language (XSL) to
specify rendering instructions for different platforms. We discuss XSL in Section 12.8.

XML-processing programs can also search, sort and manipulate XML data using XSL.
Some other XML-related technologies are XPath (XML Path Language—a language for
accessing parts of an XML document), XSL-FO (XSL Formatting Objects—an XML
vocabulary used to describe document formatting) and XSLT (XSL Transformations—a
language for transforming XML documents into other documents). We present XSLT and
XPath in Section 12.8.

12.3 Structuring Data
In this section and throughout this chapter, we create our own XML markup. XML allows
you to describe data precisely in a well-structured format.

XML Markup for an Article
In Fig. 12.2, we present an XML document that marks up a simple article using XML.
The line numbers shown are for reference only and are not part of the XML document.

This document begins with an XML declaration (line 1), which identifies the docu-
ment as an XML document. The version attribute specifies the XML version to which
the document conforms. The current XML standard is version 1.0. Though the W3C
released a version 1.1 specification in February 2004, this newer version is not yet widely
supported. The W3C may continue to release new versions as XML evolves to meet the
requirements of different fields.

Portability Tip 12.1
Documents should include the XML declaration to identify the version of XML used. A docu-
ment that lacks an XML declaration might be assumed to conform to the latest version of
XML—when it does not, errors could result.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.2: article.xml -->
4 <!-- Article structured with XML -->
5 <article>

6 <title>Simple XML</title>
7 <date>July 4, 2007</date>
8 <author>

9 <firstName>John</firstName>
10 <lastName>Doe</lastName>
11 </author>

12 <summary>XML is pretty easy.</summary>
13 <content>This chapter presents examples that use XML.</content>
14 </article>

Fig. 12.2 | XML used to mark up an article.

12.3 Structuring Data 291

As in most markup languages, blank lines (line 2), white spaces and indentation help
improve readability. Blank lines are normally ignored by XML parsers. XML comments
(lines 3–4), which are delimited by <!-- and -->, can be placed almost anywhere in an
XML document and can span multiple lines. There must be exactly one end marker (-->)
for each begin marker (<!--).

Common Programming Error 12.1
Placing any characters, including white space, before the XML declaration is an error.

Common Programming Error 12.2
In an XML document, each start tag must have a matching end tag; omitting either tag is an
error. Soon, you’ll learn how such errors are detected.

Common Programming Error 12.3
XML is case sensitive. Using different cases for the start tag and end tag names for the same ele-
ment is a syntax error.

In Fig. 12.2, article (lines 5–14) is the root element. The lines that precede the root
element (lines 1–4) are the XML prolog. In an XML prolog, the XML declaration must
appear before the comments and any other markup.

The elements we use in the example do not come from any specific markup language.
Instead, we chose the element names and markup structure that best describe our partic-
ular data. You can invent elements to mark up your data. For example, element title (line
6) contains text that describes the article’s title (e.g., Simple XML). Similarly, date (line 7),
author (lines 8–11), firstName (line 9), lastName (line 10), summary (line 12) and con-
tent (line 13) contain text that describes the date, author, the author’s first name, the
author’s last name, a summary and the content of the document, respectively. XML ele-
ment names can be of any length and may contain letters, digits, underscores, hyphens and
periods. However, they must begin with either a letter or an underscore, and they should
not begin with “xml” in any combination of uppercase and lowercase letters (e.g., XML, Xml,
xMl), as this is reserved for use in the XML standards.
v

Common Programming Error 12.4
Using a white-space character in an XML element name is an error.

Good Programming Practice 12.1
XML element names should be meaningful to humans and should not use abbreviations.

XML elements are nested to form hierarchies—with the root element at the top of the
hierarchy. This allows document authors to create parent/child relationships between
data. For example, elements title, date, author, summary and content are nested within
article. Elements firstName and lastName are nested within author. We discuss the
hierarchy of Fig. 12.2 later in this chapter (Fig. 12.25).

Common Programming Error 12.5
Nesting XML tags improperly is a syntax error. For example, <x><y>hello</x></y> is an error,
because the </y> tag must precede the </x> tag.

292 Chapter 12 XML and RSS

Any element that contains other elements (e.g., article or author) is a container ele-
ment. Container elements also are called parent elements. Elements nested inside a con-
tainer element are child elements (or children) of that container element. If those child
elements are at the same nesting level, they are siblings of one another.

Viewing an XML Document in Internet Explorer and Firefox
The XML document in Fig. 12.2 is simply a text file named article.xml. This document
does not contain formatting information for the article. This is because XML is a technol-
ogy for describing the structure of data. Formatting and displaying data from an XML
document are application-specific issues. For example, when the user loads article.xml
in Internet Explorer, MSXML (Microsoft XML Core Services) parses and displays the
document’s data. Firefox has a similar capability. Each browser has a built-in style sheet
to format the data. Note that the resulting format of the data (Fig. 12.3) is similar to the
format of the listing in Fig. 12.2. In Section 12.8, we show how to create style sheets to
transform your XML data into various formats suitable for display.

Note the minus sign (–) and plus sign (+) in the screen shots of Fig. 12.3. Although
these symbols are not part of the XML document, both browsers place them next to every
container element. A minus sign indicates that the browser is displaying the container ele-
ment’s child elements. Clicking the minus sign next to an element collapses that element
(i.e., causes the browser to hide the container element’s children and replace the minus
sign with a plus sign). Conversely, clicking the plus sign next to an element expands that
element (i.e., causes the browser to display the container element’s children and replace
the plus sign with a minus sign). This behavior is similar to viewing the directory structure
on your system in Windows Explorer or another similar directory viewer. In fact, a direc-
tory structure often is modeled as a series of tree structures, in which the root of a tree rep-
resents a disk drive (e.g., C:), and nodes in the tree represent directories. Parsers often store
XML data as tree structures to facilitate efficient manipulation, as discussed in
Section 12.9.

Fig. 12.3 | article.xml displayed by Internet Explorer 7 and Firefox 3. (Part 1 of 2.)

Minus sign

Expanded
author
element

a) article.xml in Internet Explorer.

12.3 Structuring Data 293

[Note: In Windows XP and Windows Vista, by default Internet Explorer displays all
the XML elements in expanded view, and clicking the minus sign (Fig. 12.3(a)) does not
do anything. To enable collapsing and expanding, right click the Information Bar that
appears just below the Address field and select Allow Blocked Content.... Then click Yes in
the pop-up window that appears.]

XML Markup for a Business Letter
Now that you’ve seen a simple XML document, let’s examine a more complex XML doc-
ument that marks up a business letter (Fig. 12.4). Again, we begin the document with the
XML declaration (line 1) that states the XML version to which the document conforms.

Line 5 specifies that this XML document references a DTD. Recall from Section 12.2
that DTDs define the structure of the data for an XML document. For example, a DTD

Fig. 12.3 | article.xml displayed by Internet Explorer 7 and Firefox 3. (Part 2 of 2.)

Plus sign

Collapsed
author
element

b) article.xml in Internet Explorer with author element collapsed.

c) article.xml in Firefox. d) article.xml in Firefox with author element collapsed.

294 Chapter 12 XML and RSS

specifies the elements and parent/child relationships between elements permitted in an
XML document.

Error-Prevention Tip 12.1
An XML document is not required to reference a DTD, but validating XML parsers can use a
DTD to ensure that the document has the proper structure.

1 <?xml version = "1.0"?>

2
3 <!-- Fig. 12.4: letter.xml -->
4 <!-- Business letter marked up as XML -->
5 <!DOCTYPE letter SYSTEM "letter.dtd">

6
7 <letter>

8 <contact type = "sender">
9 <name>Jane Doe</name>

10 <address1>Box 12345</address1>
11 <address2>15 Any Ave.</address2>
12 <city>Othertown</city>
13 <state>Otherstate</state>
14 <zip>67890</zip>
15 <phone>555-4321</phone>
16 <flag gender = "F" />

17 </contact>

18
19 <contact type = "receiver">
20 <name>John Doe</name>
21 <address1>123 Main St.</address1>
22 <address2></address2>

23 <city>Anytown</city>
24 <state>Anystate</state>
25 <zip>12345</zip>
26 <phone>555-1234</phone>
27 <flag gender = "M" />

28 </contact>

29
30 <salutation>Dear Sir:</salutation>
31
32 <paragraph>It is our privilege to inform you about our new database
33 managed with XML. This new system allows you to reduce the
34 load on your inventory list server by having the client machine
35 perform the work of sorting and filtering the data.
36 </paragraph>

37
38 <paragraph>Please visit our website for availability and pricing.
39 </paragraph>

40
41 <closing>Sincerely,</closing>
42 <signature>Ms. Jane Doe</signature>
43 </letter>

Fig. 12.4 | Business letter marked up as XML.

12.3 Structuring Data 295

Portability Tip 12.2
Validating an XML document helps guarantee that independent developers will exchange data
in a standardized form that conforms to the DTD.

The DOCTYPE reference (line 5) contains three items, the name of the root element that
the DTD specifies (letter); the keyword SYSTEM (which denotes an external DTD—a
DTD declared in a separate file, as opposed to a DTD declared locally in the same file);
and the DTD’s name and location (i.e., letter.dtd in the current directory; this could
also be a fully qualified URL). DTD document filenames typically end with the .dtd
extension. We discuss DTDs and letter.dtd in detail in Section 12.5.

Several tools (many of which are free) validate documents against DTDs (discussed in
Section 12.5) and schemas (discussed in Section 12.6). A free XML validator can be found
at www.xmlvalidation.com. This validator can validate XML documents against both
DTDs and schemas. You can paste your XML code into the provided text area, or upload
the XML document (Fig. 12.5(a)). If you wish to validate the document against a DTD,
simply click the validate button after pasting in your code or uploading the document. The
next screen will prompt you to paste in your DTD code or upload the DTD file
(Fig. 12.5(b)). The output (Fig. 12.6) shows the results of validating the document using
this online validator—in this case, no errors were found so the XML document is valid.
Visit www.w3.org/XML/Schema for a list of additional validation tools.

Root element letter (lines 7–43 of Fig. 12.4) contains the child elements contact,
contact, salutation, paragraph, paragraph, closing and signature. Data can be
placed between an elements’ tags or as attributes—name/value pairs that appear within

Fig. 12.5 | Validating an XML document with Microsoft’s XML Validator. (Part 1 of 2.)

(a)

www.xmlvalidation.com
www.w3.org/XML/Schema

296 Chapter 12 XML and RSS

the angle brackets of an element’s start tag. Elements can have any number of attributes
(separated by spaces) in their start tags. The first contact element (lines 8–17) has an attri-
bute named type with attribute value "sender", which indicates that this contact ele-
ment identifies the letter’s sender. The second contact element (lines 19–28) has attribute
type with value "receiver", which indicates that this contact element identifies the
letter’s recipient. Like element names, attribute names are case sensitive, can be any length,
may contain letters, digits, underscores, hyphens and periods, and must begin with either

Fig. 12.6 | Validation result using Microsoft’s XML Validator.

Fig. 12.5 | Validating an XML document with Microsoft’s XML Validator. (Part 2 of 2.)

(b)

12.4 XML Namespaces 297

a letter or an underscore character. A contact element stores various items of information
about a contact, such as the contact’s name (represented by element name), address (rep-
resented by elements address1, address2, city, state and zip), phone number (repre-
sented by element phone) and gender (represented by attribute gender of element flag).
Element salutation (line 30) marks up the letter’s salutation. Lines 32–39 mark up the
letter’s body using two paragraph elements. Elements closing (line 41) and signature
(line 42) mark up the closing sentence and the author’s “signature,” respectively.

Common Programming Error 12.6
Failure to enclose attribute values in double ("") or single ('') quotes is a syntax error.

Line 16 introduces the empty element flag. An empty element is one that does not
have any content. Instead, an empty element sometimes places data in attributes. Empty
element flag has one attribute that indicates the gender of the contact (represented by the
parent contact element). Document authors can close an empty element either by placing
a slash immediately preceding the right angle bracket, as shown in line 16, or by explicitly
writing an end tag, as in line 22

<address2></address2>

Note that the address2 element in line 22 is empty because there is no second part to this
contact’s address. However, we must include this element to conform to the structural
rules specified in the XML document’s DTD—letter.dtd (which we present in
Section 12.5). This DTD specifies that each contact element must have an address2
child element (even if it is empty). In Section 12.5, you’ll learn how DTDs indicate re-
quired and optional elements.

12.4 XML Namespaces
XML allows document authors to create custom elements. This extensibility can result in
naming collisions among elements in an XML document that each have the same name.
For example, we may use the element book to mark up data about a Deitel publication. A
stamp collector may use the element book to mark up data about a book of stamps. Using
both of these elements in the same document could create a naming collision, making it
difficult to determine which kind of data each element contains.

An XML namespace is a collection of element and attribute names. XML namespaces
provide a means for document authors to unambiguously refer to elements with the same
name (i.e., prevent collisions). For example,

<subject>Geometry</subject>

and

<subject>Cardiology</subject>

use element subject to mark up data. In the first case, the subject is something one studies
in school, whereas in the second case, the subject is a field of medicine. Namespaces can
differentiate these two subject elements—for example:

<highschool:subject>Geometry</highschool:subject>

298 Chapter 12 XML and RSS

and

<medicalschool:subject>Cardiology</medicalschool:subject>

Both highschool and medicalschool are namespace prefixes. A document author places
a namespace prefix and colon (:) before an element name to specify the namespace to
which that element belongs. Document authors can create their own namespace prefixes
using virtually any name except the reserved namespace prefix xml. In the next subsections,
we demonstrate how document authors ensure that namespaces are unique.

Common Programming Error 12.7
Attempting to create a namespace prefix named xml in any mixture of uppercase and lowercase
letters is a syntax error—the xml namespace prefix is reserved for internal use by XML itself.

Differentiating Elements with Namespaces
Figure 12.7 demonstrates namespaces. In this document, namespaces differentiate two
distinct elements—the file element related to a text file and the file document related
to an image file.

1 <?xml version = "1.0"?>

2
3 <!-- Fig. 12.7: namespace.xml -->
4 <!-- Demonstrating namespaces -->
5 <text:directory

6 xmlns:text = "urn:deitel:textInfo"

7 xmlns:image = "urn:deitel:imageInfo">

8
9 <text:file filename = "book.xml">

10 <text:description>A book list</text:description>
11 </text:file>

12
13 <image:file filename = "funny.jpg">

14 <image:description>A funny picture</image:description>
15 <image:size width = "200" height = "100" />

16 </image:file>

17 </text:directory>

Fig. 12.7 | XML namespaces demonstration.

12.4 XML Namespaces 299

Lines 6–7 use the XML-namespace reserved attribute xmlns to create two namespace
prefixes—text and image. Each namespace prefix is bound to a series of characters called
a Uniform Resource Identifier (URI) that uniquely identifies the namespace. Document
authors create their own namespace prefixes and URIs. A URI is a way to identifying a
resource, typically on the Internet. Two popular types of URI are Uniform Resource
Name (URN) and Uniform Resource Locator (URL).

To ensure that namespaces are unique, document authors must provide unique URIs.
In this example, we use the text urn:deitel:textInfo and urn:deitel:imageInfo as
URIs. These URIs employ the URN scheme frequently used to identify namespaces.
Under this naming scheme, a URI begins with "urn:", followed by a unique series of addi-
tional names separated by colons.

Another common practice is to use URLs, which specify the location of a file or a
resource on the Internet. For example, www.deitel.com is the URL that identifies the
home page of the Deitel & Associates website. Using URLs guarantees that the
namespaces are unique because the domain names (e.g., www.deitel.com) are guaranteed
to be unique. For example, lines 5–7 could be rewritten as

<text:directory

 xmlns:text = "http://www.deitel.com/xmlns-text"

xmlns:image = "http://www.deitel.com/xmlns-image">

where URLs related to the deitel.com domain name serve as URIs to identify the text
and image namespaces. The parser does not visit these URLs, nor do these URLs need to
refer to actual web pages. They each simply represent a unique series of characters used to
differentiate URI names. In fact, any string can represent a namespace. For example, our
image namespace URI could be hgjfkdlsa4556, in which case our prefix assignment
would be

xmlns:image = "hgjfkdlsa4556"

Lines 9–11 use the text namespace prefix for elements file and description. Note
that the end tags must also specify the namespace prefix text. Lines 13–16 apply
namespace prefix image to the elements file, description and size. Note that attributes
do not require namespace prefixes (although they can have them), because each attribute
is already part of an element that specifies the namespace prefix. For example, attribute
filename (line 9) is implicitly part of namespace text because its element (i.e., file) spec-
ifies the text namespace prefix.

Specifying a Default Namespace
To eliminate the need to place namespace prefixes in each element, document authors may
specify a default namespace for an element and its children. Figure 12.8 demonstrates us-
ing a default namespace (urn:deitel:textInfo) for element directory.

Line 5 defines a default namespace using attribute xmlns with no prefex specified, but
with a URI as its value. Once we define this default namespace, child elements belonging
to the namespace need not be qualified by a namespace prefix. Thus, element file (lines
8–10) is in the default namespace urn:deitel:textInfo. Compare this to lines 9–10 of
Fig. 12.7, where we had to prefix the file and description element names with the
namespace prefix text.

300 Chapter 12 XML and RSS

The default namespace applies to the directory element and all elements that are not
qualified with a namespace prefix. However, we can use a namespace prefix to specify a
different namespace for a particular element. For example, the file element in lines 12–
15 includes the image namespace prefix, indicating that this element is in the
urn:deitel:imageInfo namespace, not the default namespace.

Namespaces in XML Vocabularies
XML-based languages, such as XML Schema (Section 12.6) and Extensible Stylesheet
Language (XSL) (Section 12.8), often use namespaces to identify their elements. Each of
these vocabularies defines special-purpose elements that are grouped in namespaces. These
namespaces help prevent naming collisions between predefined elements and user-defined
elements.

12.5 Document Type Definitions (DTDs)
Document Type Definitions (DTDs) are one of two main types of documents you can use
to specify XML document structure. Section 12.6 presents W3C XML Schema docu-
ments, which provide an improved method of specifying XML document structure.

1 <?xml version = "1.0"?>

2
3 <!-- Fig. 12.8: defaultnamespace.xml -->
4 <!-- Using default namespaces -->
5 <directory xmlns = "urn:deitel:textInfo"

6 xmlns:image = "urn:deitel:imageInfo">

7
8 <file filename = "book.xml">

9 <description>A book list</description>
10 </file>

11
12 <image:file filename = "funny.jpg">

13 <image:description>A funny picture</image:description>
14 <image:size width = "200" height = "100" />

15 </image:file>

16 </directory>

Fig. 12.8 | Default namespace demonstration.

12.5 Document Type Definitions (DTDs) 301

Software Engineering Observation 12.2
XML documents can have many different structures, and for this reason an application cannot
be certain whether a particular document it receives is complete, ordered properly, and not
missing data. DTDs and schemas (Section 12.6) solve this problem by providing an extensible
way to describe XML document structure. Applications should use DTDs or schemas to confirm
whether XML documents are valid.

Software Engineering Observation 12.3
Many organizations and individuals are creating DTDs and schemas for a broad range of
applications. These collections—called repositories—are available free for download from the
web (e.g., www.xml.org, www.oasis-open.org).

Creating a Document Type Definition
Figure 12.4 presented a simple business letter marked up with XML. Recall that line 5 of
letter.xml references a DTD—letter.dtd (Fig. 12.9). This DTD specifies the business
letter’s element types and attributes, and their relationships to one another.

A DTD describes the structure of an XML document and enables an XML parser to
verify whether an XML document is valid (i.e., whether its elements contain the proper
attributes and appear in the proper sequence). DTDs allow users to check document struc-
ture and to exchange data in a standardized format. A DTD expresses the set of rules for
document structure using an EBNF (Extended Backus-Naur Form) grammar. DTDs are
not themselves XML documents. [Note: EBNF grammars are commonly used to define
programming languages. To learn more about EBNF grammars, visit en.wikipedia.org/
wiki/EBNF or www.garshol.priv.no/download/text/bnf.html.]

1 <!-- Fig. 12.9: letter.dtd -->
2 <!-- DTD document for letter.xml -->
3
4 <!ELEMENT letter (contact+, salutation, paragraph+,
5 closing, signature)>
6
7 <!ELEMENT contact (name, address1, address2, city, state,
8 zip, phone, flag)>
9 <!ATTLIST contact type CDATA #IMPLIED>

10
11 <!ELEMENT name (#PCDATA)>
12 <!ELEMENT address1 (#PCDATA)>
13 <!ELEMENT address2 (#PCDATA)>
14 <!ELEMENT city (#PCDATA)>
15 <!ELEMENT state (#PCDATA)>
16 <!ELEMENT zip (#PCDATA)>
17 <!ELEMENT phone (#PCDATA)>
18 <!ELEMENT flag EMPTY>
19 <!ATTLIST flag gender (M | F) "M">
20
21 <!ELEMENT salutation (#PCDATA)>
22 <!ELEMENT closing (#PCDATA)>
23 <!ELEMENT paragraph (#PCDATA)>
24 <!ELEMENT signature (#PCDATA)>

Fig. 12.9 | Document Type Definition (DTD) for a business letter.

www.garshol.priv.no/download/text/bnf.html

302 Chapter 12 XML and RSS

Common Programming Error 12.8
For documents validated with DTDs, any document that uses elements, attributes or nesting re-
lationships not explicitly defined by a DTD is an invalid document.

Defining Elements in a DTD
The ELEMENT element type declaration in lines 4–5 defines the rules for element letter.
In this case, letter contains one or more contact elements, one salutation element, one
or more paragraph elements, one closing element and one signature element, in that
sequence. The plus sign (+) occurrence indicator specifies that the DTD requires one or
more occurrences of an element. Other occurence indicators include the asterisk (*),
which indicates an optional element that can occur zero or more times, and the question
mark (?), which indicates an optional element that can occur at most once (i.e., zero or
one occurrence). If an element does not have an occurrence indicator, the DTD requires
exactly one occurrence.

The contact element type declaration (lines 7–8) specifies that a contact element
contains child elements name, address1, address2, city, state, zip, phone and flag—
in that order. The DTD requires exactly one occurrence of each of these elements.

Defining Attributes in a DTD
Line 9 uses the ATTLIST attribute-list declaration to define a type attribute for the con-
tact element. Keyword #IMPLIED specifies that if the parser finds a contact element with-
out a type attribute, the parser can choose an arbitrary value for the attribute or can ignore
the attribute. Either way the document will still be valid (if the rest of the document is
valid)—a missing type attribute will not invalidate the document. Other keywords that
can be used in place of #IMPLIED in an ATTLIST declaration include #REQUIRED and
#FIXED. #REQUIRED specifies that the attribute must be present in the element, and #FIXED
specifies that the attribute (if present) must have the given fixed value. For example,

<!ATTLIST address zip CDATA #FIXED "01757">

indicates that attribute zip (if present in element address) must have the value 01757 for
the document to be valid. If the attribute is not present, then the parser, by default, uses
the fixed value that the ATTLIST declaration specifies.

Character Data vs. Parsed Character Data
Keyword CDATA (line 9) specifies that attribute type contains character data (i.e., a string).
A parser will pass such data to an application without modification.

Software Engineering Observation 12.4
DTD syntax cannot describe an element’s or attribute’s data type. For example, a DTD cannot
specify that a particular element or attribute can contain only integer data.

Keyword #PCDATA (line 11) specifies that an element (e.g., name) may contain parsed
character data (i.e., data that is processed by an XML parser). Elements with parsed char-
acter data cannot contain markup characters, such as less than (<), greater than (>) or
ampersand (&). The document author should replace any markup character in a #PCDATA
element with the character’s corresponding character entity reference. For example, the
character entity reference < should be used in place of the less-than symbol (<), and the
character entity reference > should be used in place of the greater-than symbol (>). A

12.5 Document Type Definitions (DTDs) 303

document author who wishes to use a literal ampersand should use the entity reference
& instead—parsed character data can contain ampersands (&) only for inserting entities.

Common Programming Error 12.9
Using markup characters (e.g., <, > and &) in parsed character data is an error. Use character
entity references (e.g., <, > and &) instead.

Defining Empty Elements in a DTD
Line 18 defines an empty element named flag. Keyword EMPTY specifies that the element
does not contain any data between its start and end tags. Empty elements commonly de-
scribe data via attributes. For example, flag’s data appears in its gender attribute (line 19).
Line 19 specifies that the gender attribute’s value must be one of the enumerated values
(M or F) enclosed in parentheses and delimited by a vertical bar (|) meaning “or.” Note that
line 19 also indicates that gender has a default value of M.

Well-Formed Documents vs. Valid Documents
In Section 12.3, we demonstrated how to use an online XML validator to validate an XML
document against its specified DTD. The validation revealed that the XML document
letter.xml (Fig. 12.4) is well-formed and valid—it conforms to letter.dtd (Fig. 12.9).
Recall that a well-formed document is syntactically correct (i.e., each start tag has a corre-
sponding end tag, the document contains only one root element, etc.), and a valid docu-
ment contains the proper elements with the proper attributes in the proper sequence. An
XML document cannot be valid unless it is well-formed.

When a document fails to conform to a DTD or a schema, the XML validator we
demonstrated in Section 12.3 displays an error message. For example, the DTD in
Fig. 12.9 indicates that a contact element must contain the child element name. A docu-
ment that omits this child element is still well-formed, but is not valid. In such a scenario,
the XML validator displays an error message like the one in Fig. 12.10.

Fig. 12.10 | XML Validator displaying an error message.

304 Chapter 12 XML and RSS

12.6 W3C XML Schema Documents
In this section, we introduce schemas for specifying XML document structure and validat-
ing XML documents. Many developers in the XML community believe that DTDs are
not flexible enough to meet today’s programming needs. For example, DTDs lack a way
of indicating what specific type of data (e.g., numeric, text) an element can contain, and
DTDs are not themselves XML documents, forcing developers to learn multiple gram-
mars and developers to create multiple types of parsers. These and other limitations have
led to the development of schemas.

Unlike DTDs, schemas do not use EBNF grammar. Instead, schemas use XML
syntax and are actually XML documents that programs can manipulate. Like DTDs,
schemas are used by validating parsers to validate documents.

In this section, we focus on the W3C’s XML Schema vocabulary (note the capital “S”
in “Schema”). We use the term XML Schema in the rest of the chapter whenever we refer
to W3C’s XML Schema vocabulary. For the latest information on XML Schema, visit
www.w3.org/XML/Schema. For tutorials on XML Schema concepts beyond what we
present here, visit www.w3schools.com/schema/default.asp.

Recall that a DTD describes an XML document’s structure, not the content of its ele-
ments. For example,

<quantity>5</quantity>

contains character data. If the document that contains element quantity references a
DTD, an XML parser can validate the document to confirm that this element indeed does
contain PCDATA content. However, the parser cannot validate that the content is numeric;
DTDs do not provide this capability. So, unfortunately, the parser also considers

<quantity>hello</quantity>

to be valid. An application that uses the XML document containing this markup should
test that the data in element quantity is numeric and take appropriate action if it is not.

XML Schema enables schema authors to specify that element quantity’s data must
be numeric or, even more specifically, an integer. A parser validating the XML document
against this schema can determine that 5 conforms and hello does not. An XML docu-
ment that conforms to a schema document is schema valid, and one that does not conform
is schema invalid. Schemas are XML documents and therefore must themselves be valid.

Validating Against an XML Schema Document
Figure 12.11 shows a schema-valid XML document named book.xml, and Fig. 12.12
shows the pertinent XML Schema document (book.xsd) that defines the structure for
book.xml. By convention, schemas use the .xsd extension. We used an online XSD sche-
ma validator provided at

www.xmlforasp.net/SchemaValidator.aspx

to ensure that the XML document in Fig. 12.11 conforms to the schema in Fig. 12.12. To
validate the schema document itself (i.e., book.xsd) and produce the output shown in
Fig. 12.12, we used an online XSV (XML Schema Validator) provided by the W3C at

www.w3.org/2001/03/webdata/xsv

These free tools enforce the W3C’s specifications for XML Schemas and schema validation.

www.w3.org/XML/Schema
www.w3schools.com/schema/default.asp
www.xmlforasp.net/SchemaValidator.aspx
www.w3.org/2001/03/webdata/xsv

12.6 W3C XML Schema Documents 305

Figure 12.11 contains markup describing several Deitel books. The books element
(line 5) has the namespace prefix deitel, indicating that the books element is a part of the
http://www.deitel.com/booklist namespace.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.11: book.xml -->
4 <!-- Book list marked up as XML -->
5 <deitel:books xmlns:deitel = "http://www.deitel.com/booklist">
6 <book>

7 <title>Visual Basic 2005 How to Program, 3/e</title>
8 </book>

9 <book>

10 <title>Visual C# 2005 How to Program, 2/e</title>
11 </book>

12 <book>

13 <title>Java How to Program, 7/e</title>
14 </book>

15 <book>

16 <title>C++ How to Program, 6/e</title>
17 </book>

18 <book>

19 <title>Internet and World Wide Web How to Program, 4/e</title>
20 </book>

21 </deitel:books>

Fig. 12.11 | Schema-valid XML document describing a list of books.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. 12.12: book.xsd -->
4 <!-- Simple W3C XML Schema document -->
5 <schema xmlns = "http://www.w3.org/2001/XMLSchema"
6 xmlns:deitel = "http://www.deitel.com/booklist"
7 targetNamespace = "http://www.deitel.com/booklist">
8
9 <element name = "books" type = "deitel:BooksType"/>

10
11 <complexType name = "BooksType">

12 <sequence>

13 <element name = "book" type = "deitel:SingleBookType"
14 minOccurs = "1" maxOccurs = "unbounded"/>
15 </sequence>

16 </complexType>

17
18 <complexType name = "SingleBookType">
19 <sequence>

20 <element name = "title" type = "string"/>
21 </sequence>

22 </complexType>

23 </schema>

Fig. 12.12 | XML Schema document for book.xml. (Part 1 of 2.)

http://www.deitel.com/booklist

306 Chapter 12 XML and RSS

Creating an XML Schema Document
Figure 12.12 presents the XML Schema document that specifies the structure of book.xml
(Fig. 12.11). This document defines an XML-based language (i.e., a vocabulary) for writ-
ing XML documents about collections of books. The schema defines the elements, attri-
butes and parent/child relationships that such a document can (or must) include. The
schema also specifies the type of data that these elements and attributes may contain.

Root element schema (Fig. 12.12, lines 5–23) contains elements that define the struc-
ture of an XML document such as book.xml. Line 5 specifies as the default namespace the
standard W3C XML Schema namespace URI—http://www.w3.org/2001/XMLSchema.
This namespace contains predefined elements (e.g., root-element schema) that comprise
the XML Schema vocabulary—the language used to write an XML Schema document.

Portability Tip 12.3
W3C XML Schema authors specify URI http://www.w3.org/2001/XMLSchema when referring
to the XML Schema namespace. This namespace contains predefined elements that comprise the
XML Schema vocabulary. Specifying this URI ensures that validation tools correctly identify
XML Schema elements and do not confuse them with those defined by document authors.

Line 6 binds the URI http://www.deitel.com/booklist to namespace prefix
deitel. As we discuss momentarily, the schema uses this namespace to differentiate names
created by us from names that are part of the XML Schema namespace. Line 7 also spec-
ifies http://www.deitel.com/booklist as the targetNamespace of the schema. This
attribute identifies the namespace of the XML vocabulary that this schema defines. Note
that the targetNamespace of book.xsd is the same as the namespace referenced in line 5
of book.xml (Fig. 12.11). This is what “connects” the XML document with the schema
that defines its structure. When an XML schema validator examines book.xml and
book.xsd, it will recognize that book.xml uses elements and attributes from the http://
www.deitel.com/booklist namespace. The validator also will recognize that this
namespace is the namespace defined in book.xsd (i.e., the schema’s targetNamespace).
Thus the validator knows where to look for the structural rules for the elements and attri-
butes used in book.xml.

Defining an Element in XML Schema
In XML Schema, the element tag (line 9) defines an element to be included in an XML
document that conforms to the schema. In other words, element specifies the actual ele-

Fig. 12.12 | XML Schema document for book.xml. (Part 2 of 2.)

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.deitel.com/booklist
http://www.deitel.com/booklist
http://www.deitel.com/booklist
http://www.deitel.com/booklist

12.6 W3C XML Schema Documents 307

ments that can be used to mark up data. Line 9 defines the books element, which we use
as the root element in book.xml (Fig. 12.11). Attributes name and type specify the ele-
ment’s name and type, respectively. An element’s type indicates the data that the element
may contain. Possible types include XML Schema-defined types (e.g., string, double)
and user-defined types (e.g., BooksType, which is defined in lines 11–16). Figure 12.13
lists several of XML Schema’s many built-in types. For a complete list of built-in types, see
Section 3 of the specification found at www.w3.org/TR/xmlschema-2.

XML
Schema
type Description Ranges or structures Examples

string A character string "hello"

boolean True or false true, false true

decimal A decimal numeral i * (10n), where i is an integer and n
is an integer that is less than or equal
to zero.

5, -12, -45.78

float A floating-point
number

m * (2e), where m is an integer whose
absolute value is less than 224 and e is
an integer in the range -149 to 104.
Plus three additional numbers: posi-
tive infinity, negative infinity and
not-a-number (NaN).

0, 12, -109.375, NaN

double A floating-point
number

m * (2e), where m is an integer whose
absolute value is less than 253 and e is
an integer in the range -1075 to 970.
Plus three additional numbers: posi-
tive infinity, negative infinity and
not-a-number (NaN).

0, 12, -109.375, NaN

long A whole number -9223372036854775808 to
9223372036854775807, inclusive.

1234567890,
-1234567890

int A whole number -2147483648 to 2147483647,
inclusive.

1234567890,
-1234567890

short A whole number -32768 to 32767, inclusive. 12, -345

date A date consisting
of a year, month
and day

yyyy-mm with an optional dd and an
optional time zone, where yyyy is
four digits long and mm and dd are
two digits long.

2005-05-10

time A time consisting
of hours, minutes
and seconds

hh:mm:ss with an optional time zone,
where hh, mm and ss are two digits
long.

16:30:25-05:00

Fig. 12.13 | Some XML Schema types.

www.w3.org/TR/xmlschema-2

308 Chapter 12 XML and RSS

In this example, books is defined as an element of type deitel:BooksType (line 9).
BooksType is a user-defined type (lines 11–16) in the http://www.deitel.com/booklist
namespace and therefore must have the namespace prefix deitel. It is not an existing
XML Schema type.

Two categories of type exist in XML Schema—simple types and complex types.
Simple and complex types differ only in that simple types cannot contain attributes or
child elements and complex types can.

A user-defined type that contains attributes or child elements must be defined as a
complex type. Lines 11–16 use element complexType to define BooksType as a complex
type that has a child element named book. The sequence element (lines 12–15) allows you
to specify the sequential order in which child elements must appear. The element (lines
13–14) nested within the complexType element indicates that a BooksType element (e.g.,
books) can contain child elements named book of type deitel:SingleBookType (defined
in lines 18–22). Attribute minOccurs (line 14), with value 1, specifies that elements of type
BooksType must contain a minimum of one book element. Attribute maxOccurs (line 14),
with value unbounded, specifies that elements of type BooksType may have any number of
book child elements.

Lines 18–22 define the complex type SingleBookType. An element of this type con-
tains a child element named title. Line 20 defines element title to be of simple type
string. Recall that elements of a simple type cannot contain attributes or child elements.
The schema end tag (</schema>, line 23) declares the end of the XML Schema document.

A Closer Look at Types in XML Schema
Every element in XML Schema has a type. Types include the built-in types provided by
XML Schema (Fig. 12.13) or user-defined types (e.g., SingleBookType in Fig. 12.12).

Every simple type defines a restriction on an XML Schema-defined type or a restric-
tion on a user-defined type. Restrictions limit the possible values that an element can hold.

Complex types are divided into two groups—those with simple content and those
with complex content. Both can contain attributes, but only complex content can contain
child elements. Complex types with simple content must extend or restrict some other
existing type. Complex types with complex content do not have this limitation. We dem-
onstrate complex types with each kind of content in the next example.

The schema document in Fig. 12.14 creates both simple types and complex types.
The XML document in Fig. 12.15 (laptop.xml) follows the structure defined in
Fig. 12.14 to describe parts of a laptop computer. A document such as laptop.xml that
conforms to a schema is known as an XML instance document—the document is an
instance (i.e., example) of the schema.

1 <?xml version = "1.0"?>

2 <!-- Fig. 12.14: computer.xsd -->
3 <!-- W3C XML Schema document -->
4
5 <schema xmlns = "http://www.w3.org/2001/XMLSchema"

6 xmlns:computer = "http://www.deitel.com/computer"

7 targetNamespace = "http://www.deitel.com/computer">

Fig. 12.14 | XML Schema document defining simple and complex types. (Part 1 of 2.)

http://www.deitel.com/booklist

12.6 W3C XML Schema Documents 309

Line 5 declares the default namespace to be the standard XML Schema namespace—
any elements without a prefix are assumed to be in the XML Schema namespace. Line 6
binds the namespace prefix computer to the namespace http://www.deitel.com/
computer. Line 7 identifies this namespace as the targetNamespace—the namespace
being defined by the current XML Schema document.

To design the XML elements for describing laptop computers, we first create a simple
type in lines 9–13 using the simpleType element. We name this simpleType gigahertz

because it will be used to describe the clock speed of the processor in gigahertz. Simple
types are restrictions of a type typically called a base type. For this simpleType, line 10
declares the base type as decimal, and we restrict the value to be at least 2.1 by using the
minInclusive element in line 11.

Next, we declare a complexType named CPU that has simpleContent (lines 16–20).
Remember that a complex type with simple content can have attributes but not child ele-
ments. Also recall that complex types with simple content must extend or restrict some
XML Schema type or user-defined type. The extension element with attribute base (line
17) sets the base type to string. In this complexType, we extend the base type string with
an attribute. The attribute element (line 18) gives the complexType an attribute of type
string named model. Thus an element of type CPU must contain string text (because the
base type is string) and may contain a model attribute that is also of type string.

8
9 <simpleType name = "gigahertz">

10 <restriction base = "decimal">

11 <minInclusive value = "2.1"/>

12 </restriction>
13 </simpleType>

14
15 <complexType name = "CPU">

16 <simpleContent>
17 <extension base = "string">

18 <attribute name = "model" type = "string"/>

19 </extension>
20 </simpleContent>
21 </complexType>

22
23 <complexType name = "portable">

24 <all>
25 <element name = "processor" type = "computer:CPU"/>

26 <element name = "monitor" type = "int"/>

27 <element name = "CPUSpeed" type = "computer:gigahertz"/>
28 <element name = "RAM" type = "int"/>

29 </all>
30 <attribute name = "manufacturer" type = "string"/>

31 </complexType>

32
33 <element name = "laptop" type = "computer:portable"/>

34 </schema>

Fig. 12.14 | XML Schema document defining simple and complex types. (Part 2 of 2.)

http://www.deitel.com/computer
http://www.deitel.com/computer

310 Chapter 12 XML and RSS

Last, we define type portable, which is a complexType with complex content (lines
23–31). Such types are allowed to have child elements and attributes. The element all
(lines 24–29) encloses elements that must each be included once in the corresponding
XML instance document. These elements can be included in any order. This complex type
holds four elements—processor, monitor, CPUSpeed and RAM. They are given types CPU,
int, gigahertz and int, respectively. When using types CPU and gigahertz, we must
include the namespace prefix computer, because these user-defined types are part of the
computer namespace (http://www.deitel.com/computer)—the namespace defined in
the current document (line 7). Also, portable contains an attribute defined in line 30.
The attribute element indicates that elements of type portable contain an attribute of
type string named manufacturer.

Line 33 declares the actual element that uses the three types defined in the schema.
The element is called laptop and is of type portable. We must use the namespace prefix
computer in front of portable.

We have now created an element named laptop that contains child elements pro-
cessor, monitor, CPUSpeed and RAM, and an attribute manufacturer. Figure 12.15 uses
the laptop element defined in the computer.xsd schema. Once again, we used an online
XSD schema validator (www.xmlforasp.net/SchemaValidator.aspx) to ensure that this
XML instance document adheres to the schema’s structural rules.

Line 5 declares namespace prefix computer. The laptop element requires this prefix
because it is part of the http://www.deitel.com/computer namespace. Line 6 sets the
laptop’s manufacturer attribute, and lines 8–11 use the elements defined in the schema
to describe the laptop’s characteristics.

This section introduced W3C XML Schema documents for defining the structure of
XML documents, and we validated XML instance documents against schemas using an
online XSD schema validator. Section 12.7 discusses several XML vocabularies and dem-
onstrates the MathML vocabulary. Section 12.10 demonstrates the RSS vocabulary.

12.7 XML Vocabularies
XML allows authors to create their own tags to describe data precisely. People and orga-
nizations in various fields of study have created many different kinds of XML for structur-
ing data. Some of these markup languages are: MathML (Mathematical Markup

1 <?xml version = "1.0"?>

2
3 <!-- Fig. 12.15: laptop.xml -->
4 <!-- Laptop components marked up as XML -->
5 <computer:laptop xmlns:computer = "http://www.deitel.com/computer"

6 manufacturer = "IBM">

7
8 <processor model = "Centrino">Intel</processor>
9 <monitor>17</monitor>

10 <CPUSpeed>2.4</CPUSpeed>
11 <RAM>256</RAM>
12 </computer:laptop>

Fig. 12.15 | XML document using the laptop element defined in computer.xsd.

http://www.deitel.com/computer
www.xmlforasp.net/SchemaValidator.aspx
http://www.deitel.com/computer

12.7 XML Vocabularies 311

Language), Scalable Vector Graphics (SVG), Wireless Markup Language (WML), Ex-
tensible Business Reporting Language (XBRL), Extensible User Interface Language
(XUL) and Product Data Markup Language (PDML). Two other examples of XML vo-
cabularies are W3C XML Schema and the Extensible Stylesheet Language (XSL), which
we discuss in Section 12.8. The following subsections describe MathML and other custom
markup languages.

12.7.1 MathML™
Until recently, computers typically required specialized software packages such as TeX and
LaTeX for displaying complex mathematical expressions. This section introduces
MathML, which the W3C developed for describing mathematical notations and expres-
sions. One application that can parse, render and edit MathML is the W3C’s Amaya™
browser/editor, which can be downloaded from

www.w3.org/Amaya/User/BinDist.html

This page contains download links for several platforms. Amaya documentation and in-
stallation notes also are available at the W3C website. Firefox also can render MathML,
but it requires additional fonts. Instructions for downloading and installing these fonts are
available at www.mozilla.org/projects/mathml/fonts/. You can download a plug-in
(www.dessci.com/en/products/mathplayer/) to render MathML in Internet Explorer .

MathML markup describes mathematical expressions for display. MathML is divided
into two types of markup—content markup and presentation markup. Content markup
provides tags that embody mathematical concepts. Content MathML allows programmers
to write mathematical notation specific to different areas of mathematics. For instance, the
multiplication symbol has one meaning in set theory and another meaning in linear
algebra. Content MathML distinguishes between different uses of the same symbol. Pro-
grammers can take content MathML markup, discern mathematical context and evaluate
the marked-up mathematical operations. Presentation MathML is directed toward for-
matting and displaying mathematical notation. We focus on Presentation MathML in the
MathML examples.

Simple Equation in MathML
Figure 12.16 uses MathML to mark up a simple expression. For this example, we show
the expression rendered in Firefox.

By convention, MathML files end with the .mml filename extension. A MathML doc-
ument’s root node is the math element, and its default namespace is http://www.w3.org/
1998/Math/MathML (line 7). The mn element (line 8) marks up a number. The mo element
(line 9) marks up an operator (e.g., +). Using this markup, we define the expression 2 + 3
= 5, which any MathML capable browser can display.

1 <?xml version="1.0" encoding="iso-8859-1"?>

2 <!DOCTYPE math PUBLIC "-//W3C//DTD MathML 2.0//EN"

3 "http://www.w3.org/TR/MathML2/dtd/mathml2.dtd">

4

Fig. 12.16 | Expression marked up with MathML and displayed in Firefox. (Part 1 of 2.)

www.w3.org/Amaya/User/BinDist.html
www.mozilla.org/projects/mathml/fonts/
www.dessci.com/en/products/mathplayer/
http://www.w3.org/1998/Math/MathML
http://www.w3.org/1998/Math/MathML

312 Chapter 12 XML and RSS

Algebraic Equation in MathML
Let’s consider using MathML to mark up an algebraic equation containing exponents and
arithmetic operators (Fig. 12.17). For this example, we again show the expression ren-
dered in Firefox.

5 <!-- Fig. 12.16: mathml1.mml -->
6 <!-- MathML equation. -->
7 <math xmlns="http://www.w3.org/1998/Math/MathML">

8 <mn>2</mn>
9 <mo>+</mo>

10 <mn>3</mn>
11 <mo>=</mo>
12 <mn>5</mn>
13 </math>

1 <?xml version="1.0" encoding="iso-8859-1"?>

2 <!DOCTYPE math PUBLIC "-//W3C//DTD MathML 2.0//EN"

3 "http://www.w3.org/TR/MathML2/dtd/mathml2.dtd">

4
5 <!-- Fig. 12.17: mathml2.html -->
6 <!-- MathML algebraic equation. -->
7 <math xmlns="http://www.w3.org/1998/Math/MathML">

8 <mn>3</mn>
9 <mo>⁢</mo>

10 <msup>

11 <mi>x</mi>
12 <mn>2</mn>
13 </msup>

14 <mo>+</mo>
15 <mn>x</mn>
16 <mo>−</mo>
17 <mfrac>

18 <mn>2</mn>
19 <mi>x</mi>
20 </mfrac>

21 <mo>=</mo>
22 <mn>0</mn>
23 </math>

Fig. 12.17 | Algebraic equation marked up with MathML and displayed in the Firefox browser.
(Part 1 of 2.)

Fig. 12.16 | Expression marked up with MathML and displayed in Firefox. (Part 2 of 2.)

12.7 XML Vocabularies 313

Line 9 uses entity reference ⁢ to indicate a multiplication operation
without explicit symbolic representation (i.e., the multiplication symbol does not appear
between the 3 and x). For exponentiation, lines 10–13 use the msup element, which rep-
resents a superscript. This msup element has two children—the expression to be super-
scripted (i.e., the base) and the superscript (i.e., the exponent). Correspondingly, the msub
element represents a subscript. To display variables such as x, line 11 uses identifier ele-
ment mi.

To display a fraction, lines 17–20 uses the mfrac element. Lines 18–19 specify the
numerator and the denominator for the fraction. If either the numerator or the denomi-
nator contains more than one element, it must appear in an mrow element.

Calculus Expression in MathML
Figure 12.18 marks up a calculus expression that contains an integral symbol and a square-
root symbol.

Lines 8–30 group the entire expression in an mrow element, which is used to group ele-
ments that are positioned horizontally in an expression. The entity reference ∫ (line 10)
represents the integral symbol, while the msubsup element (lines 9–17) specifies the sub-
script and superscript a base expression (e.g., the integral symbol). Element mo marks up the
integral operator. The msubsup element requires three child elements—an operator (e.g.,
the integral entity, line 10), the subscript expression (line 11) and the superscript expression
(lines 12–16). Element mn (line 11) marks up the number (i.e., 0) that represents the sub-
script. Element mrow (lines 12–16) marks up the superscript expression (i.e., 1-y).

Element msqrt (lines 18–27) represents a square-root expression. Line 28 introduces
entity reference δ for representing a lowercase delta symbol. Delta is an operator,
so line 28 places this entity in element mo. To see other operations and symbols in
MathML, visit www.w3.org/Math.

1 <?xml version="1.0" encoding="iso-8859-1"?>

2 <!DOCTYPE math PUBLIC "-//W3C//DTD MathML 2.0//EN"

3 "http://www.w3.org/TR/MathML2/dtd/mathml2.dtd">

4
5 <!-- Fig. 12.18 mathml3.html -->
6 <!-- Calculus example using MathML -->

Fig. 12.18 | Calculus expression marked up with MathML and displayed in the Amaya browser.
[Courtesy of World Wide Web Consortium (W3C).] (Part 1 of 2.)

Fig. 12.17 | Algebraic equation marked up with MathML and displayed in the Firefox browser.
(Part 2 of 2.)

www.w3.org/Math

314 Chapter 12 XML and RSS

12.7.2 Other Markup Languages
Literally hundreds of markup languages derive from XML. Every day developers find new
uses for XML. Figure 12.20 summarizes a few of these markup languages. The website

www.service-architecture.com/xml/articles/index.html

provides a nice list of common XML vocabularies and descriptions.

12.8 Extensible Stylesheet Language and XSL
Transformations
Extensible Stylesheet Language (XSL) documents specify how programs are to render
XML document data. XSL is a group of three technologies—XSL-FO (XSL Formatting
Objects), XPath (XML Path Language) and XSLT (XSL Transformations). XSL-FO is
a vocabulary for specifying formatting, and XPath is a string-based language of expressions

7 <math xmlns="http://www.w3.org/1998/Math/MathML">

8 <mrow>

9 <msubsup>

10 <mo>∫</mo>
11 <mn>0</mn>
12 <mrow>

13 <mn>1</mn>
14 <mo>−</mo>
15 <mi>y</mi>
16 </mrow>

17 </msubsup>

18 <msqrt>

19 <mn>4</mn>
20 <mo>⁢</mo>
21 <msup>

22 <mi>x</mi>
23 <mn>2</mn>
24 </msup>

25 <mo>+</mo>
26 <mi>y</mi>
27 </msqrt>

28 <mo>δ</mo>
29 <mi>x</mi>
30 </mrow>

31 </math>

Fig. 12.18 | Calculus expression marked up with MathML and displayed in the Amaya browser.
[Courtesy of World Wide Web Consortium (W3C).] (Part 2 of 2.)

Integral
symbol

Delta symbol

www.service-architecture.com/xml/articles/index.html

12.8 Extensible Stylesheet Language and XSL Transformations 315

used by XML and many of its related technologies for effectively and efficiently locating
structures and data (such as specific elements and attributes) in XML documents.

The third portion of XSL—XSL Transformations (XSLT)—is a technology for trans-
forming XML documents into other documents—i.e., transforming the structure of the
XML document data to another structure. XSLT provides elements that define rules for
transforming one XML document to produce a different XML document. This is useful
when you want to use data in multiple applications or on multiple platforms, each of
which may be designed to work with documents written in a particular vocabulary. For
example, XSLT allows you to convert a simple XML document to an XHTML document
that presents the XML document’s data (or a subset of the data) formatted for display in
a web browser.

Transforming an XML document using XSLT involves two tree structures—the
source tree (i.e., the XML document to be transformed) and the result tree (i.e., the XML
document to be created). XPath is used to locate parts of the source-tree document that

Markup language Description

Chemical Markup
Language (CML)

Chemical Markup Language (CML) is an XML vocabulary for
representing molecular and chemical information. Many previous
methods for storing this type of information (e.g., special file
types) inhibited document reuse. CML takes advantage of XML’s
portability to enable document authors to use and reuse molecular
information without corrupting important data in the process.

VoiceXML™ The VoiceXML Forum founded by AT&T, IBM, Lucent and
Motorola developed VoiceXML. It provides interactive voice com-
munication between humans and computers through a telephone,
PDA (personal digital assistant) or desktop computer. IBM’s
VoiceXML SDK can process VoiceXML documents. Visit
www.voicexml.org for more information on VoiceXML.

Synchronous Multimedia
Integration Language
(SMIL™)

SMIL is an XML vocabulary for multimedia presentations. The
W3C was the primary developer of SMIL, with contributions
from some companies. Visit www.w3.org/AudioVideo for more on
SMIL.

Research Information
Exchange Markup
Language (RIXML)

RIXML, developed by a consortium of brokerage firms, marks up
investment data. Visit www.rixml.org for more information on
RIXML.

Geography Markup
Language (GML)

OpenGIS developed the Geography Markup Language to
describe geographic information. Visit www.opengis.org for more
information on GML.

Extensible User Interface
Language (XUL)

The Mozilla Project created the Extensible User Interface Lan-
guage for describing graphical user interfaces in a platform-inde-
pendent way.

Fig. 12.19 | Various markup languages derived from XML.

www.voicexml.org
www.w3.org/AudioVideo
www.rixml.org
www.opengis.org

316 Chapter 12 XML and RSS

match templates defined in an XSL style sheet. When a match occurs (i.e., a node matches
a template), the matching template executes and adds its result to the result tree. When
there are no more matches, XSLT has transformed the source tree into the result tree. The
XSLT does not analyze every node of the source tree; it selectively navigates the source tree
using XPath’s select and match attributes. For XSLT to function, the source tree must
be properly structured. Schemas, DTDs and validating parsers can validate document
structure before using XPath and XSLTs.

A Simple XSL Example
Figure 12.20 lists an XML document that describes various sports. The output shows the
result of the transformation (specified in the XSLT template of Fig. 12.21) rendered by
Internet Explorer.

To perform transformations, an XSLT processor is required. Popular XSLT proces-
sors include Microsoft’s MSXML and the Apache Software Foundation’s Xalan 2
(xml.apache.org). The XML document in Fig. 12.20 is transformed into an XHTML
document by MSXML when the document is loaded in Internet Explorer. MSXML is
both an XML parser and an XSLT processor. Firefox also includes an XSLT processor.

1 <?xml version = "1.0"?>

2 <?xml-stylesheet type = "text/xsl" href = "sports.xsl"?>

3
4 <!-- Fig. 12.20: sports.xml -->
5 <!-- Sports Database -->
6
7 <sports>

8 <game id = "783">

9 <name>Cricket</name>
10
11 <paragraph>

12 More popular among commonwealth nations.
13 </paragraph>
14 </game>

15
16 <game id = "239">

17 <name>Baseball</name>
18
19 <paragraph>

20 More popular in America.
21 </paragraph>
22 </game>

23
24 <game id = "418">

25 <name>Soccer (Futbol)</name>
26
27 <paragraph>
28 Most popular sport in the world.
29 </paragraph>
30 </game>

31 </sports>

Fig. 12.20 | XML document that describes various sports. (Part 1 of 2.)

12.8 Extensible Stylesheet Language and XSL Transformations 317

Line 2 (Fig. 12.20) is a processing instruction (PI) that references the XSL style sheet
sports.xsl (Fig. 12.21). A processing instruction is embedded in an XML document and
provides application-specific information to whichever XML processor the application
uses. In this particular case, the processing instruction specifies the location of an XSLT
document with which to transform the XML document. The <? and ?> (line 2,
Fig. 12.20) delimit a processing instruction, which consists of a PI target (e.g., xml-
stylesheet) and a PI value (e.g., type = "text/xsl" href = "sports.xsl"). The PI
value’s type attribute specifies that sports.xsl is a text/xsl file (i.e., a text file con-
taining XSL content). The href attribute specifies the name and location of the style sheet
to apply—in this case, sports.xsl in the current directory.

Software Engineering Observation 12.5
XSL enables document authors to separate data presentation (specified in XSL documents) from
data description (specified in XML documents).

Common Programming Error 12.10
You will sometimes see the XML processing instruction <?xml-stylesheet?> written as
<?xml:stylesheet?> with a colon rather than a dash. The version with a colon results in an
XML parsing error in Firefox.

Figure 12.21 shows the XSL document for transforming the structured data of the
XML document of Fig. 12.20 into an XHTML document for presentation. By conven-
tion, XSL documents have the filename extension .xsl.

Fig. 12.20 | XML document that describes various sports. (Part 2 of 2.)

1 <?xml version = "1.0"?>

2 <!-- Fig. 12.21: sports.xsl -->
3 <!-- A simple XSLT transformation -->
4
5 <!-- reference XSL style sheet URI -->
6 <xsl-stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">

8

Fig. 12.21 | XSLT that creates elements and attributes in an XHTML document. (Part 1 of 2.)

318 Chapter 12 XML and RSS

Lines 6–7 begin the XSL style sheet with the stylesheet start tag. Attribute version
specifies the XSLT version to which this document conforms. Line 7 binds namespace
prefix xsl to the W3C’s XSLT URI (i.e., http://www.w3.org/1999/XSL/Transform).

Lines 9–12 use element xsl:output to write an XHTML document type declaration
(DOCTYPE) to the result tree (i.e., the XML document to be created). The DOCTYPE identi-
fies XHTML as the type of the resulting document. Attribute method is assigned "html",
which indicates that HTML is being output to the result tree. Attribute omit-xml-dec-
laration specifies whether the transformation should write the XML declaration to the
result tree. In this case, we do not want to omit the XML declaration, so we assign to this
attribute the value "no". Attributes doctype-system and doctype-public write the DOC-
TYPE DTD information to the result tree.

9 <xsl:output method = "html" omit-xml-declaration = "no"

10 doctype-system =
11 "http://www.w3c.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
12 doctype-public = "-//W3C//DTD XHTML 1.0 Strict//EN"/>

13
14 <xsl:template match = "/"> <!-- match root element -->
15
16 <html xmlns = "http://www.w3.org/1999/xhtml">

17 <head>
18 <title>Sports</title>
19 </head>
20
21 <body>
22 <table border = "1" bgcolor = "wheat">

23 <thead>
24 <tr>
25 <th>ID</th>
26 <th>Sport</th>
27 <th>Information</th>
28 </tr>
29 </thead>
30
31 <!-- insert each name and paragraph element value -->
32 <!-- into a table row. -->
33 <xsl:for-each select = "/sports/game">
34 <tr>
35 <td><xsl:value-of select = "@id"/></td>

36 <td><xsl:value-of select = "name"/></td>

37 <td><xsl:value-of select = "paragraph"/></td>
38 </tr>
39 </xsl:for-each>
40 </table>
41 </body>
42 </html>

43
44 </xsl:template>

45 </xsl:stylesheet>

Fig. 12.21 | XSLT that creates elements and attributes in an XHTML document. (Part 2 of 2.)

http://www.w3.org/1999/XSL/Transform

12.8 Extensible Stylesheet Language and XSL Transformations 319

XSLT uses templates (i.e., xsl:template elements) to describe how to transform par-
ticular nodes from the source tree to the result tree. A template is applied to nodes that are
specified in the required match attribute. Line 14 uses the match attribute to select the doc-
ument root (i.e., the conceptual part of the document that contains the root element and
everything below it) of the XML source document (i.e., sports.xml). The XPath char-
acter / (a forward slash) always selects the document root. Recall that XPath is a string-
based language used to locate parts of an XML document easily. In XPath, a leading for-
ward slash specifies that we are using absolute addressing (i.e., we are starting from the
root and defining paths down the source tree). In the XML document of Fig. 12.20, the
child nodes of the document root are the two processing instruction nodes (lines 1–2), the
two comment nodes (lines 4–5) and the sports element node (lines 7–31). The template
in Fig. 12.21, line 14, matches a node (i.e., the root node), so the contents of the template
are now added to the result tree.

The MSXML processor writes the XHTML in lines 16–29 (Fig. 12.21) to the result
tree exactly as it appears in the XSL document. Now the result tree consists of the DOCTYPE
definition and the XHTML code from lines 16–29. Lines 33–39 use element xsl:for-
each to iterate through the source XML document, searching for game elements. Attribute
select is an XPath expression that specifies the nodes (called the node set) on which the
xsl:for-each operates. Again, the first forward slash means that we are using absolute
addressing. The forward slash between sports and game indicates that game is a child node
of sports. Thus, the xsl:for-each finds game nodes that are children of the sports node.
The XML document sports.xml contains only one sports node, which is also the docu-
ment root node. After finding the elements that match the selection criteria, the xsl:for-
each processes each element with the code in lines 34–38 (these lines produce one row in
a table each time they execute) and places the result of lines 34–38 in the result tree.

Line 35 uses element value-of to retrieve attribute id’s value and place it in a td ele-
ment in the result tree. The XPath symbol @ specifies that id is an attribute node of the
context node game. Lines 36–37 place the name and paragraph element values in td ele-
ments and insert them in the result tree. When an XPath expression has no beginning for-
ward slash, the expression uses relative addressing. Omitting the beginning forward slash
tells the xsl:value-of select statements to search for name and paragraph elements that
are children of the context node, not the root node. Due to the last XPath expression selec-
tion, the current context node is game, which indeed has an id attribute, a name child ele-
ment and a paragraph child element.

Using XSLT to Sort and Format Data
Figure 12.22 presents an XML document (sorting.xml) that marks up information
about a book. Note that several elements of the markup describing the book appear out of
order (e.g., the element describing Chapter 3 appears before the element describing Chap-
ter 2). We arranged them this way purposely to demonstrate that the XSL style sheet ref-
erenced in line 2 (sorting.xsl) can sort the XML file’s data for presentation purposes.

1 <?xml version = "1.0"?>

2 <?xml-stylesheet type = "text/xsl" href = "sorting.xsl"?>

3

Fig. 12.22 | XML document containing book information. (Part 1 of 2.)

320 Chapter 12 XML and RSS

Figure 12.23 presents an XSL document (sorting.xsl) for transforming
sorting.xml (Fig. 12.22) to XHTML. Recall that an XSL document navigates a source
tree and builds a result tree. In this example, the source tree is XML, and the output tree
is XHTML. Line 14 of Fig. 12.23 matches the root element of the document in
Fig. 12.22. Line 15 outputs an html start tag to the result tree. In line 16, the <xsl:apply-
templates/> element specifies that the XSLT processor is to apply the xsl:templates
defined in this XSL document to the current node’s (i.e., the document root’s) children.
The content from the applied templates is output in the html element that ends at line 17.

4 <!-- Fig. 12.22: sorting.xml -->
5 <!-- XML document containing book information -->
6 <book isbn = "999-99999-9-X">

7 <title>Deitel's XML Primer</title>
8
9 <author>

10 <firstName>Jane</firstName>
11 <lastName>Blue</lastName>
12 </author>

13
14 <chapters>

15 <frontMatter>

16 <preface pages = "2" />

17 <contents pages = "5" />

18 <illustrations pages = "4" />

19 </frontMatter>

20
21 <chapter number = "3" pages = "44">Advanced XML</chapter>
22 <chapter number = "2" pages = "35">Intermediate XML</chapter>
23 <appendix number = "B" pages = "26">Parsers and Tools</appendix>
24 <appendix number = "A" pages = "7">Entities</appendix>
25 <chapter number = "1" pages = "28">XML Fundamentals</chapter>
26 </chapters>

27
28 <media type = "CD" />

29 </book>

1 <?xml version = "1.0"?>

2
3 <!-- Fig. 12.23: sorting.xsl -->
4 <!-- Transformation of book information into XHTML -->
5 <xsl:stylesheet version = "1.0"

6 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">

7
8 <!-- write XML declaration and DOCTYPE DTD information -->
9 <xsl:output method = "html" omit-xml-declaration = "no"

10 doctype-system = "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"
11 doctype-public = "-//W3C//DTD XHTML 1.1//EN"/>

12

Fig. 12.23 | XSL document that transforms sorting.xml into XHTML. (Part 1 of 3.)

Fig. 12.22 | XML document containing book information. (Part 2 of 2.)

12.8 Extensible Stylesheet Language and XSL Transformations 321

13 <!-- match document root -->
14 <xsl:template match = "/">

15 <html xmlns = "http://www.w3.org/1999/xhtml">

16 <xsl:apply-templates/>

17 </html>

18 </xsl:template>

19
20 <!-- match book -->
21 <xsl:template match = "book">

22 <head>

23 <title>ISBN <xsl:value-of select = "@isbn"/> -
24 <xsl:value-of select = "title"/></title>

25 </head>

26
27 <body>

28 <h1 style = "color: blue"><xsl:value-of select = "title"/></h1>

29 <h2 style = "color: blue">by
30 <xsl:value-of select = "author/lastName"/>,
31 <xsl:value-of select = "author/firstName"/></h2>

32
33 <table style = "border-style: groove; background-color: wheat">

34
35 <xsl:for-each select = "chapters/frontMatter/*">

36 <tr>

37 <td style = "text-align: right">

38 <xsl:value-of select = "name()"/>

39 </td>

40
41 <td>

42 (<xsl:value-of select = "@pages"/> pages)
43 </td>

44 </tr>

45 </xsl:for-each>

46
47 <xsl:for-each select = "chapters/chapter">

48 <xsl:sort select = "@number" data-type = "number"

49 order = "ascending"/>

50 <tr>

51 <td style = "text-align: right">

52 Chapter <xsl:value-of select = "@number"/>
53 </td>

54
55 <td>

56 <xsl:value-of select = "text()"/>

57 (<xsl:value-of select = "@pages"/> pages)
58 </td>

59 </tr>

60 </xsl:for-each>

61
62 <xsl:for-each select = "chapters/appendix">

63 <xsl:sort select = "@number" data-type = "text"

64 order = "ascending"/>

Fig. 12.23 | XSL document that transforms sorting.xml into XHTML. (Part 2 of 3.)

322 Chapter 12 XML and RSS

Lines 21–84 specify a template that matches element book. The template indicates
how to format the information contained in book elements of sorting.xml (Fig. 12.22)
as XHTML.

Lines 23–24 create the title for the XHTML document. We use the book’s ISBN
(from attribute isbn) and the contents of element title to create the string that appears
in the browser window’s title bar (ISBN 999-99999-9-X - Deitel’s XML Primer).

Line 28 creates a header element that contains the book’s title. Lines 29–31 create a
header element that contains the book’s author. Because the context node (i.e., the current

65 <tr>

66 <td style = "text-align: right">

67 Appendix <xsl:value-of select = "@number"/>
68 </td>

69
70 <td>

71 <xsl:value-of select = "text()"/>

72 (<xsl:value-of select = "@pages"/> pages)
73 </td>

74 </tr>

75 </xsl:for-each>

76 </table>

77
78
<p style = "color: blue">Pages:
79 <xsl:variable name = "pagecount"

80 select = "sum(chapters//*/@pages)"/>

81 <xsl:value-of select = "$pagecount"/>

82
Media Type: <xsl:value-of select = "media/@type"/></p>
83 </body>

84 </xsl:template>

85 </xsl:stylesheet>

Fig. 12.23 | XSL document that transforms sorting.xml into XHTML. (Part 3 of 3.)

12.8 Extensible Stylesheet Language and XSL Transformations 323

node being processed) is book, the XPath expression author/lastName selects the author’s
last name, and the expression author/firstName selects the author’s first name.

Line 35 selects each element (indicated by an asterisk) that is a child of element
frontMatter. Line 38 calls node-set function name to retrieve the current node’s element
name (e.g., preface). The current node is the context node specified in the xsl:for-each
(line 35). Line 42 retrieves the value of the pages attribute of the current node.

Line 47 selects each chapter element. Lines 48–49 use element xsl:sort to sort
chapters by number in ascending order. Attribute select selects the value of attribute
number in context node chapter. Attribute data-type, with value "number", specifies a
numeric sort, and attribute order, with value "ascending", specifies ascending order.
Attribute data-type also accepts the value "text" (line 63), and attribute order also
accepts the value "descending". Line 56 uses node-set function text to obtain the text
between the chapter start and end tags (i.e., the name of the chapter). Line 57 retrieves
the value of the pages attribute of the current node. Lines 62–75 perform similar tasks for
each appendix.

Lines 79–80 use an XSL variable to store the value of the book’s total page count and
output the page count to the result tree. Attribute name specifies the variable’s name (i.e.,
pagecount), and attribute select assigns a value to the variable. Function sum (line 80)
totals the values for all page attribute values. The two slashes between chapters and *
indicate a recursive descent—the MSXML processor will search for elements that contain
an attribute named pages in all descendant nodes of chapters. The XPath expression

//*

selects all the nodes in an XML document. Line 81 retrieves the value of the newly created
XSL variable pagecount by placing a dollar sign in front of its name.

Summary of XSL Style-Sheet Elements
This section’s examples used several predefined XSL elements to perform various opera-
tions. Figure 12.24 lists these elements and several other commonly used XSL elements.
For more information on these elements and XSL in general, see www.w3.org/Style/XSL.

Element Description

<xsl:apply-templates> Applies the templates of the XSL document to the children of
the current node.

<xsl:apply-templates

 match = "expression">
Applies the templates of the XSL document to the children of
expression. The value of the attribute match (i.e., expression)
must be an XPath expression that specifies elements.

<xsl:template> Contains rules to apply when a specified node is matched.

<xsl:value-of select =

 "expression">
Selects the value of an XML element and adds it to the output
tree of the transformation. The required select attribute con-
tains an XPath expression.

Fig. 12.24 | XSL style-sheet elements. (Part 1 of 2.)

www.w3.org/Style/XSL

324 Chapter 12 XML and RSS

This section introduced Extensible Stylesheet Language (XSL) and showed how to
create XSL transformations to convert XML documents from one format to another. We
showed how to transform XML documents to XHTML documents for display in a web
browser. Recall that these transformations are performed by MSXML, Internet Explorer’s
built-in XML parser and XSLT processor. In most business applications, XML documents
are transferred between business partners and are transformed to other XML vocabularies
programmatically. Section 12.9 discusses the XML Document Object Model (DOM) and
demonstrates how to manupulate the DOM of an XML document using JavaScript.

12.9 Document Object Model (DOM)
Although an XML document is a text file, retrieving data from the document using tradi-
tional sequential file processing techniques is neither practical nor efficient, especially for
adding and removing elements dynamically.

Upon successfully parsing a document, some XML parsers store document data as tree
structures in memory. Figure 12.25 illustrates the tree structure for the root element of the
document article.xml (Fig. 12.2). This hierarchical tree structure is called a Document
Object Model (DOM) tree, and an XML parser that creates this type of structure is
known as a DOM parser. Each element name (e.g., article, date, firstName) is repre-
sented by a node. A node that contains other nodes (called child nodes or children) is
called a parent node (e.g., author). A parent node can have many children, but a child
node can have only one parent node. Nodes that are peers (e.g., firstName and lastName)
are called sibling nodes. A node’s descendant nodes include its children, its children’s chil-
dren and so on. A node’s ancestor nodes include its parent, its parent’s parent and so on.
Many of the XML DOM capabilities you’ll see in this section are similar or identical to
those of the XHTML DOM you learned in Chapter 10.

The DOM tree has a single root node, which contains all the other nodes in the doc-
ument. For example, the root node of the DOM tree that represents article.xml con-
tains a node for the XML declaration (line 1), two nodes for the comments (lines 3–4) and
a node for the XML document’s root element article (line 5).

<xsl:for-each select =

 "expression">
Applies a template to every node selected by the XPath speci-
fied by the select attribute.

<xsl:sort select =

 "expression">
Used as a child element of an <xsl:apply-templates> or
<xsl:for-each> element. Sorts the nodes selected by the
<xsl:apply-template> or <xsl:for-each> element so that the
nodes are processed in sorted order.

<xsl:output> Has various attributes to define the format (e.g., XML,
XHTML), version (e.g., 1.0, 2.0), document type and media
type of the output document. This tag is a top-level element—
it can be used only as a child element of an xml:stylesheet.

<xsl:copy> Adds the current node to the output tree.

Element Description

Fig. 12.24 | XSL style-sheet elements. (Part 2 of 2.)

12.9 Document Object Model (DOM) 325

To introduce document manipulation with the XML Document Object Model, we
provide a scripting example (Fig. 12.26) that uses JavaScript and XML. This example
loads the XML document article.xml (Fig. 12.2) and uses the XML DOM API to dis-
play the document’s element names and values. The example also provides buttons that
enable you to navigate the DOM structure. As you click each button, an appropriate part
of the document is highlighted. All of this is done in a manner that enables the example
to execute in both Internet Explorer 7 and Firefox 2 (and higher). Figure 12.26 lists the
JavaScript code that manipulates this XML document and displays its content in an
XHTML page.

Overview of the body Element
Lines 203–217 create the XHTML document’s body. When the body loads, its onload
event calls our JavaScript function loadXMLDocument to load and display the contents of
article.xml in the div at line 216 (outputDiv). Lines 204–215 define a form consisting
of five buttons. When each button is pressed, it invokes one of our JavaScript functions to
navigate article.xml’s DOM structure.

Fig. 12.25 | Tree structure for the document article.xml of Fig. 12.2.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 12.26: XMLDOMTraversal.html -->
6 <!-- Traversing an XML document using the XML DOM. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Traversing an XML document using the XML DOM</title>
10 <style type = "text/css">

Fig. 12.26 | Traversing an XML document using the XML DOM. (Part 1 of 9.)

title

firstName

article

author

date

summary

content

lastName

root element

children of the
article

root element sibling
elements

326 Chapter 12 XML and RSS

11 .highlighted { background-color: yellow }
12 #outputDiv { font: 10pt "Lucida Console", monospace; }
13 </style>

14 <script type="text/javascript">

15 <!--
16 var doc; // variable to reference the XML document
17 var outputHTML = ""; // stores text to output in outputDiv
18 var idCounter = 1; // used to create div IDs
19 var depth = -1; // tree depth is -1 to start
20 var current = null; // represents the current node for traversals
21 var previous = null; // represent prior node in traversals
22
23 // load XML document based on whether the browser is IE7 or Firefox
24 function loadXMLDocument(url)
25 {
26 if () // IE7
27 {
28 // create IE7-specific XML document object
29
30
31
32 buildHTML(doc.childNodes); // display the nodes
33 displayDoc();
34 } // end if
35 else if (&&
36) // other browsers
37 {
38 // create XML document object
39
40
41
42
43
44
45
46 } // end else
47 else // not supported
48 alert('This script is not supported by your browser');
49 } // end function loadXMLDocument
50
51 // traverse xmlDocument and build XHTML representation of its content
52 function buildHTML(childList)
53 {
54 ++depth; // increase tab depth
55
56 // display each node's content
57 for (var i = 0; i < childList.length; i++)
58 {
59 switch ()
60 {
61 case 1: // Node.ELEMENT_NODE; value used for portability
62 outputHTML += "<div id=\"id" + idCounter + "\">";
63 spaceOutput(depth); // insert spaces

Fig. 12.26 | Traversing an XML document using the XML DOM. (Part 2 of 9.)

window.ActiveXObject

doc = new ActiveXObject("Msxml2.DOMDocument.6.0");
doc.async = false; // specifies synchronous loading of XML doc
doc.load(url); // load the XML document specified by url

document.implementation
document.implementation.createDocument

doc = document.implementation.createDocument("", "", null);
doc.load(url); // load the XML document specified by url
doc.onload = function() // function to execute when doc loads
{
 buildHTML(doc.childNodes); // called by XML doc onload event
 displayDoc(); // display the HTML
} // end XML document's onload event handler

childList[i].nodeType

12.9 Document Object Model (DOM) 327

64 outputHTML += ; // show node's name
65 ++idCounter; // increment the id counter
66
67 // if current node has children, call buildHTML recursively
68 if (!= 0)
69
70
71 outputHTML += "</div>";
72 break;
73 case 3: // Node.TEXT_NODE; value used for portability
74 case 8: // Node.COMMENT_NODE; value used for portability
75 // if nodeValue is not 3 or 6 spaces (Firefox issue),
76 // include nodeValue in HTML
77 if (childList[i].nodeValue.indexOf(" ") == -1 &&
78 childList[i].nodeValue.indexOf(" ") == -1)
79 {
80 outputHTML += "<div id=\"id" + idCounter + "\">";
81 spaceOutput(depth); // insert spaces
82 outputHTML += + "</div>";
83 ++idCounter; // increment the id counter
84 } // end if
85 } // end switch
86 } // end for
87
88 --depth; // decrease tab depth
89 } // end function buildHTML
90
91 // display the XML document and highlight the first child
92 function displayDoc()
93 {
94 document.getElementById("outputDiv").innerHTML = outputHTML;
95 current = document.getElementById('id1');
96 setCurrentNodeStyle(current.id, true);
97 } // end function displayDoc
98
99 // insert non-breaking spaces for indentation
100 function spaceOutput(number)
101 {
102 for (var i = 0; i < number; i++)
103 {
104 outputHTML += " ";
105 } // end for
106 } // end function spaceOutput
107
108 // highlight first child of current node
109 function processFirstChild()
110 {
111 if (current.childNodes.length == 1 && // only one child
112 current.firstChild.nodeType == 3) // and it's a text node
113 {
114 alert("There is no child node");
115 } // end if

Fig. 12.26 | Traversing an XML document using the XML DOM. (Part 3 of 9.)

childList[i].nodeName

childList[i].childNodes.length
buildHTML(childList[i].childNodes);

childList[i].nodeValue

328 Chapter 12 XML and RSS

116 else if (current.childNodes.length > 1)
117 {
118 previous = current; // save currently highlighted node
119
120 if (current.firstChild.nodeType != 3) // if not text node
121 current = current.firstChild; // get new current node
122 else // if text node, use firstChild's nextSibling instead
123 current = current.firstChild.nextSibling; // get first sibling
124
125 setCurrentNodeStyle(previous.id, false); // remove highlight
126 setCurrentNodeStyle(current.id, true); // add highlight
127 } // end if
128 else
129 alert("There is no child node");
130 } // end function processFirstChild
131
132 // highlight next sibling of current node
133 function processNextSibling()
134 {
135 if (current.id != "outputDiv" && current.nextSibling)
136 {
137 previous = current; // save currently highlighted node
138 current = current.nextSibling; // get new current node
139 setCurrentNodeStyle(previous.id, false); // remove highlight
140 setCurrentNodeStyle(current.id, true); // add highlight
141 } // end if
142 else
143 alert("There is no next sibling");
144 } // end function processNextSibling
145
146 // highlight previous sibling of current node if it is not a text node
147 function processPreviousSibling()
148 {
149 if (current.id != "outputDiv" && current.previousSibling &&
150 current.previousSibling.nodeType != 3)
151 {
152 previous = current; // save currently highlighted node
153 current = current.previousSibling; // get new current node
154 setCurrentNodeStyle(previous.id, false); // remove highlight
155 setCurrentNodeStyle(current.id, true); // add highlight
156 } // end if
157 else
158 alert("There is no previous sibling");
159 } // end function processPreviousSibling
160
161 // highlight last child of current node
162 function processLastChild()
163 {
164 if (current.childNodes.length == 1 &&
165 current.lastChild.nodeType == 3)
166 {
167 alert("There is no child node");
168 } // end if

Fig. 12.26 | Traversing an XML document using the XML DOM. (Part 4 of 9.)

12.9 Document Object Model (DOM) 329

169 else if (current.childNodes.length != 0)
170 {
171 previous = current; // save currently highlighted node
172 current = current.lastChild; // get new current node
173 setCurrentNodeStyle(previous.id, false); // remove highlight
174 setCurrentNodeStyle(current.id, true); // add highlight
175 } // end if
176 else
177 alert("There is no child node");
178 } // end function processLastChild
179
180 // highlight parent of current node
181 function processParentNode()
182 {
183 if (current.parentNode.id != "body")
184 {
185 previous = current; // save currently highlighted node
186 current = current.parentNode; // get new current node
187 setCurrentNodeStyle(previous.id, false); // remove highlight
188 setCurrentNodeStyle(current.id, true); // add highlight
189 } // end if
190 else
191 alert("There is no parent node");
192 } // end function processParentNode
193
194 // set style of node with specified id
195 function setCurrentNodeStyle(id, highlight)
196 {
197 document.getElementById(id).className =
198 (highlight ? "highlighted" : "");
199 } // end function setCurrentNodeStyle
200 // -->
201 </script>

202 </head>

203 <body id = "body" onload = "loadXMLDocument('article.xml');">

204 <form action = "" onsubmit = "return false;">

205 <input type = "submit" value = "firstChild"

206 onclick = "processFirstChild()"/>

207 <input type = "submit" value = "nextSibling"

208 onclick = "processNextSibling()"/>
209 <input type = "submit" value = "previousSibling"

210 onclick = "processPreviousSibling()"/>

211 <input type = "submit" value = "lastChild"

212 onclick = "processLastChild()"/>

213 <input type = "submit" value = "parentNode"

214 onclick = "processParentNode()"/>

215 </form>

216 <div id = "outputDiv"></div>

217 </body>

218 </html>

Fig. 12.26 | Traversing an XML document using the XML DOM. (Part 5 of 9.)

330 Chapter 12 XML and RSS

Fig. 12.26 | Traversing an XML document using the XML DOM. (Part 6 of 9.)

a) The comment node
at the beginning of
article.xml is
highlighted when the
XML document first
loads.

b) User clicked the
nextSibling button to
highlight the second
comment node.

c) User clicked the
nextSibling button
again to highlight the
article node.

12.9 Document Object Model (DOM) 331

Fig. 12.26 | Traversing an XML document using the XML DOM. (Part 7 of 9.)

d) User clicked the
firstChild button to
highlight the
article node’s
title child node.

e) User clicked the
firstChild button
again to highlight the
title node’s text
child node.

f) User clicked the
parentNode button
to highlight the text
node’s parent title
node.

332 Chapter 12 XML and RSS

Fig. 12.26 | Traversing an XML document using the XML DOM. (Part 8 of 9.)

g) User clicked the
nextSibling button to
highlight the title
node’s date sibling
node.

h) User clicked the
nextSibling button to
highlight the date
node’s author sibling
node.

i) User clicked the
lastChild button to
highlight the author
node’s last child node
(lastName).

12.9 Document Object Model (DOM) 333

Global Script Variables
Lines 16–21 in the script element (lines 14–201) declare several variables used through-
out the script. Variable doc references a DOM object representation of article.xml.
Variable outputHTML stores the markup that will be placed in outputDiv. Variable id-
Counter is used to track the unique id attributes that we assign to each element in the out-
putHTML markup. These ids will be used to dynamically highlight parts of the document
when the user clicks the buttons in the form. Variable depth determines the indentation
level for the content in article.xml. We use this to structure the output using the nesting
of the elements in article.xml. Variables current and previous track the current and
previous nodes in article.xml’s DOM structure as the user navigates it.

Function loadXMLDocument

Function loadXMLDocument (lines 24–49) receives the URL of an XML document to load,
then loads the document based on whether the browser is Internet Explorer 7 (26–34) or
Firefox (lines 35–46)—the code for Firefox works in several other browsers as well. Line
26 determines whether window.ActiveXObject exists. If so, this indicates that the browser
is Internet Explorer. Line 29 creates a Microsoft ActiveXObject that loads Microsoft’s
MSXML parser, which provides capabilities for manipulating XML documents. Line 30
indicates that we’d like the XML document to be loaded synchronously, then line 31 uses
the ActiveXObject’s load method to load article.xml. When this completes, we call our
buildHTML method (defined in lines 52–89) to construct an XHTML representation of
the XML document. The expression doc.childNodes is a list of the XML document’s top-
level nodes. Line 33 calls our displayDoc function (lines 92–97) to display the contents
of article.xml in outputDiv.

If the browser is Firefox, then the document object’s implementation property and
the implementation property’s createDocument method will exist (lines 35–36). In this
case, line 39 uses the createDocument method to create an empty XML document object.
If necessary, you can specify the XML document’s namespace as the first argument and its
root element as the second argument. We used empty strings for both in this example.

Fig. 12.26 | Traversing an XML document using the XML DOM. (Part 9 of 9.)

j) User clicked the
parentNode button
to highlight the
lastName node’s
author parent node.

334 Chapter 12 XML and RSS

According to the site www.w3schools.com/xml/xml_parser.asp, the third argument is
not implemented yet, so it should always be null. Line 40 calls its load method to load
article.xml. Firefox loads the XML document asynchronously, so you must use the
XML document’s onload property to specify a function to call (an anonymous function
in this example) when the document finishes loading. When this event occurs, lines 43–
44 call buildHTML and displayDoc just as we did in lines 32–33.

Common Programming Error 12.11
Attempting to process the contents of a dynamically loaded XML document in Firefox before the
document’s onload event fires is a logic error. The document’s contents are not available until
the onload event fires.

Function buildHTML

Function buildHTML (lines 52–89) is a recursive function that receives a list of nodes as an
argument. Line 54 increments the depth for indentation purposes. Lines 57–86 iterate
through the nodes in the list. The switch statement (lines 59–85) uses the current node’s
nodeType property to determine whether the current node is an element (line 61), a text
node (i.e., the text content of an element; line 73) or a comment node (line 74). If it is an
element, then we begin a new div element in our XHTML (line 62) and give it a unique
id. Then function spaceOutput (defined in lines 100–106) appends nonbreaking spaces
()—i.e., spaces that the browser is not allowed to collapse or that can be used to
keep words together—to indent the current element to the correct level. Line 64 appends
the name of the current element using the node’s nodeName property. If the current ele-
ment has children, the length of the current node’s childNodes list is nonzero and line 69
recursively calls buildHTML to append the current element’s child nodes to the markup.
When that recursive call completes, line 71 completes the div element that we started at
line 62.

If the current element is a text node, lines 77–78 obtain the node’s value with the
nodeValue property and use the string method indexOf to determine whether the node’s
value starts with three or six spaces. Unfortunately, unlike MSMXL, Firefox’s XML parser
does not ignore the white space used for indentation in XML documents. Instead it creates
text nodes containing just the space characters. The condition in lines 77–78 enables us to
ignore these nodes in Firefox. If the node contains text, lines 80–82 append a new div to
the markup and use the node’s nodeValue property to insert that text in the div. Line 88
in buildHTML decrements the depth counter.

Portability Tip 12.4
Firefox’s XML parser does not ignore white space used for indentation in XML documents. In-
stead, it creates text nodes containing the white-space characters.

Function displayDoc

In function displayDoc (lines 92–97), line 94 uses the DOM’s getElementById method
to obtain the outputDiv element and set its innerHTML property to the new markup gen-
erated by buildHTML. Then, line 95 sets variable current to refer to the div with id 'id1'
in the new markup, and line 96 uses our setCurrentNodeStyle method (defined at lines
195–199) to highlight that div.

www.w3schools.com/xml/xml_parser.asp

12.9 Document Object Model (DOM) 335

Functions processFirstChild and processLastChild
Function processFirstChild (lines 109–130) is invoked by the onclick event of the but-
ton at lines 205–206. If the current node has only one child and it’s a text node (lines
111–112), line 114 displays an alert dialog indicating that there is no child node—we nav-
igate only to nested XML elements in this example. If there are two or more children, line
118 stores the value of current in previous, and lines 120–123 set current to refer to its
firstChild (if this child is not a text node) or its firstChild’s nextSibling (if the
firstChild is a text node)—again, this is to ensure that we navigate only to nodes that
represent XML elements. Then lines 125–126 unhighlight the previous node and high-
light the new current node. Function processLastChild (lines 162–178) works similar-
ly, using the current node’s lastChild property.

Functions processNextSibling and processPreviousSibling
Function processNextSibling (lines 133–144) first ensures that the current node is not
the outputDiv and that nextSibling exists. If so, lines 137–140 adjust the previous and
current nodes accordingly and update their highlighting. Function processPrevious-
Sibling (lines 147–159) works similarly, ensuring first that the current node is not the
outputDiv, that previousSibling exists and that previousSibling is not a text node.

Function processParentNode

Function processParentNode (lines 181–192) first checks whether the current node’s
parentNode is the XHTML page’s body. If not, lines 185–188 adjust the previous and
current nodes accordingly and update their highlighting.

Common DOM Properties
The tables in Figs. 12.27–12.32 describe many common DOM properties and methods.
Some of the key DOM objects are Node (a node in the tree), NodeList (an ordered set of
Nodes), Document (the document), Element (an element node), Attr (an attribute node)
and Text (a text node). There are many more objects, properties and methods than we can
possibly list here. Our XML Resource Center (www.deitel.com/XML/) includes links to
various DOM reference websites.

Property/Method Description

nodeType An integer representing the node type.
nodeName The name of the node.
nodeValue A string or null depending on the node type.
parentNode The parent node.
childNodes A NodeList (Fig. 12.28) with all the children of the node.
firstChild The first child in the Node’s NodeList.
lastChild The last child in the Node’s NodeList.
previousSibling The node preceding this node; null if there is no such node.
nextSibling The node following this node; null if there is no such node.

Fig. 12.27 | Common Node properties and methods. (Part 1 of 2.)

www.deitel.com/XML/

336 Chapter 12 XML and RSS

attributes A collection of Attr objects (Fig. 12.31) containing the attributes for
this node.

insertBefore Inserts the node (passed as the first argument) before the existing node
(passed as the second argument). If the new node is already in the tree,
it is removed before insertion. The same behavior is true for other
methods that add nodes.

replaceChild Replaces the second argument node with the first argument node.
removeChild Removes the child node passed to it.
appendChild Appends the node it receives to the list of child nodes.

Property/Method Description

item Method that receives an index number and returns the element node at
that index. Indices range from 0 to length – 1. You can also access the
nodes in a NodeList via array indexing.

length The total number of nodes in the list.

Fig. 12.28 | NodeList property and method.

Property/Method Description

documentElement The root node of the document.
createElement Creates and returns an element node with the specified tag name.
createAttribute Creates and returns an Attr node (Fig. 12.31) with the specified

name and value.
createTextNode Creates and returns a text node that contains the specified text.
getElementsByTagName Returns a NodeList of all the nodes in the subtree with the name

specified as the first argument, ordered as they would be encoun-
tered in a preorder traversal. An optional second argument speci-
fies either the direct child nodes (0) or any descendant (1).

Fig. 12.29 | Document properties and methods.

Property/Method Description

tagName The name of the element.
getAttribute Returns the value of the specified attribute.

Fig. 12.30 | Element property and methods. (Part 1 of 2.)

Property/Method Description

Fig. 12.27 | Common Node properties and methods. (Part 2 of 2.)

12.9 Document Object Model (DOM) 337

Locating Data in XML Documents with XPath
Although you can use XML DOM capabilities to navigate through and manipulate nodes,
this is not the most efficient means of locating data in an XML document’s DOM tree. A
simpler way to locate nodes is to search for lists of nodes matching search criteria that are
written as XPath expressions. Recall that XPath (XML Path Language) provides a syntax
for locating specific nodes in XML documents effectively and efficiently. XPath is a string-
based language of expressions used by XML and many of its related technologies (such as
XSLT, discussed in Section 12.8).

Figure 12.33 enables the user to enter XPath expressions in an XHTML form. When
the user clicks the Get Matches button, the script applies the XPath expression to the XML
DOM and displays the matching nodes. Figure 12.34 shows the XML document
sports.xml that we use in this example. [Note: The versions of sports.xml presented in
Fig. 12.34 and Fig. 12.20 are nearly identical. In the current example, we do not want to
apply an XSLT, so we omit the processing instruction found in line 2 of Fig. 12.20. We
also removed extra blank lines to save space.]

The program of Fig. 12.33 loads the XML document sports.xml (Fig. 12.34) using
the same techniques we presented in Fig. 12.26, so we focus on only the new features in
this example. Internet Explorer 7 (MSXML) and Firefox handle XPath processing differ-
ently, so this example declares the variable browser (line 17) to store the browser that

setAttribute Changes the value of the attribute passed as the first argument to the
value passed as the second argument.

removeAttribute Removes the specified attribute.
getAttributeNode Returns the specified attribute node.
setAttributeNode Adds a new attribute node with the specified name.

Property Description

value The specified attribute’s value.
name The name of the attribute.

Fig. 12.31 | Attr properties.

Property Description

data The text contained in the node.
length The number of characters contained in the node.

Fig. 12.32 | Text methods.

Property/Method Description

Fig. 12.30 | Element property and methods. (Part 2 of 2.)

338 Chapter 12 XML and RSS

loaded the page. In function loadDocument (lines 20–40), lines 28 and 36 assign a string
to variable browser indicating the appropriate browser.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 12.33: xpath.html -->
6 <!-- Using XPath to locate nodes in an XML document. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Using XPath to Locate Nodes in an XML Document</title>
10 <style type = "text/css">

11 #outputDiv { font: 10pt "Lucida Console", monospace; }
12 </style>

13 <script type = "text/javascript">

14 <!--
15 var doc; // variable to reference the XML document
16 var outputHTML = ""; // stores text to output in outputDiv
17 var browser = ""; // used to determine which browser is being used
18
19 // load XML document based on whether the browser is IE7 or Firefox
20 function loadXMLDocument(url)
21 {
22 if (window.ActiveXObject) // IE7
23 {
24 // create IE7-specific XML document object
25 doc = new ActiveXObject("Msxml2.DOMDocument.6.0");
26 doc.async = false; // specifies synchronous loading of XML doc
27 doc.load(url); // load the XML document specified by url
28 browser = "IE7"; // set browser
29 } // end if
30 else if (document.implementation &&
31 document.implementation.createDocument) // other browsers
32 {
33 // create XML document object
34 doc = document.implementation.createDocument("", "", null);
35 doc.load(url); // load the XML document specified by url
36 browser = "FF2"; // set browser
37 } // end else
38 else // not supported
39 alert('This script is not supported by your browser');
40 } // end function loadXMLDocument
41
42 // display the XML document
43 function displayDoc()
44 {
45 document.getElementById("outputDiv").innerHTML = outputHTML;
46 } // end function displayDoc
47
48 // obtain and apply XPath expression
49 function processXPathExpression()
50 {

Fig. 12.33 | Using XPath to locate nodes in an XML document. (Part 1 of 3.)

12.9 Document Object Model (DOM) 339

51
52 outputHTML = "";
53
54 if (browser == "IE7")
55 {
56
57
58
59
60
61 } // end if
62 else // browser == "FF2"
63 {
64
65
66
67
68
69
70
71
72
73
74 } // end else
75
76 displayDoc();
77 } // end function processXPathExpression
78 // -->
79 </script>

80 </head>

81 <body id = "body" onload = "loadXMLDocument('sports.xml');">

82 <form action = "" onsubmit = "return false;">
83 <input id = "inputField" type = "text" style = "width: 200px"/>

84 <input type = "submit" value = "Get Matches"

85 />

86 </form>

87 <div id = "outputDiv"></div>

88 </body>

89 </html>

Fig. 12.33 | Using XPath to locate nodes in an XML document. (Part 2 of 3.)

var xpathExpression = document.getElementById("inputField").value;

var result = doc.selectNodes(xpathExpression);

for (var i = 0; i < result.length; i++)
 outputHTML += "<div style='clear: both'>" +
 result.item(i).text + "</div>";

var result = document.evaluate(xpathExpression, doc, null,
XPathResult.ANY_TYPE, null);

var current = result.iterateNext();

while (current)
{
 outputHTML += "<div style='clear: both'>" +
 current.textContent + "</div>";
 current = result.iterateNext();
} // end while

onclick = "processXPathExpression()"

(a) (b)

340 Chapter 12 XML and RSS

1 <?xml version = "1.0"?>

2
3 <!-- Fig. 12.34: sports.xml -->
4 <!-- Sports Database -->
5 <sports>

6 <game id = "783">

7 <name>Cricket</name>
8 <paragraph>

9 More popular among commonwealth nations.
10 </paragraph>

11 </game>

12 <game id = "239">

13 <name>Baseball</name>
14 <paragraph>

15 More popular in America.
16 </paragraph>

17 </game>

18 <game id = "418">

19 <name>Soccer (Futbol)</name>
20 <paragraph>
21 Most popular sport in the world.
22 </paragraph>
23 </game>

24 </sports>

Fig. 12.34 | XML document that describes various sports.

Fig. 12.33 | Using XPath to locate nodes in an XML document. (Part 3 of 3.)

(c) (d)

(e) (f)

12.9 Document Object Model (DOM) 341

When the body of this XHTML document loads, its onload event calls loadDocument
(line 81) to load the sports.xml file. The user specifies the XPath expression in the input
element at line 83. When the user clicks the Get Matches button (lines 84–85), its onclick
event handler invokes our processXPathExpression function to locate any matches and
display the results in outputDiv (line 87).

Function processXPathExpression (lines 49–77) first obtains the XPath expression
(line 51). The document object’s getElementById method returns the element with the id
"inputField"; then we use its value property to get the XPath expression. Lines 54–61
apply the XPath expression in Internet Explorer 7, and lines 62–74 apply the XPath
expression in Firefox. In IE7, the XML document object’s selectNodes method receives
an XPath expression as an argument and returns a collection of elements that match the
expression. Lines 58–60 iterate through the results and mark up each one in a separate div
element. After this loop completes, line 76 displays the generated markup in outputDiv.

For Firefox, lines 64–65 invoke the XML document object’s evaluate method,
which receives five arguments—the XPath expression, the document to apply the expres-
sion to, a namespace resolver, a result type and an XPathResult object into which to place
the results. If the last argument is null, the function simply returns a new XPathResult
object containing the matches. The namespace resolver argument can be null if you are
not using XML namespace prefixes in the XPath processing. Lines 66–73 iterate through
the XPathResult and mark up the results. Line 66 invokes the XPathResult’s iter-

ateNext method to position to the first result. If there is a result, the condition in line 68
will be true, and lines 70–71 create a div for that result. Line 72 then positions to the next
result. After this loop completes, line 76 displays the generated markup in outputDiv.

Figure 12.35 summarizes the XPath expressions that we demonstrate in Fig. 12.33’s
sample outputs. For more information on using XPath in Firefox, visit the site
developer.mozilla.org/en/docs/XPath. For more information on using XPath in
Internet Explorer, visit msdn.microsoft.com/msdnmag/issues/0900/xml/.

Expression Description

/sports Matches all sports nodes that are child nodes of the docu-
ment root node.

/sports/game Matches all game nodes that are child nodes of sports,
which is a child of the document root.

/sports/game/name Matches all name nodes that are children of game. The game
is a child of sports, which is a child of the document root.

/sports/game/paragraph Matches all paragraphs that are children of game. The game
is a child of sports, which is a child of the document root.

/sports/game [@id=’239’] Matches the game node with the id number 239. The game
is a child of sports, which is a child of the document root.

/sports/game [name='Cricket'] Matches all game nodes that contain a child element whose
name is Cricket. The game is a child of sports, which is a
child of the document root.

Fig. 12.35 | XPath expressions and descriptions.

342 Chapter 12 XML and RSS

12.10 RSS
RSS stands for RDF (Resource Description Framework) Site Summary and is also
known as Rich Site Summary and Really Simple Syndication. RSS is an XML format
used to syndicate website content, such as news articles, blog entries, product reviews, pod-
casts, vodcasts and more for inclusion on other websites. An RSS feed contains an rss root
element with a version attribute and a channel child element with item subelements.
Depending on the RSS version, the channel and item elements have certain required and
optional child elements. The item elements provide the feed subscriber with a link to a
web page or file, a title and description of the page or file. The most commonly used RSS
feed versions are 0.91, 1.0, and 2.0, with RSS 2.0 being the most popular version. We dis-
cuss only RSS version 2.0 in this section.

RSS version 2.0, introduced in 2002, builds upon the RSS 0.9x versions. Version 2.0
does not contain length limitations or item element limitations of earlier versions, makes
some formerly required elements optional, and adds new channel and item subelements.
Removing length limitations on item descriptions allows RSS feeds to contain entire arti-
cles, blog entries and other web content. You can also have partial feeds that provide only
a summary of the syndicated content. Partial feeds require the RSS subscriber to visit a
website to view the complete content. RSS 2.0 allows item elements to contain an enclo-
sure element providing the location of a media file that is related to the item. Such enclo-
sures enable syndication of audio and video (such as podcasts and vodcasts) via RSS feeds.

By providing up-to-date, linkable content for anyone to use, RSS enables website
developers to draw more traffic. It also allows users to get news and information from
many sources easily and reduces content development time. RSS simplifies importing
information from portals, weblogs and news sites. Any piece of information can be syndi-
cated via RSS, not just news. After putting information in RSS format, an RSS program,
such as a feed reader or aggregator, can check the feed for changes and react to them. For
more details on RSS and for links to many RSS sites, visit our RSS Resource Center at
www.deitel.com/RSS.

RSS 2.0 channel and item Elements
In RSS 2.0, the required child elements of channel are description, link and title, and
the required child element of an item is either title or description. Figures 12.36–
12.37 overview the child elements of channels and items, respectively.

Element Description

title The name of the channel or feed.

link The URL to the website of the channel or feed the RSS is coming from.

description A description of the channel or feed.

language The language the channel is in, using W3C language values.

copyright The copyright material of the channel or feed.

managingEditor The e-mail address of the editor of the channel or feed.

Fig. 12.36 | channel elements and descriptions. (Part 1 of 2.)

www.deitel.com/RSS

12.10 RSS 343

webMaster The e-mail address for the webmaster of the channel or feed.

pubDate The date of the channel or feed release, using the RFC 822 Date and
Time Specification—e.g., Sun, 14 Jan 2007 8:00:00 EST.

lastBuildDate The last date the channel or feed was changed, using the RFC 822 Date
and Time Specification.

category The category (or several categories) of the channel or feed. This element
has an optional attribute tag.

generator Indicates the program that was used to generate the channel or feed.

docs The URL of the documentation for the format used in the RSS file.

cloud Specifies a SOAP web service that supports the rssCloud interface
(cyber.law.harvard.edu/rss/soapMeetsRss.html#
rsscloudInterface).

ttl (Time To Live) A number of minutes for how long the channel or feed
can be cached before refreshing from the source.

image The GIF, JPEG or PNG image that can be displayed with the channel or
feed. This element contains the required children title, link and url,
and the optional children description, height and width.

rating The PICS (Platform for Internet Content Selection) rating for the
channel or feed.

textInput Specifies a text input box to display with the channel or feed. This ele-
ment contains the required children title, name, link and description.

skipHours Tells aggregators which hours they can skip checking for new content.

skipDays Tells aggregators which days they can skip checking for new content.

Element Description

title The title of the item.

link The URL of the item.

description The description of the item.

author The e-mail address of the author of the item.

category The category (or several categories) of the item. This element has an optional
attribute tag.

comments The URL of a page for comments related to the item.

enclosure The location of a media object attached to the item. This element has the
required attributes type, url and length.

Fig. 12.37 | item elements and descriptions. (Part 1 of 2.)

Element Description

Fig. 12.36 | channel elements and descriptions. (Part 2 of 2.)

344 Chapter 12 XML and RSS

Browsers and RSS Feeds
Many of the latest web browsers can now view RSS feeds, determine whether a website
offers feeds, allow you to subscribe to feeds and create feed lists. An RSS aggregator keeps
tracks of many RSS feeds and brings together information from the separate feeds. There
are many RSS aggregators available, including Bloglines, BottomFeeder, FeedDemon, Mi-
crosoft Internet Explorer 7, Mozilla Firefox, My Yahoo, NewsGator and Opera 9.

To allow browsers and search engines to determine whether a web page contains an
RSS feed, a link element can be added to the head of a page as follows:

<link rel = "alternate" type = "application/rss+xml" title = "RSS"

 href = "file">

Many sites provide RSS feed validators. Some examples of RSS feed validators are
validator.w3.org/feed, feedvalidator.org, and www.validome.org/rss-atom/.

Creating a Feed Aggregator
The DOM and XSL can be used to create RSS aggregators. A simple RSS aggregator uses
an XSL stylesheet to format RSS feeds as XHTML. Figure 12.38 loads two XML docu-
ments—an RSS feed (a small portion of which is shown in Fig. 12.39) and an XSL style
sheet—then uses JavaScript to apply an XSL transformation to the RSS content and ren-
der it on the page. You’ll notice as we discuss this program that there is little commonality
between Internet Explorer 7 and Firefox with regard to programmatically applying XSL
transformations. This is one of the reasons that JavaScript libraries have become popular
in web development—they tend to hide such browser-specific issues from you. We discuss
the Dojo toolkit—one of many popular JavaScript libraries—in Section 13.8. For more
information on JavaScript libraries, see our JavaScript and Ajax Resource Centers
(www.deitel.com/JavaScript/ and www.deitel.com/Ajax/, respectively).

guid (Globally Unique Identifier) A string that uniquely identifies the item.

pubDate The date the item was published, using the RFC 822 Date and Time Specifi-
cation—e.g., Sun, 14 Jan 2007 8:00:00 EST.

source The RSS channel the item came from. This element has a required attribute
url.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 12.38: RssViewer.html -->
6 <!-- Simple RSS viewer. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

Fig. 12.38 | Rendering an RSS feed in a web page using XSLT and JavaScript. (Part 1 of 4.)

Element Description

Fig. 12.37 | item elements and descriptions. (Part 2 of 2.)

www.validome.org/rss-atom/
www.deitel.com/JavaScript/
www.deitel.com/Ajax/

12.10 RSS 345

9 <title>Simple RSS Viewer</title>
10 <style type = "text/css">

11 #outputDiv { font: 12px Verdana, Geneva, Arial,

12 Helvetica, sans-serif; }
13 </style>

14 <script type = "text/javascript">

15 <!--
16 var browser = ""; // used to determine which browser is being used
17
18
19
20
21
22
23
24
25 // load both the RSS feed and the XSL file to process it
26 function start()
27 {
28 if (browser == "IE7")
29 {
30
31
32
33
34 } // end if
35 else if (browser == "FF2")
36 {
37
38
39
40
41
42
43
44
45
46 } // end onload event handler for xsl
47 } // end else
48 } // end function start
49
50 // load XML document based on whether the browser is IE7 or Firefox
51 function loadXMLDocument(url)
52 {
53 var doc = ""; // variable to manage loading file
54
55 if (browser == "IE7") // IE7
56 {
57 // create IE7-specific XML document object
58 doc = new ActiveXObject("Msxml2.DOMDocument.6.0");
59 doc.async = false; // specifies synchronous loading of XML doc
60 doc.load(url); // load the XML document specified by url
61 } // end if

Fig. 12.38 | Rendering an RSS feed in a web page using XSLT and JavaScript. (Part 2 of 4.)

// is the browser Internet Explorer 7 or Firefox?
if (window.ActiveXObject) // IE7
 browser = "IE7";
else if (document.implementation &&
 document.implementation.createDocument) // FF2 and other browsers
 browser = "FF2";

var xsl = loadXMLDocument('rss.xsl'); // load XSL file
var rss = loadXMLDocument('deitel-20.xml'); // load RSS feed
var result = applyTransform(rss, xsl); // apply transform
displayTransformedRss(result); // display feed info

var xsl = loadXMLDocument('rss.xsl'); // load XSL file
xsl.onload = function() // function to execute when xsl loads
{

var rss = loadXMLDocument('deitel-20.xml'); // load RSS feed
 rss.onload = function() // function to execute when rss loads
 {
 var result = applyTransform(rss, xsl); // apply transform
 displayTransformedRss(result); // display feed info
 } // end onload event handler for rss

346 Chapter 12 XML and RSS

62 else if (browser == "FF2") // other browsers
63 {
64 // create XML document object
65 doc = document.implementation.createDocument("", "", null);
66 doc.load(url); // load the XML document specified by url
67 } // end else
68 else // not supported
69 alert('This script is not supported by your browser');
70
71 return doc; // return the loaded document
72 } // end function loadXMLDocument
73
74 // apply XSL transformation and show results
75 function applyTransform(rssDocument, xslDocument)
76 {
77 var result; // stores transformed RSS
78
79 // transform the RSS feed to XHTML
80 if (browser == "IE7")
81 result = rssDocument.transformNode(xslDocument);
82 else // browser == "FF2"
83 {
84 // create Firefox object to perform transformation
85 var xsltProcessor = new XSLTProcessor();
86
87 // specify XSL stylesheet to use in transformation
88 xsltProcessor.importStylesheet(xslDocument);
89
90 // apply the transformation
91 result =
92 xsltProcessor.transformToFragment(rssDocument, document);
93 } // end else
94
95 return result; // return the transformed RSS
96 } // end function applyTransform
97
98 // display the XML document and highlight the first child
99 function displayTransformedRss(resultXHTML)
100 {
101 if (browser == "IE7")
102 document.getElementById("outputDiv").innerHTML = resultXHTML;
103 else // browser == "FF2"
104 document.getElementById("outputDiv").appendChild(
105 resultXHTML);
106 } // end function displayTransformedRss
107 // -->
108 </script>

109 </head>

110 <body id = "body" onload = "start();">

111 <div id = "outputDiv"></div>

112 </body>

113 </html>

Fig. 12.38 | Rendering an RSS feed in a web page using XSLT and JavaScript. (Part 3 of 4.)

12.10 RSS 347

1 <?xml version="1.0" encoding="utf-8"?>

2
3 <!-- Fig. 12.39: deitel-20.xml -->
4 <!-- RSS 2.0 feed of Deitel Resource Centers -->
5 <rss version="2.0">
6 <channel>

7 <title>

8 Internet & World Wide Web How to Program:
9 Deitel Resource Centers

10 </title>

11 <link>http://www.deitel.com/ResourceCenters.html</link>
12 <description>

13 Check out our growing network of Resource Centers that focus on
14 many of today's hottest programming, Web 2.0 and technology
15 topics. Start your search here for downloads, tutorials,
16 documentation, books, e-books, blogs, RSS feeds, journals,
17 articles, training, webcasts, podcasts, videos and more.
18 </description>

Fig. 12.39 | RSS 2.0 sample feed. (Part 1 of 2.)

Fig. 12.38 | Rendering an RSS feed in a web page using XSLT and JavaScript. (Part 4 of 4.)

348 Chapter 12 XML and RSS

Determining the Browser Type and Loading the Documents
When this page first loads, lines 19–23 (Fig. 12.38) determine whether the browser is In-
ternet Explorer 7 or Firefox and store the result in variable browser for use throughout the
script. After the body of this XHTML document loads, its onload event calls function
start (lines 26–48) to load RSS and XSL files as XML documents, and to transform the
RSS. Since Internet Explorer 7 can download the files synchronously, lines 30–33 perform
the loading, transformation and display steps sequentially. As mentioned previously, Fire-
fox loads the files asynchronously. For this reason, line 37 starts loading the rss.xsl doc-
ument (included with this example’s code), and lines 38–46 register an onload event
handler for that document. When the document finishes loading, line 40 begins loading
the deitel-20.xml RSS document. Lines 41–45 register an onload event handler for this
second document. When it finishes loading, lines 43–44 perform the transformation and
display the results.

Transforming the RSS to XHTML
Function applyTransform (Fig. 12.38, lines 75–96) performs the browser-specific XSL
transformations using the RSS document and XSL document it receives as arguments.
Line 81 uses the MSXML object’s built-in XSLT capabilities to apply the transformations.
Method transformNode is invoked on the rssDocument object and receives the xslDocu-
ment object as an argument.

19 <languague>en-us</languague>
20 

27
28 <item>

29 <title>Adobe® Flex</title>
30 <link>http://www.deitel.com/Flex/</link>
31 <description>

32 <p>

33 Welcome to the Adobe® Flex™ Resource Center. Adobe Flex 2 is a
34 rich Internet application (RIA) framework that allows you to
35 create scalable, cross-platform, multimedia-rich applications
36 for delivery within the enterprise or across the Internet.
37 Start your search here for resources, downloads, tutorials,
38 documentation, books, e-books, articles, blogs and more that
39 will help you develop Flex applications.
40 </p>

41 </description>

42 <category>Programming</category>
43 </item>

44 </channel>

45 </rss>

Fig. 12.39 | RSS 2.0 sample feed. (Part 2 of 2.)

12.11 Web Resources 349

Firefox provides built-in XSLT processing in the form of the XSLTProcessor object
(created at line 85). After creating this object, you use its importStylesheet method to
specify the XSL stylesheet you’d like to apply (line 88). Finally, lines 91–92 apply the
transformation by invoking the XSLTProcessor object’s transformToFragment method,
which returns a document fragment—i.e., a piece of a document. In our case, the rss.xsl
document transforms the RSS into an XHTML table element that we’ll append to the
outputDiv element in our XHTML page. The arguments to transformToFragment are
the document to transform and the document object to which the transformed fragment
will belong. To learn more about XSLTProcessor, visit developer.mozilla.org/en/
docs/The_XSLT/JavaScript_Interface_in_Gecko.

In each browser’s case, after the transformation, the resulting XHTML markup is
assigned to variable result and returned from function applyTransform. Then function
displayTransformedRss is called.

Displaying the XHTML Markup
Function displayTransformedRss (lines 99–106) displays the transformed RSS in the
outputDiv element (line 111 in the body). In both Internet Explorer 7 and Firefox, we use
the DOM method getElementById to obtain the outputDiv element. In Internet Explor-
er 7, the node’s innerHTML property is used to add the table as a child of the outputDiv
element (line 102). In Firefox, the node’s appendChild method must be used to append
the table (a document fragment) to the outputDiv element.

12.11 Web Resources
www.deitel.com/XML/

The Deitel XML Resource Center focuses on the vast amount of free XML content available online,
plus some for-sale items. Start your search here for tools, downloads, tutorials, podcasts, wikis, doc-
umentation, conferences, FAQs, books, e-books, sample chapters, articles, newsgroups, forums,
downloads from CNET’s download.com, jobs and contract opportunities, and more that will help
you develop XML applications.

www.deitel.com/XML/

13
Ajax-Enabled
Rich Internet
Applications

O B J E C T I V E S
In this chapter you’ll learn:

■ What Ajax is and why it is important for building Rich
Internet Applications.

■ What asynchronous requests are and how they help give
web applications the feel of desktop applications.

■ What the XMLHttpRequest object is and how it’s used
to create and manage asynchronous requests to servers
and to receive asynchronous responses from servers.

■ Methods and properties of the XMLHttpRequest object.

■ How to use XHTML, JavaScript, CSS, XML, JSON and the
DOM in Ajax applications.

■ How to use Ajax frameworks and toolkits, specifically
Dojo, to conveniently create robust Ajax-enabled Rich
Internet Applications.

■ About resources for studying Ajax-related issues such as
security, performance, debugging, the “back-button
problem” and more.

… the challenges are for the
designers of these applications:
to forget what we think we
know about the limitations of
the Web, and begin to imagine a
wider, richer range of
possibilities. It’s going to be fun.
—Jesse James Garrett

Dojo is the standard library
JavaScript never had.
—Alex Russell

To know how to suggest is the
great art of teaching. To attain
it we must be able to guess what
will interest …
—Henri-Fredreic Amiel

It is characteristic of the
epistemological tradition to
present us with partial scenarios
and then to demand whole or
categorical answers as it were.
—Avrum Stroll

O! call back yesterday, bid time
return.
—William Shakespeare

13.1 Introduction 351

O
u

tl
in

e

13.1 Introduction
Despite the tremendous technological growth of the Internet over the past decade, the
usability of web applications has lagged behind compared to that of desktop applications.
Every significant interaction in a web application results in a waiting period while the ap-
plication communicates over the Internet with a server. Rich Internet Applications (RI-
As) are web applications that approximate the look, feel and usability of desktop
applications. RIAs have two key attributes—performance and a rich GUI.

RIA performance comes from Ajax (Asynchronous JavaScript and XML), which uses
client-side scripting to make web applications more responsive. Ajax applications separate
client-side user interaction and server communication, and run them in parallel, reducing
the delays of server-side processing normally experienced by the user.

There are many ways to implement Ajax functionality. “Raw” Ajax uses JavaScript to
send asynchronous requests to the server, then updates the page using the DOM (see
Section 13.5). “Raw” Ajax is best suited for creating small Ajax components that asynchro-
nously update a section of the page. However, when writing “raw” Ajax you need to deal
directly with cross-browser portability issues, making it impractical for developing large-
scale applications. These portability issues are hidden by Ajax toolkits, such as Dojo
(Section 13.8), Prototype, Script.aculo.us and ASP.NET Ajax, which provide powerful
ready-to-use controls and functions that enrich web applications, and simplify JavaScript
coding by making it cross-browser compatible.

Traditional web applications use XHTML forms (Chapter 2) to build simple and
thin GUIs compared to the rich GUIs of Windows, Macintosh and desktop systems in
general. We achieve rich GUI in RIAs with Ajax toolkits and with RIA environments such
as Adobe Flex, Microsoft Silverlight and JavaServer Faces. Such toolkits and environments
provide powerful ready-to-use controls and functions that enrich web applications.

Previous chapters discussed XHTML, CSS, JavaScript, dynamic HTML, the DOM
and XML. This chapter uses these technologies to build Ajax-enabled web applications.
The client-side of Ajax applications is written in XHTML and CSS, and uses JavaScript
to add functionality to the user interface. XML is used to structure the data passed between
the server and the client. We’ll also use JSON (JavaScript Object Notation) for this pur-
pose. The Ajax component that manages interaction with the server is usually imple-
mented with JavaScript’s XMLHttpRequest object—commonly abbreviated as XHR. The
server processing can be implemented using any server-side technology, such as PHP, ASP.
NET, JavaServer Faces ot Ruby on Rails.

13.1 Introduction
13.2 Traditional Web Applications vs. Ajax Applications
13.3 Rich Internet Applications (RIAs) with Ajax
13.4 History of Ajax
15.5 “Raw” Ajax Example Using the XMLHttpRequest Object
13.6 Using XML and the DOM
13.7 Creating a Full-Scale Ajax-Enabled Application
13.8 Dojo Toolkit
13.9 Web Resources

352 Chapter 13 Ajax-Enabled Rich Internet Applications

This chapter begins with several examples that build basic Ajax applications using
JavaScript and the XMLHttpRequest object. We then build an Ajax application with a rich
calendar GUI using the Dojo Ajax toolkit.

13.2 Traditional Web Applications vs. Ajax
Applications
In this section, we consider the key differences between traditional web applications and
Ajax-based web applications.

Traditional Web Applications
Figure 13.1 presents the typical interactions between the client and the server in a tradi-
tional web application, such as one that uses a user registration form. First, the user fills in
the form’s fields, then submits the form (Fig. 13.1, Step 1). The browser generates a re-
quest to the server, which receives the request and processes it (Step 2). The server generates
and sends a response containing the exact page that the browser will render (Step 3), which
causes the browser to load the new page (Step 4) and temporarily makes the browser win-
dow blank. Note that the client waits for the server to respond and reloads the entire page
with the data from the response (Step 4). While such a synchronous request is being pro-
cessed on the server, the user cannot interact with the client web page. Frequent long pe-
riods of waiting, due perhaps to Internet congestion, have led some users to refer to the
World Wide Web as the “World Wide Wait.” If the user interacts with and submits an-
other form, the process begins again (Steps 5–8).

This model was originally designed for a web of hypertext documents—what some
people call the “brochure web.” As the web evolved into a full-scale applications platform,
the model shown in Fig. 13.1 yielded “choppy” application performance. Every full-page
refresh required users to re-establish their understanding of the full-page contents. Users
began to demand a model that would yield the responsive feel of desktop applications.

Fig. 13.1 | Classic web application reloading the page for every user interaction.

Se
rv

er
C

lie
nt Form

Form

Page 1

Form

Form

Page 2

Form

Form

Page 3

Request 1

Process
request

Generate
response

Process
request

Generate
response

Page
reloading

Request 2

Page
reloading

Form

Form

Page 2

Form

Form

Page 3

1

2

3

4

5

6

7

8

13.3 Rich Internet Applications (RIAs) with Ajax 353

Ajax Web Applications
Ajax applications add a layer between the client and the server to manage communication
between the two (Fig. 13.2). When the user interacts with the page, the client creates an
XMLHttpRequest object to manage a request (Step 1). The XMLHttpRequest object sends
the request to the server (Step 2) and awaits the response. The requests are asynchronous,
so the user can continue interacting with the application on the client-side while the server
processes the earlier request concurrently. Other user interactions could result in addition-
al requests to the server (Steps 3 and 4). Once the server responds to the original request
(Step 5), the XMLHttpRequest object that issued the request calls a client-side function to
process the data returned by the server. This function—known as a callback function—
uses partial page updates (Step 6) to display the data in the existing web page without re-
loading the entire page. At the same time, the server may be responding to the second re-
quest (Step 7) and the client-side may be starting to do another partial page update (Step
8). The callback function updates only a designated part of the page. Such partial page up-
dates help make web applications more responsive, making them feel more like desktop
applications. The web application does not load a new page while the user interacts with it.

13.3 Rich Internet Applications (RIAs) with Ajax
Ajax improves the user experience by making interactive web applications more respon-
sive. Consider a registration form with a number of fields (e.g., first name, last name e-
mail address, telephone number, etc.) and a Register (or Submit) button that sends the en-
tered data to the server. Usually each field has rules that the user’s entries have to follow
(e.g., valid e-mail address, valid telephone number, etc.).

When the user clicks Register, a classic XHTML form sends the server all of the data
to be validated (Fig. 13.3). While the server is validating the data, the user cannot interact

Fig. 13.2 | Ajax-enabled web application interacting with the server asynchronously.

Se
rv

er
C

lie
nt Form

Form

Page 1

Process
request 1

Generate
response

Process
request 2

Generate
response

Request object

Callback function
Response processing Request object

Callback function
Response processing

Update Update

User interaction initiates
asynchronous request

User interaction initiates
asynchronous request

Partial
page update

Partial
page update

1

2

3

4

5

6

7

8

data data

354 Chapter 13 Ajax-Enabled Rich Internet Applications

with the page. The server finds invalid data, generates a new page identifying the errors in
the form and sends it back to the client—which renders the page in the browser. Once the
user fixes the errors and clicks the Register button, the cycle repeats until no errors are

Fig. 13.3 | Classic XHTML form: User submits entire form to server, which validates the data
entered (if any). Server responds indicating fields with invalid or missing data.

a) A sample registration
form in which the user has
not filled in the required
fields, but attempts to
submit the form anyway
by clicking Register.

b) The server responds by
indicating all the form fields
with missing or invalid data.
The user must correct the
problems and resubmit the
entire form repeatedly until
all errors are corrected.

13.4 History of Ajax 355

found, then the data is stored on the server. The entire page reloads every time the user
submits invalid data.

Ajax-enabled forms are more interactive. Rather than sending the entire form to be
validated, entries are validated dynamically as the user enters data into the fields. For
example, consider a website registration form that requires a unique e-mail address. When
the user enters an e-mail address into the appropriate field, then moves to the next form
field to continue entering data, an asynchronous request is sent to the server to validate the
e-mail address. If the e-mail address is not unique, the server sends an error message that
is displayed on the page informing the user of the problem (Fig. 13.4). By sending each
entry asynchronously, the user can address each invalid entry quickly, versus making edits
and resubmitting the entire form repeatedly until all entries are valid. Asynchronous
requests could also be used to fill some fields based on previous fields (e.g., automatically
filling in the “city” and “state” fields based on the zip code entered by the user).

13.4 History of Ajax
The term Ajax was coined by Jesse James Garrett of Adaptive Path in February 2005, when
he was presenting the previously unnamed technology to a client. The technologies of Ajax
(XHTML, JavaScript, CSS, the DOM and XML) have all existed for many years.

Asynchronous page updates can be traced back to earlier browsers. In the 1990s,
Netscape’s LiveScript made it possible to include scripts in web pages (e.g., web forms)
that could run on the client. LiveScript evolved into JavaScript. In 1998, Microsoft intro-
duced the XMLHttpRequest object to create and manage asynchronous requests and
responses. Popular applications like Flickr and Google’s Gmail use the XMLHttpRequest
object to update pages dynamically. For example, Flickr uses the technology for its text

Fig. 13.4 | Ajax-enabled form shows errors asynchronously when user moves to another field.

356 Chapter 13 Ajax-Enabled Rich Internet Applications

editing, tagging and organizational features; Gmail continuously checks the server for new
e-mail; and Google Maps allows you to drag a map in any direction, downloading the new
areas on the map without reloading the entire page.

The name Ajax immediately caught on and brought attention to its component tech-
nologies. Ajax has become one of the hottest web-development technologies, enabling
webtop applications to challenge the dominance of established desktop applications.

13.5 “Raw” Ajax Example Using the XMLHttpRequest
Object
In this section, we use the XMLHttpRequest object to create and manage asynchronous re-
quests. The XMLHttpRequest object (which resides on the client) is the layer between the
client and the server that manages asynchronous requests in Ajax applications. This object
is supported on most browsers, though they may implement it differently—a common is-
sue in JavaScript programming. To initiate an asynchronous request (shown in Fig. 13.5),
you create an instance of the XMLHttpRequest object, then use its open method to set up
the request and its send method to initiate the request. We summarize the XMLHttpRe-
quest properties and methods in Figs. 13.6–13.7.

Figure 13.5 presents an Ajax application in which the user interacts with the page by
moving the mouse over book-cover images. We use the onmouseover and onmouseout
events (discussed in Chapter 11) to trigger events when the user moves the mouse over and
out of an image, respectively. The onmouseover event calls function getContent with the
URL of the document containing the book’s description. The function makes this request
asynchronously using an XMLHttpRequest object. When the XMLHttpRequest object
receives the response, the book description is displayed below the book images. When the
user moves the mouse out of the image, the onmouseout event calls function clearContent
to clear the display box. These tasks are accomplished without reloading the page on the
client. You can test-drive this example at test.deitel.com/examples/jsfp/ajax/
fig13_05/SwitchContent.html.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 13.5: SwitchContent.html -->
6 <!-- Asynchronously display content without reloading the page. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <style type="text/css">

10 .box { border: 1px solid black;
11 padding: 10px }
12 </style>

13 <title>Switch Content Asynchronously</title>
14 <script type = "text/javascript" language = "JavaScript">

15 <!--
16 var asyncRequest; // variable to hold XMLHttpRequest object

Fig. 13.5 | Asynchronously display content without reloading the page. (Part 1 of 3.)

13.5 “Raw” Ajax Example Using the XMLHttpRequest Object 357

17
18 // set up and send the asynchronous request
19 function getContent(url)
20 {
21 // attempt to create the XMLHttpRequest and make the request
22
23
24
25
26
27
28
29
30
31
32
33
34
35 } // end function getContent
36
37 // displays the response data on the page
38 function stateChange()
39 {
40
41
42
43
44
45 } // end function stateChange
46
47 // clear the content of the box
48 function clearContent()
49 {
50 document.getElementById('contentArea').innerHTML = '';
51 } // end function clearContent
52 // -->
53 </script>

54 </head>

55 <body>

56 <h1>Mouse over a book for more information.</h1>
57 <img src =

58 "http://test.deitel.com/examples/jsfp/ajax/thumbs/cpphtp6.jpg"

59 onmouseover = 'getContent("cpphtp6.html")'

60 onmouseout = 'clearContent()'/>

61 <img src =

62 "http://test.deitel.com/examples/jsfp/ajax/thumbs/iw3htp4.jpg"

63 onmouseover = 'getContent("iw3htp4.html")'

64 onmouseout = 'clearContent()'/>

65 <img src =

66 "http://test.deitel.com/examples/jsfp/ajax/thumbs/jhtp7.jpg"

67 onmouseover = 'getContent("jhtp7.html")'

68 onmouseout = 'clearContent()'/>

Fig. 13.5 | Asynchronously display content without reloading the page. (Part 2 of 3.)

try

{
 asyncRequest = new XMLHttpRequest(); // create request object

 // register event handler
 asyncRequest.onreadystatechange = stateChange;
 asyncRequest.open('GET', url, true); // prepare the request
 asyncRequest.send(null); // send the request
} // end try
catch (exception)
{

alert('Request failed.');
} // end catch

if (asyncRequest.readyState == 4 && asyncRequest.status == 200)
{
 document.getElementById('contentArea').innerHTML =
 asyncRequest.responseText; // places text in contentArea
} // end if

358 Chapter 13 Ajax-Enabled Rich Internet Applications

69 <img src =

70 "http://test.deitel.com/examples/jsfp/ajax/thumbs/vbhtp3.jpg"

71 onmouseover = 'getContent("vbhtp3.html")'

72 onmouseout = 'clearContent()'/>

73 <img src =

74 "http://test.deitel.com/examples/jsfp/ajax/thumbs/vcsharphtp2.jpg"

75 onmouseover = 'getContent("vcsharphtp2.html")'

76 onmouseout = 'clearContent()'/>

77 <img src =

78 "http://test.deitel.com/examples/jsfp/ajax/thumbs/chtp5.jpg"

79 onmouseover = 'getContent("chtp5.html")'

80 onmouseout = 'clearContent()'/>

81
82 </body>

83 </html>

Fig. 13.5 | Asynchronously display content without reloading the page. (Part 3 of 3.)

<div class = "box" id = "contentArea"> </div>

a) User hovers over C++ How to Program book cover image, causing an asynchronous request to the server to obtain the
book’s description. When the response is received, the application performs a partial page update to display the description.

b) User hovers over Java How to
Program book cover image,
causing the process to repeat.

13.5 “Raw” Ajax Example Using the XMLHttpRequest Object 359

Performance Tip 13.1
When an Ajax application requests a file from a server, such as an XHTML document or an
image, the browser typically caches that file. Subsequent requests for the same file can load it from
the browser’s cache rather than making the round trip to the server again.

Software Engineering Observation 13.1
For security purposes, the XMLHttpRequest object doesn’t allow a web application to request
resources from domain names other than the one that served the application. For this reason, the
web application and its resources must reside on the same web server (this could be a web server
on your local computer).This is commonly known as the same origin policy (SOP). SOP aims to
close a vulnerability called cross-site scripting, also known as XSS, which allows an attacker to
compromise a website’s security by injecting a malicious script onto the page from another domain.
To learn more about XSS visit en.wikipedia.org/wiki/XSS. To get content from another do-
main securely, you can implement a server-side proxy—an application on the web application’s
web server—that can make requests to other servers on the web application’s behalf.

 Asynchronous Requests
The function getContent (lines 19–35) sends the asynchronous request. Line 24 creates
the XMLHttpRequest object, which manages the asynchronous request. We store the object
in the global variable asyncRequest (declared at line 16) so that it can be accessed any-
where in the script.

Line 28 calls the XMLHttpRequest open method to prepare an asynchronous GET
request. In this example, the url parameter specifies the address of an HTML document
containing the description of a particular book. When the third argument is true, the
request is asynchronous. The URL is passed to function getContent in response to the
onmouseover event for each image. Line 29 sends the asynchronous request to the server
by calling XMLHttpRequest send method. The argument null indicates that this request
is not submitting data in the body of the request.

Exception Handling
Lines 22–34 introduce exception handling. An exception is an indication of a problem that
occurs during a program’s execution. The name “exception” implies that the problem occurs
infrequently—if the “rule” is that a statement normally executes correctly, then the “excep-
tion to the rule” is that a problem occurs. Exception handling enables you to create applica-
tions that can resolve (or handle) exceptions—in some cases allowing a program to continue
executing as if no problem had been encountered.

Lines 22–30 contain a try block, which encloses the code that might cause an excep-
tion and the code that should not execute if an exception occurs (i.e., if an exception
occurs in a statement of the try block, the remaining code in the try block is skipped). A
try block consists of the keyword try followed by a block of code enclosed in curly braces
({}). If there is a problem sending the request—e.g., if a user tries to access the page using
an older browser that does not support XMLHttpRequest—the try block terminates imme-
diately and a catch block (also called a catch clause or exception handler) catches (i.e.,
receives) and handles an exception. The catch block (lines 31–34) begins with the key-
word catch and is followed by a parameter in parentheses (called the exception parameter)
and a block of code enclosed in curly braces. The exception parameter’s name (exception
in this example) enables the catch block to interact with a caught exception object (for

360 Chapter 13 Ajax-Enabled Rich Internet Applications

example, to obtain the name of the exception or an exception-specific error message via
the exception object’s name and message properties). In this case, we simply display our
own error message 'Request Failed' and terminate the getContent function. The
request can fail because a user accesses the web page with an older browser or the content
that is being requested is located on a different domain.

Callback Functions
The stateChange function (lines 38–45) is the callback function that is called when the
client receives the response data. Line 27 registers function stateChange as the event han-
dler for the XMLHttpRequest object’s onreadystatechange event. Whenever the request
makes progress, the XMLHttpRequest calls the onreadystatechange event handler. This
progress is monitored by the readyState property, which has a value from 0 to 4. The
value 0 indicates that the request is not initialized and the value 4 indicates that the request
is complete—all the values for this property are summarized in Fig. 13.6. If the request
completes successfully (line 40), lines 42–43 use the XMLHttpRequest object’s
responseText property to obtain the response data and place it in the div element named
contentArea (defined at line 81). We use the DOM’s getElementById method to get this
div element, and use the element’s innerHTML property to place the content in the div.

XMLHttpRequest Object Properties and Methods
Figures 13.6 and 13.7 summarize some of the XMLHttpRequest object’s properties and
methods, respectively. The properties are crucial to interacting with asynchronous re-
quests. The methods initialize, configure and send asynchronous requests.

Property Description

onreadystatechange Stores the callback function—the event handler that gets called
when the server responds.

readyState Keeps track of the request’s progress. It is usually used in the call-
back function to determine when the code that processes the
response should be launched. The readyState value 0 signifies that
the request is uninitialized; 1 signifies that the request is loading; 2
signifies that the request has been loaded; 3 signifies that data is
actively being sent from the server; and 4 signifies that the request
has been completed.

responseText Text that is returned to the client by the server.

responseXML If the server’s response is in XML format, this property contains the
XML document; otherwise, it is empty. It can be used like a docu-
ment object in JavaScript, which makes it useful for receiving com-
plex data (e.g. populating a table).

status HTTP status code of the request. A status of 200 means that
request was successful. A status of 404 means that the requested
resource was not found. A status of 500 denotes that there was an
error while the server was proccessing the request.

Fig. 13.6 | XMLHttpRequest object properties. (Part 1 of 2.)

13.6 Using XML and the DOM 361

13.6 Using XML and the DOM
When passing structured data between the server and the client, Ajax applications often
use XML because it is easy to generate and parse. When the XMLHttpRequest object re-
ceives XML data, it parses and stores the data as an XML DOM object in the responseXML
property. The example in Fig. 13.8 asynchronously requests from a server XML docu-
ments containing URLs of book-cover images, then displays the images in an HTML ta-
ble. The code that configures the asynchronous request is the same as in Fig. 13.5. You
can test-drive this application at test.deitel.com/examples/jsfp/ajax/fig13_08/
PullImagesOntoPage.html (the book-cover images will be easier to see on the screen).

When the XMLHttpRequest object receives the response, it invokes the callback func-
tion processResponse (lines 38–99). We use XMLHttpRequest object’s responseXML

statusText Additional information on the request’s status. It is often used to
display the error to the user when the request fails.

Method Description

open Initializes the request and has two mandatory parameters—method
and URL. The method parameter specifies the purpose of the
request—typically GET if the request is to take data from the server
or POST if the request will contain a body in addition to the head-
ers. The URL parameter specifies the address of the file on the
server that will generate the response. A third optional boolean
parameter specifies whether the request is asynchronous—it’s set to
true by default.

send Sends the request to the sever. It has one optional parameter, data,
which specifies the data to be POSTed to the server—it’s set to
null by default.

setRequestHeader Alters the header of the request. The two parameters specify the
header and its new value. It is often used to set the content-type
field.

getResponseHeader Returns the header data that precedes the response body. It takes
one parameter, the name of the header to retrieve. This call is often
used to determine the response’s type, to parse the response cor-
rectly.

getAllResponseHeaders Returns an array that contains all the headers that precede the
response body.

abort Cancels the current request.

Fig. 13.7 | XMLHttpRequest object methods.

Property Description

Fig. 13.6 | XMLHttpRequest object properties. (Part 2 of 2.)

362 Chapter 13 Ajax-Enabled Rich Internet Applications

property to access the XML returned by the server. Lines 41–42 check that the request was
successful, and that the responseXML property is not empty. The XML file that we
requested includes a baseURL node that contains the address of the image directory and a
collection of cover nodes that contain image filenames. responseXML is a document
object, so we can extract data from it using the XML DOM functions. Lines 47–52 use
the DOM’s method getElementsByTagName to extract all the image filenames from cover
nodes and the URL of the directory from the baseURL node. Since the baseURL has no
child nodes, we use item(0).firstChild.nodeValue to obtain the directory’s address and
store it in variable baseURL. The image filenames are stored in the covers array.

As in Fig. 13.5 we have a placeholder div element (line 126) to specify where the
image table will be displayed on the page. Line 55 stores the div in variable output, so we
can fill it with content later in the program.

Lines 58–93 generate an XHTML table dynamically, using the createElement, set-
Attribute and appendChild DOM methods. Method createElement creates an
XHTML element of the specified type. Method setAttribute adds or changes an attri-
bute of an XHTML element. Method appendChild inserts one XHTML element into
another. Lines 58 and 61 create the table and tbody elements, respectively. We restrict
each row to no more than six images, which we track with variable rowCount variable. Each
iteration of the for statement (lines 67–93) obtains the filename of the image to be
inserted (lines 69–73), creates a table cell element where the image will be inserted (line
76) and creates an element (line 77). Line 80 sets the image’s src attribute to the
image’s URL, which we build by concatenating the filename to the base URL of the
XHTML document. Lines 81–82 insert the element into the cell and the cell into
the table row. When the row has six cells, it is inserted into the table and a new row is cre-
ated (lines 87–92). Once all the rows have been inserted into the table, the table is inserted
into the placeholder element covers that is referenced by variable output (line 97). This
element is located on the bottom of the web page.

Function clearTable (lines 102–105) is called to clear images when the user switches
radio buttons. The text is cleared by setting the innerHTML property of the placeholder ele-
ment to the empty string.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 13.8: PullImagesOntoPage.html -->
6 <!-- Image catalog that uses Ajax to request XML data asynchronously. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>
9 <title> Pulling Images onto the Page </title>

10 <style type = "text/css">
11 td { padding: 4px }
12 img { border: 1px solid black }
13 </style>
14 <script type = "text/javascript" language = "Javascript">

Fig. 13.8 | Image catalog that uses Ajax to request XML data asynchronously. (Part 1 of 4.)

13.6 Using XML and the DOM 363

15 var asyncRequest; // variable to hold XMLHttpRequest object
16
17 // set up and send the asynchronous request to the XML file
18 function getImages(url)
19 {
20 // attempt to create the XMLHttpRequest and make the request
21 try
22 {
23 asyncRequest = new XMLHttpRequest(); // create request object
24
25 // register event handler
26 asyncRequest.onreadystatechange = processResponse;
27 asyncRequest.open('GET', url, true); // prepare the request
28 asyncRequest.send(null); // send the request
29 } // end try
30 catch (exception)
31 {
32 alert('Request Failed');
33 } // end catch
34 } // end function getImages
35
36 // parses the XML response; dynamically creates a table using DOM and
37 // populates it with the response data; displays the table on the page
38 function processResponse()
39 {
40 // if request completed successfully and responseXML is non-null
41
42
43 {
44 clearTable(); // prepare to display a new set of images
45
46 // get the covers from the responseXML
47
48
49
50
51
52

53
54 // get the placeholder div element named covers
55 var output = document.getElementById("covers");
56
57 // create a table to display the images
58 var imageTable = document.createElement('table');
59
60 // create the table's body
61 var tableBody = document.createElement('tbody');
62
63 var rowCount = 0; // tracks number of images in current row
64 var imageRow = document.createElement("tr"); // create row
65

Fig. 13.8 | Image catalog that uses Ajax to request XML data asynchronously. (Part 2 of 4.)

if (asyncRequest.readyState == 4 && asyncRequest.status == 200 &&
 asyncRequest.responseXML)

var covers = asyncRequest.responseXML.getElementsByTagName(
"cover")

// get base URL for the images
var baseUrl = asyncRequest.responseXML.getElementsByTagName(
 "baseurl").item(0).firstChild.nodeValue;

364 Chapter 13 Ajax-Enabled Rich Internet Applications

66 // place images in row
67 for (var i = 0; i < covers.length; i++)
68 {
69 var cover = covers.item(i); // get a cover from covers array
70
71 // get the image filename
72 var image = cover.getElementsByTagName("image").
73 item(0).firstChild.nodeValue;
74
75 // create table cell and img element to display the image
76 var imageCell = document.createElement("td");
77 var imageTag = document.createElement("img");
78
79 // set img element's src attribute
80 imageTag.setAttribute("src", baseUrl + escape(image));
81 imageCell.appendChild(imageTag); // place img in cell
82 imageRow.appendChild(imageCell); // place cell in row
83 rowCount++; // increment number of images in row
84
85 // if there are 6 images in the row, append the row to
86 // table and start a new row
87 if (rowCount == 6 && i + 1 < covers.length)
88 {
89 tableBody.appendChild(imageRow);
90 imageRow = document.createElement("tr");
91 rowCount = 0;
92 } // end if statement
93 } // end for statement
94
95 tableBody.appendChild(imageRow); // append row to table body
96 imageTable.appendChild(tableBody); // append body to table
97 output.appendChild(imageTable); // append table to covers div
98 } // end if
99 } // end function processResponse
100
101 // deletes the data in the table.
102 function clearTable()
103 {
104 document.getElementById("covers").innerHTML = '';
105 }// end function clearTable
106 </script>

107 </head>

108 <body>

109 <input type = "radio" checked = "unchecked" name ="Books" value = "all"

110 onclick = 'getImages("all.xml")'/> All Books
111 <input type = "radio" checked = "unchecked"

112 name = "Books" value = "simply"

113 onclick = 'getImages("simply.xml")'/> Simply Books
114 <input type = "radio" checked = "unchecked"

115 name = "Books" value = "howto"

116 onclick = 'getImages("howto.xml")'/> How to Program Books
117 <input type = "radio" checked = "unchecked"

118 name = "Books" value = "dotnet"

Fig. 13.8 | Image catalog that uses Ajax to request XML data asynchronously. (Part 3 of 4.)

13.6 Using XML and the DOM 365

119 onclick = 'getImages("dotnet.xml")'/> .NET Books
120 <input type = "radio" checked = "unchecked"

121 name = "Books" value = "javaccpp"

122 onclick = 'getImages("javaccpp.xml")'/> Java, C, C++ Books
123 <input type = "radio" checked = "checked" name = "Books" value = "none"

124 onclick = 'clearTable()'/> None
125

126 <div id = "covers"></div>

127 </body>

128 </html>

Fig. 13.8 | Image catalog that uses Ajax to request XML data asynchronously. (Part 4 of 4.)

a) User clicks the All Books radio button to display all the book covers. The application sends an asynchronous request to
the server to obtain an XML document containing the list of book-cover filenames. When the response is received, the
application performs a partial page update to display the set of book covers.

b) User clicks the How to Program Books radio button to select a subset of book covers to display. Application sends an
asynchronous request to the server to obtain an XML document containing the appropriate subset of book-cover filenames.
When the response is received, the application performs a partial page update to display the subset of book covers.

366 Chapter 13 Ajax-Enabled Rich Internet Applications

13.7 Creating a Full-Scale Ajax-Enabled Application
Our next example demonstrates additional Ajax capabilities. The web application interacts
with a web service to obtain data and to modify data in a server-side database. The web
application and server communicate with a data format called JSON (JavaScript Object
Notation). In addition, the application demonstrates server-side validation that occurs in
parallel with the user interacting with the web application. You can test the application at
test.deitel.com/examples/jsfp/ajax/fig13_09_10/AddressBook.html.

Using JSON
JSON (JavaScript Object Notation)—a simple way to represent JavaScript objects as
strings—is an alternative way (to XML) for passing data between the client and the server.
Each object in JSON is represented as a list of property names and values contained in
curly braces, in the following format:

{ "propertyName1" : value1, "propertyName2'": value2 }

Arrays are represented in JSON with square brackets in the following format:

[value1, value2, value3]

Each value can be a string, a number, a JSON representation of an object, true, false or
null. You can convert JSON strings into JavaScript objects with JavaScript’s eval func-
tion. To evaluate a JSON string properly, a left parenthesis should be placed at the begin-
ning of the string and a right parenthesis at the end of the string before the string is passed
to the eval function.

 The eval function creates a potential security risk—it executes any embedded
JavaScript code in its string argument, possibly allowing a harmful script to be injected
into JSON. A more secure way to process JSON is to use a JSON parser. In our examples,
we use the open source parser from www.json.org/js.html. When you download its Java-
Script file, place it in the same folder as your application. Then, link the json2.js file into
your XHTML file with the following statement in the head section:

<script type = "text/javascript" src = "json2.js">

You can now call function JSON.parse, which receives a JSON string and converts it to a
JavaScript object.

JSON strings are easier to create and parse than XML, and require fewer bytes. For
these reasons, JSON is commonly used to communicate in client/server interaction. For
more information on JSON, visit our JSON Resource Center at www.deitel.com/json.

Rich Functionality
The previous examples in this chapter requested data from static files on the server. The
example in Fig. 13.9 is an address-book application that communicates with a server-side
application. The application uses server-side processing to give the page the functionality
and usability of a desktop application. We use JSON to encode server-side responses and
to create objects on the fly.

Initially the address book loads a list of entries, each containing a first and last name
(Fig. 13.9(a)). Each time the user clicks a name, the address book uses Ajax functionality
to load the person’s address from the server and expand the entry without reloading the page

www.json.org/js.html
www.deitel.com/json

13.7 Creating a Full-Scale Ajax-Enabled Application 367

(Fig. 13.9(b))—and it does this in parallel with allowing the user to click other names. The
application allows the user to search the address book by typing a last name. As the user
enters each keystroke, the application asynchronously displays the list of names in which
the last name starts with the characters the user has entered so far (Fig. 13.9(c), Fig. 13.9
(d) and Fig. 13.9(e))—a popular feature called type ahead.

The application also enables the user to add another entry to the address book by
clicking the addEntry button (Fig. 13.9(f)). The application displays a form that enables
live field validation. As the user fills out the form, the zip-code value is validated and used
to generate the city and state (Fig. 13.9(g), Fig. 13.9(h) and Fig. 13.9(i)). The telephone
number is validated for correct format (Fig. 13.9(j)). When the Submit button is clicked,
the application checks for invalid data and stores the values in a database on the server
(Fig. 13.9(k) and Fig. 13.9(l)). You can test-drive this application at test.deitel.com/
examples/jsfp/ajax/fig13_09_10/AddressBook.html.

1 <?xml version = "1.0" encoding = "utf-8"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 13.9 addressbook.html -->
6 <!-- Ajax enabled address book application. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Address Book</title>
10 <link rel = "stylesheet" type = "text/css" href = "address.css" />

11
12 <script type = "text/javascript">

13 <!--
14 // URL of the web service
15
16
17 var phoneValid = false; // indicates if the telephone is valid
18 var zipValid = false; //indicates if the zip code is valid
19
20 // get a list of names from the server and display them
21 function showAddressBook()
22 {
23 // hide the "addEntry" form and show the address book
24 document.getElementById('addEntry').style.display = 'none';
25 document.getElementById('addressBook').style.display = 'block';
26
27
28
29 } // end function showAddressBook
30
31 // send the asynchronous request to the web service
32 function callWebService(method, paramString, callBack)
33 {
34 // build request URL string
35
36

Fig. 13.9 | Ajax-enabled address-book application. (Part 1 of 10.)

<script type = "text/javascript" src = "json2.js"></script>

var webServiceUrl = '/AddressBookWebService/Service.asmx';

var params = "[]"; // create an empty object
callWebService('getAllNames', params, parseData);

var requestUrl = webServiceUrl + "/" + method;
var params = JSON.parse(paramString);

368 Chapter 13 Ajax-Enabled Rich Internet Applications

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 // attempt to send the asynchronous request
52 try
53 {
54
55
56 // set up callback function and store it
57
58
59
60
61
62 // send the asynchronous request
63
64
65
66
67 } // end try
68 catch (exception)
69 {
70 alert ('Request Failed');
71 } // end catch
72 } // end function callWebService
73
74 // parse JSON data and display it on the page
75 function parseData(asyncRequest)
76 {
77 // if request has completed successfully process the response
78 if (asyncRequest.readyState == 4 && asyncRequest.status == 200)
79 {
80 // convert the JSON string to an Object
81
82 displayNames(data); // display data on the page
83 } // end if
84 } // end function parseData
85
86 // use the DOM to display the retrieved address book entries
87 function displayNames(data)
88 {

Fig. 13.9 | Ajax-enabled address-book application. (Part 2 of 10.)

// build the parameter string to add to the url
for (var i = 0; i < params.length; i++)
{
 // checks whether it is the first parameter and builds
 // the parameter string accordingly

if (i == 0)
 requestUrl = requestUrl + "?" + params[i].param +
 "=" + params[i].value; // add first parameter to url

else

 requestUrl = requestUrl + "&" + params[i].param +
 "=" + params[i].value; // add other parameters to url
} // end for

var asyncRequest = new XMLHttpRequest(); // create request

asyncRequest.onreadystatechange = function()
{
 callBack(asyncRequest);
}; // end anonymous function

asyncRequest.open('GET', requestUrl, true);
asyncRequest.setRequestHeader("Accept",
 "application/json; charset=utf-8");
asyncRequest.send(""); // send request

var data = JSON.parse(asyncRequest.responseText);

13.7 Creating a Full-Scale Ajax-Enabled Application 369

89 // get the placeholder element from the page
90 var listBox = document.getElementById('Names');
91 listBox.innerHTML = ''; // clear the names on the page
92
93 // iterate over retrieved entries and display them on the page
94 for (var i = 0; i < data.length; i++)
95 {
96 // dynamically create a div element for each entry
97 // and a fieldset element to place it in
98 var entry = document.createElement('div');
99
100 entry.onclick = handleOnClick; // set onclick event handler
101 entry.id = i; // set the id
102
103 field.appendChild(entry); // insert entry into the field
104 listBox.appendChild(field); // display the field
105 } // end for
106 } // end function displayAll
107
108 // event handler for entry's onclick event
109 function handleOnClick()
110 {
111 // call getAddress with the element's content as a parameter
112
113 } // end function handleOnClick
114
115 // search the address book for input
116 // and display the results on the page
117 function search(input)
118 {
119 // get the placeholder element and delete its content
120 var listBox = document.getElementById('Names');
121 listBox.innerHTML = ''; // clear the display box
122
123 // if no search string is specified all the names are displayed
124 if (input == "") // if no search value specified
125 {
126 showAddressBook(); // Load the entire address book
127 } // end if
128 else
129 {
130
131 callWebService("search", params , parseData);
132 } // end else
133 } // end function search
134
135 // Get address data for a specific entry
136 function getAddress(entry, name)
137 {
138 // find the address in the JSON data using the element's id
139 // and display it on the page
140 var firstLast = name.split(" "); // convert string to array

Fig. 13.9 | Ajax-enabled address-book application. (Part 3 of 10.)

var field = document.createElement('fieldset');

entry.innerHTML = data[i].First + ' ' + data[i].Last;

getAddress(eval('this'), eval('this.innerHTML'));

var params = '[{"param": "input", "value": "' + input + '"}]';

370 Chapter 13 Ajax-Enabled Rich Internet Applications

141
142
143
144 // attempt to send an asynchronous request
145 try
146 {
147 // create request object
148
149
150 // create a callback function with 2 parameters
151 asyncRequest.onreadystatechange = function()
152 {
153 displayAddress(entry, asyncRequest);
154 }; // end anonymous function
155
156
157
158
159
160 } // end try
161 catch (exception)
162 {
163 alert ('Request Failed.');
164 } // end catch
165 } // end function getAddress
166
167 // clear the entry's data.
168 function displayAddress(entry, asyncRequest)
169 {
170 // if request has completed successfully, process the response
171 if (asyncRequest.readyState == 4 && asyncRequest.status == 200)
172 {
173 // convert the JSON string to an object
174
175 var name = entry.innerHTML // save the name string
176 entry.innerHTML = name + '
' + data.Street +
177 '
' + data.City + ', ' + data.State
178 + ', ' + data.Zip + '
' + data.Telephone;
179
180 // clicking on the entry removes the address
181 entry.onclick = function()
182 {
183 clearField(entry, name);
184 }; // end anonymous function
185
186 } // end if
187 } // end function displayAddress
188
189 // clear the entry's data
190 function clearField(entry, name)
191 {
192 entry.innerHTML = name; // set the entry to display only the name

Fig. 13.9 | Ajax-enabled address-book application. (Part 4 of 10.)

var requestUrl = webServiceUrl + "/getAddress?first="
 + firstLast[0] + "&last=" + firstLast[1];

var asyncRequest = new XMLHttpRequest();

asyncRequest.open('GET', requestUrl, true);
asyncRequest.setRequestHeader("Accept",
 "application/json; charset=utf-8"); // response datatype
asyncRequest.send(""); // send request

var data = JSON.parse(asyncRequest.responseText);

13.7 Creating a Full-Scale Ajax-Enabled Application 371

193
194
195
196
197 } // end function clearField
198
199 // display the form that allows the user to enter more data
200 function addEntry()
201 {
202 document.getElementById('addressBook').style.display = 'none';
203 document.getElementById('addEntry').style.display = 'block';
204 } // end function addEntry
205
206 // send the zip code to be validated and to generate city and state
207 function validateZip(zip)
208 {
209 // build parameter array
210
211
212 } // end function validateZip
213
214 // get city and state that were generated using the zip code
215 // and display them on the page
216 function showCityState(asyncRequest)
217 {
218 // display message while request is being processed
219
220
221
222 // if request has completed successfully, process the response
223 if (asyncRequest.readyState == 4)
224 {
225 if (asyncRequest.status == 200)
226 {
227 // convert the JSON string to an object
228
229
230 // update zip code validity tracker and show city and state
231 if (data.Validity == 'Valid')
232 {
233 zipValid = true; // update validity tracker
234
235 // display city and state
236 document.getElementById('validateZip').innerHTML = '';
237 document.getElementById('city').innerHTML = data.City;
238 document.getElementById('state').
239 innerHTML = data.State;
240 } // end if
241 else
242 {
243 zipValid = false; // update validity tracker
244 document.getElementById('validateZip').
245 innerHTML = data.ErrorText; // display the error

Fig. 13.9 | Ajax-enabled address-book application. (Part 5 of 10.)

entry.onclick = function() // set onclick event
{
 getAddress(entry, name); // retrieve address and display it
}; // end function

var params = '[{"param": "zip", "value": "' + zip + '"}]';
callWebService ("validateZip", params, showCityState);

document.getElementById('validateZip').
 innerHTML = "Checking zip...";

var data = JSON.parse(asyncRequest.responseText);

372 Chapter 13 Ajax-Enabled Rich Internet Applications

246
247 // clear city and state values if they exist
248 document.getElementById('city').innerHTML = '';
249 document.getElementById('state').innerHTML = '';
250 } // end else
251 } // end if
252
253
254
255
256 } // end else if
257 } // end if
258 } // end function showCityState
259
260 // send the telephone number to the server to validate format
261 function validatePhone(phone)
262 {
263
264
265 } // end function validatePhone
266
267 // show whether the telephone number has correct format
268 function showPhoneError(asyncRequest)
269 {
270 // if request has completed successfully, process the response
271 if (asyncRequest.readyState == 4 && asyncRequest.status == 200)
272 {
273 // convert the JSON string to an object
274
275
276 if (data.ErrorText != "Valid Telephone Format")
277 {
278 phoneValid = false; // update validity tracker
279 } // end if
280 else
281 {
282 phoneValid = true; // update validity tracker
283 } // end else
284
285 document.getElementById('validatePhone').
286 innerHTML = data.ErrorText; // display the error
287 } // end if
288 } // end function showPhoneError
289
290 // enter the user's data into the database
291 function saveForm()
292 {
293 // retrieve the data from the form
294 var first = document.getElementById('first').value;
295 var last = document.getElementById('last').value;
296 var street = document.getElementById('street').value;
297 var city = document.getElementById('city').innerHTML;

Fig. 13.9 | Ajax-enabled address-book application. (Part 6 of 10.)

else if (asyncRequest.status == 500)
{
 document.getElementById('validateZip').
 innerHTML = 'Zip validation service not avaliable';

var params = '[{ "param": "tel", "value": "' + phone + '"}]';
callWebService("validateTel", params, showPhoneError);

var data = JSON.parse(asyncRequest.responseText);

13.7 Creating a Full-Scale Ajax-Enabled Application 373

298 var state = document.getElementById('state').innerHTML;
299 var zip = document.getElementById('zip').value;
300 var phone = document.getElementById('phone').value;
301
302 // check if data is valid
303 if (!zipValid || !phoneValid)
304 {
305 // display error message
306 document.getElementById('success').innerHTML =
307 'Invalid data entered. Check form for more information';
308 } // end if
309 else if ((first == "") || (last == ""))
310 {
311 // display error message
312 document.getElementById('success').innerHTML =
313 'First Name and Last Name must have a value.';
314 } // end if
315 else
316 {
317 // hide the form and show the addressbook
318 document.getElementById('addEntry')
319 .style.display = 'none';
320 document.getElementById('addressBook').
321 style.display = 'block';
322
323 // build the parameter to include in the web service URL
324
325
326
327
328
329
330
331
332 // call the web service to insert data into the database
333
334 } // end else
335 } // end function saveForm
336 //-->
337 </script>

338 </head>

339 <body onload = "showAddressBook()">
340 <div>

341 <input type = "button" value = "Address Book"
342 onclick = "showAddressBook()"/>

343 <input type = "button" value = "Add an Entry"
344 onclick = "addEntry()"/>

345 </div>

346 <div id = "addressBook" style = "display : block;">

347 Search By Last Name:
348 <input onkeyup = "search(this.value)"/>
349

Fig. 13.9 | Ajax-enabled address-book application. (Part 7 of 10.)

params = '[{"param": "first", "value": "' + first +
 '"}, { "param": "last", "value": "' + last +
 '"}, { "param": "street", "value": "'+ street +
 '"}, { "param": "city", "value": "' + city +
 '"}, { "param": "state", "value:": "' + state +
 '"}, { "param": "zip", "value": "' + zip +
 '"}, { "param": "tel", "value": "' + phone + '"}]';

callWebService("addEntry", params, parseData);

374 Chapter 13 Ajax-Enabled Rich Internet Applications

350 <div id = "Names">
351 </div>
352 </div>

353 <div id = "addEntry" style = "display : none">

354 First Name: <input id = 'first'/>

355

356 Last Name: <input id = 'last'/>

357

358 Address:
359

360 Street: <input id = 'street'/>
361

362 City:

363

364 State:
365

366 Zip: <input id = 'zip' onblur = 'validateZip(this.value)'/>

367

368
369

370 Telephone:<input id = 'phone'

371 onblur = 'validatePhone(this.value)'/>

372

373
374

375 <input type = "button" value = "Submit"
376 onclick = "saveForm()" />

377

378 <div id = "success" class = "validator">

379 </div>
380 </div>

381 </body>

382 </html>

Fig. 13.9 | Ajax-enabled address-book application. (Part 8 of 10.)

a) Page is loaded. All the entries are displayed. b) User clicks on an entry. The entry expands, showing
the address and the telephone.

13.7 Creating a Full-Scale Ajax-Enabled Application 375

Fig. 13.9 | Ajax-enabled address-book application. (Part 9 of 10.)

c) User types "B" in the search field. Application loads
the entries whose last names start with "B".

d) User types "Bl" in the search field. Application
loads the entries whose last names start with "Bl".

e) User types "Bla" in the search field. Application
loads the entries whose last names start with "Bla".

f) User clicks Add an Entry button. The form
allowing user to add an entry is displayed.

g) User types in a nonexistent zip code. An error is
displayed.

h) User enters a valid zip code. While the server processes
it, Checking Zip... is displayed on the page.

376 Chapter 13 Ajax-Enabled Rich Internet Applications

Interacting with a Web Service on the Server
When the page loads, the onload event (line 339) calls the showAddressBook function to
load the address book onto the page. Function showAddressBook (lines 21–29) shows the
addressBook element and hides the addEntry element using the HTML DOM (lines 24–
25). Then it calls function callWebService to make an asynchronous request to the server
(line 28). Function callWebService requires an array of parameter objects to be sent to
the server. In this case, the function we are invoking on the server requires no arguments,
so line 27 creates an empty array to be passed to callWebService. Our program uses an
ASP.NET web service that we created for this example to do the server-side processing.
This web service is hosted at test.deitel.com. The web service contains a collection of
methods that can be called from a web application. Our web service also invokes another
web service from www.webservicex.net that validates a zip code and returns the corre-
sponding city and state.

Fig. 13.9 | Ajax-enabled address-book application. (Part 10 of 10.)

i) The server finds the city and state associated with the zip
code entered and displays them on the page.

j) The user enters a phone number and tries to submit
the data. The application does not allow this, because
the First Name and Last Name are empty.

k) The user enters the last name and the first name
and clicks the Submit button.

l) The address book is redisplayed with the new name
added in.

www.webservicex.net

13.7 Creating a Full-Scale Ajax-Enabled Application 377

Software Engineering Observation 13.2
Keep in mind that when building systems that depend on web services, you are depending on the
servers that host those services to be available, and you are introducing more potential points of
failure into your system.

Function callWebService (lines 32–72) contains the code to call our web service,
given a method name, an array of parameter bindings (i.e., the method’s parameter names
and argument values) and the name of a callback function. The web-service application
and the method that is being called are specified in the request URL (line 35). When
sending the request using the GET method, the parameters are concatenated URL starting
with a ? symbol and followed by a list of parameter=value bindings, each separated by an
&. Lines 39–49 iterate over the array of parameter bindings that was passed as an argument,
and add them to the request URL. In this first call, we do not pass any parameters because
the web method that returns all the entries requires none. However, future web method
calls will send multiple parameter bindings to the web service. Lines 52–71 prepare and
send the request, using similar functionality to the previous two examples. There are many
types of user interaction in this application, each requiring a separate asynchronous
request. For this reason, we pass the appropriate asyncRequest object as an argument to
the function specified by the callBack parameter. However, event handlers cannot receive
arguments, so lines 57–60 assign an anonymous function to asyncRequest’s onready-
statechange property. When this anonymous function gets called, it calls function call-
Back and passes the asyncRequest object as an argument. Lines 64–65 set an Accept
request header to receive JSON formatted data. Line 66 starts the asynchronous request.

Parsing JSON Data
Each of our web service’s methods in this example returns a JSON representation of an
object or array of objects. For example, when the web application requests the list of names
in the address book, the list is returned as a JSON array, as shown in Fig. 13.10. Each
object in Fig. 13.10 has the attributes first and last.

Line 11 links the json2.js script to the XHTML file so we can parse JSON data.
When the XMLHttpRequest object receives the response, it calls function parseData (lines
75–84). Line 81 calls the JSON.parse function, which converts its JSON string argument
into a JavaScript object. Then line 82 calls function displayNames (lines 87–106), which
displays the first and last name of each address-book entry passed to it. Lines 90–91 use
the DOM to store the placeholder div element Names in the variable listbox, and clear
its content. Once parsed, the JSON string of address-book entries becomes an array, which
this function traverses (lines 94–105).

Creating XHTML Elements and Setting Event Handlers on the Fly
Line 99 uses an XHTML fieldset element to create a box in which the entry will be
placed. Line 100 registers function handleOnClick as the onclick event handler for the

1 [{ "first": "Cheryl", "last": "Black" },
2 { "first": "James", "last": "Blue" },
3 { "first": "Mike", "last": "Brown" },
4 { "first": "Meg", "last": "Gold" }]

Fig. 13.10 | Address-book data formatted in JSON.

378 Chapter 13 Ajax-Enabled Rich Internet Applications

div created in line 98. This enables the user to expand each address-book entry by clicking
it. Function handleOnClick (lines 109–113) calls the getAddress function whenever the
user clicks an entry. The parameters are generated dynamically and not evaluated until the
getAddress function is called. This enables each function to receive arguments that are
specific to the entry the user clicked. Line 102 displays the names on the page by accessing
the first (first name) and last (last name) fields of each element of the data array.

Function getAddress (lines 136–166) is called when the user clicks an entry. This
request must keep track of the entry where the address is to be displayed on the page. Lines
151–154 set the displayAddress function (lines 168–187) as the callback function, and
pass it the entry element as a parameter. Once the request completes successfully, lines
174–178 parse the response and display the address. Lines 181–184 set the div’s onclick
event handler to function clearField (lines 190–197) to hide the address data when that
div is clicked again. Lines 192–196 reset the entry’s content and its onclick event handler
to the values they had before the entry was expanded.

Implementing Type-Ahead
The input element declared in line 348 enables the user to search the address book by last
name. As soon as the user starts typing in the input box, the onkeyup event handler calls
the search function (lines 117–133), passing the input element’s value as an argument.
The search function performs an asynchronous request to locate entries with last names
that start with its argument value. When the response is received, the application displays
the matching list of names. Each time the user changes the text in the input box, function
search is called again to make another asynchronous request.

Function search (lines 117–133) first clears the address-book entries from the page
(lines 120–121). If the input argument is the empty string, line 126 displays the entire
address book by calling function showAddressBook. Otherwise, lines 130–131 send a
request to the server to search the data. Line 130 creates a JSON string to represent the
parameter object that is passed to function callWebService. Line 131 converts the string
to an object and invokes callWebService. When the server responds, callback function
parseData is invoked, which calls displayNames to display the results on the page.

Implementing a Form with Asynchronous Validation
When the Add an Entry button (lines 343–344) is clicked, the addEntry function (lines
200–204) is called, which hides the addressBook element and shows the addEntry ele-
ment that allows the user to add a person to the address book. The addEntry element (lines
353–380) contains a set of entry fields, some of which have event handlers that enable val-
idation that occurs asynchronously as the user continues to interact with the page. When
a user enters a zip code, the validateZip function (lines 207–212) is called. This function
calls an external web service to validate the zip code. If it is valid, that external web service
returns the corresponding city and state. Line 210 builds a parameter object containing
validateZip’s parameter name and argument value in JSON format. Line 211 calls the
callWebService function with the appropriate method, the parameter object created in
line 210 and showCityState (lines 216–258) as the callback function.

Zip-code validation can take a long time due to network delays. The showCityState
function is called every time the request object’s readyState property changes. Until the
request completes, lines 219–220 display "Checking zip code..." on the page. After the
request completes, line 228 converts the JSON response text to an object. The response

13.8 Dojo Toolkit 379

object has four properties—Validity, ErrorText, City and State. If the request is valid,
line 233 updates the zipValid variable that keeps track of zip-code validity (declared at
line 18), and lines 237–239 show the city and state that the server generated using the zip
code. Otherwise lines 243–245 update the zipValid variable and show the error code.
Lines 248–249 clear the city and state elements. If our web service fails to connect to the
zip-code validator web service, lines 252–256 display an appropriate error message.

Similarly, when the user enters the telephone number, the function validatePhone
(lines 261–265) sends the phone number to the server. Once the server responds, the
showPhoneError function (lines 268–288) updates the validatePhone variable (declared
at line 17) and shows the message that the web service returned.

When the Submit button is clicked, function saveForm is called (lines 291–335).
Lines 294–300 retrieve the data from the form. Lines 303–308 check if the zip code and
telephone number are valid, and display the appropriate error message in the Success ele-
ment on the bottom of the page. Before the data can be entered into a database on the
server, both the first-name and last-name fields must have a value. Lines 309–314 check
these fields. If they are empty, an appropriate error message is displayed. Once all the data
entered is valid, lines 318–321 hide the entry form and show the address book. Lines 324–
333 build the parameter object using JSON and send the data to the server using function
callWebService. Once the server saves the data, it queries the database for an updated list
of entries and returns them; then function parseData displays the entries on the page.

13.8 Dojo Toolkit
Developing web applications in general, and Ajax applications in particular, involves a cer-
tain amount of painstaking and tedious work. Cross-browser compatibility, DOM manip-
ulation and event handling can get cumbersome, particularly as an application’s size
increases. Dojo is a free, open source JavaScript library that takes care of these issues. Dojo
reduces asynchronous request handling to a single function call. Dojo also provides cross-
browser DOM functions that simplify partial page updates. It covers many more areas of
web development, from simple event handling to fully functional rich GUI controls.

To install Dojo, download the Dojo version 0.4.3 from download.dojotoolkit.org/
release-0.4.3/ to your hard drive. Extract the files from the archive file you downloaded
to your web development directory or web server. Including the dojo.js script file in your
web application will give you access to all the Dojo functions. To do this, place the fol-
lowing script in the head element of your XHTML document:

<script type = "text/javascript" src = "path/Dojo.js">

where path is the relative or complete path to the Dojo toolkit’s files. The documentation
for this version of Dojo is located at

dojotoolkit.org/book/dojo-book-0-4

[Note: More recent versions of Dojo are available from dojotoolkit.org; however, the ex-
ample in this section will work only with version 0.4.3.]

Figure 13.11 is a calendar application that uses Dojo to create the user interface, com-
municate with the server asynchronously, handle events and manipulate the DOM. The
calendar control (see the screen captures in Fig. 13.11) displays six weeks of dates. Various
arrow buttons allow the user to traverse the calendar. When the user selects a date, an asyn-

380 Chapter 13 Ajax-Enabled Rich Internet Applications

chronous request obtains that date’s scheduled events. There is an Edit button next to each
scheduled event. When it is clicked, the item is replaced by a text box with the item’s con-
tent, a Save button and a Cancel button. When the user presses Save, an asynchronous
request saves the new value to the server and displays it on the page. This feature, often
referred to as edit-in-place, is common in Ajax applications. You can test-drive this appli-
cation at test.deitel.com/examples/jsfp/ajax/fig13_11/calendar.html.

1 <?xml version = "1.0" encoding = "utf-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 13.11 Calendar.html -->
6 <!-- Calendar application built with dojo. -->
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9
10 <script type = "text/javascript" src = "json2.js"></script>

11 <script type = "text/javascript">

12 <!--
13 // specify all the required dojo scripts
14
15
16
17
18
19 // configure calendar event handler
20
21
22
23
24
25
26
27
28 // location of CalendarService web service
29 var webServiceUrl = "/CalendarService/CalendarService.asmx";
30
31 // obtain scheduled events for the specified date
32 function retrieveItems(eventDate)
33 {
34 // convert date object to string in yyyy-mm-dd format
35
36
37 // build parameters and call web service
38 var params = ’[{ "param":"eventDate", "value":"’ +
39 date + "'}]";
40 callWebService('getItemsByDate', params, displayItems);
41 } // end function retrieveItems
42
43 // call a specific web service asynchronously to get server data
44 function callWebService(method, params, callback)
45 {

Fig. 13.11 | Calendar application built with Dojo. (Part 1 of 7.)

<script type = "text/javascript" src = "/dojo043/dojo.js"></script>

dojo.require("dojo.event.*"); // use scripts from event package
dojo.require("dojo.widget.*"); // use scripts from widget package
dojo.require("dojo.dom.*"); // use scripts from dom package
dojo.require("dojo.io.*"); // use scripts from the io package

function connectEventHandler()
{

var calendar = dojo.widget.byId("calendar"); // get calendar
 calendar.setDate("2007-07-04");
 dojo.event.connect(
 calendar, "onValueChanged", "retrieveItems");
} // end function connectEventHandler

var date = dojo.date.toRfc3339(eventDate).substring(0, 10);

13.8 Dojo Toolkit 381

46 // url for the asynchronous request
47 var requestUrl = webServiceUrl + "/" + method;
48 var params = JSON.parse(paramString);
49
50 // build the parameter string to append to the url
51 for (var i = 0; i < params.length; i++)
52 {
53 // check if it is the first parameter and build
54 // the parameter string accordingly
55 if (i == 0)
56 requestUrl = requestUrl + "?" + params[i].param +
57 "=" + params[i].value; // add first parameter to url
58 else
59 requestUrl = requestUrl + "&" + params[i].param +
60 "=" + params[i].value; // add other parameters to url
61 } // end for
62
63 // call asynchronous request using dojo.io.bind
64
65
66 } // end function callWebService
67
68 // display the list of scheduled events on the page
69 function displayItems(type, data, event)
70 {
71
72
73
74
75 else
76 {
77
78 placeholder.innerHTML = ''; // clear placeholder
79 var items = JSON.parse(data); // parse server data
80
81 // check whether there are events;
82 // if none then display message
83 if (items == "")
84 {
85 placeholder.innerHTML = 'No events for this date.';
86 }
87
88 for (var i = 0; i < items.length; i++)
89 {
90 // initialize item's container
91 var item = document.createElement("div");
92 item.id = items[i].id; // set DOM id to database id
93
94 // obtain and paste the item's description
95 var text = document.createElement("div");
96 text.innerHTML = items[i].description;
97 text.id = 'description' + item.id;
98

Fig. 13.11 | Calendar application built with Dojo. (Part 2 of 7.)

dojo.io.bind({ url: requestUrl, handler: callback,
 accept: "application/json; charset=utf-8" });

if (type == 'error') // if the request has failed
{
 alert('Could not retrieve the event'); // display error
} // end if

var placeholder = dojo.byId("itemList"); // get placeholder

dojo.dom.insertAtIndex(text, item, 0);

382 Chapter 13 Ajax-Enabled Rich Internet Applications

99
100 // create and insert the placeholder for the edit button
101
102
103
104
105
106
107
108
109
110
111 // insert item container in the list of items container
112
113 } // end for
114 } // end else
115 } // end function displayItems
116
117 // send the asynchronous request to get content for editing and
118 // run the edit-in-place UI
119 function handleEdit(event)
120 {
121
122 var params = '[{ "param":"id", "value":"’ + id + ’"}]’;
123 callWebService('getItemById', params, displayForEdit);
124 } // end function handleEdit
125
126 // set up the interface for editing an item
127 function displayForEdit(type, data, event)
128 {
129 if (type == 'error') // if the request has failed
130 {
131 alert('Could not retrieve the event'); // display error
132 }
133 else
134 {
135 var item = JSON.parse(data); // parse the item
136 var id = item.id; // set the id
137
138 // create div elements to insert content
139 var editElement = document.createElement('div');
140 var buttonElement = document.createElement('div');
141
142 // hide the unedited content
143 var oldItem = dojo.byId(id); // get the original element
144 oldItem.id = 'old' + oldItem.id; // change element's id
145 oldItem.style.display = 'none'; // hide old element
146 editElement.id = id; // change the "edit" container's id
147
148 // create a textbox and insert it on the page
149 var editArea = document.createElement('textarea');
150 editArea.id = 'edit' + id; // set textbox id
151 editArea.innerHTML = item.description; // insert description

Fig. 13.11 | Calendar application built with Dojo. (Part 3 of 7.)

var buttonPlaceHolder = document.createElement("div");
dojo.dom.insertAtIndex(buttonPlaceHolder, item, 1);

// create the edit button and paste it into the container
var editButton = dojo.widget.
 createWidget("Button", {}, buttonPlaceHolder);
editButton.setCaption("Edit");
dojo.event.connect(
 editButton, 'buttonClick', handleEdit);

dojo.dom.insertAtIndex(item, placeholder, i);

var id = event.currentTarget.parentNode.id; // retrieve id

13.8 Dojo Toolkit 383

152 dojo.dom.insertAtIndex(editArea, editElement, 0);
153
154 // create button placeholders and insert on the page
155 // these will be transformed into dojo widgets
156 var saveElement = document.createElement('div');
157 var cancelElement = document.createElement('div');
158 dojo.dom.insertAtIndex(saveElement, buttonElement, 0);
159 dojo.dom.insertAtIndex(cancelElement, buttonElement, 1);
160 dojo.dom.insertAtIndex(buttonElement, editElement, 1);
161
162 // create "save" and "cancel" buttons
163 var saveButton =
164 dojo.widget.createWidget("Button", {}, saveElement);
165 var cancelButton =
166 dojo.widget.createWidget("Button", {}, cancelElement);
167 saveButton.setCaption("Save"); // set saveButton label
168 cancelButton.setCaption("Cancel"); // set cancelButton text
169
170 // set up the event handlers for cancel and save buttons
171 dojo.event.connect(saveButton, 'buttonClick', handleSave);
172 dojo.event.connect(
173 cancelButton, 'buttonClick', handleCancel);
174
175 // paste the edit UI on the page
176 dojo.dom.insertAfter(editElement, oldItem);
177 } // end else
178 } // end function displayForEdit
179
180 // sends the changed content to the server to be saved
181 function handleSave(event)
182 {
183 // grab user entered data
184 var id = event.currentTarget.parentNode.parentNode.id;
185 var descr = dojo.byId('edit' + id).value;
186
187 // build parameter string and call the web service
188 var params = '[{ "param":"id", "value":"' + id +
189 '"}, {"param": "descr", "value":"' + descr + '"}]';
190 callWebService('Save', params, displayEdited);
191 } // end function handleSave
192
193 // restores the original content of the item
194 function handleCancel(event)
195 {
196 var voidEdit = event.currentTarget.parentNode.parentNode;
197 var id = voidEdit.id; // retrieve the id of the item
198 // remove the edit UI
199 var old = dojo.byId('old' + id); // retrieve pre-edit version
200 old.style.display = 'block'; // show pre-edit version
201 old.id = id; // reset the id
202 } // end function handleCancel
203

Fig. 13.11 | Calendar application built with Dojo. (Part 4 of 7.)

 dojo.dom.removeNode(voidEdit, true);

384 Chapter 13 Ajax-Enabled Rich Internet Applications

204 // displays the updated event information after an edit is saved
205 function displayEdited(type, data, event)
206 {
207 if (type == 'error')
208 {
209 alert('Could not retrieve the event');
210 }
211 else
212 {
213 editedItem = JSON.parse(data); // get updated description
214 var id = editedItem.id; // obtain the id
215 var editElement = dojo.byId(id); // get the edit UI
216 dojo.dom.removeNode(editElement, true); // delete edit UI
217 var old = dojo.byId('old' + id); // get item container
218
219 // get pre-edit element and update its description
220 var oldText = dojo.byId('description' + id);
221 oldText.innerHTML = editedItem.description;
222
223 old.id = id; // reset id
224 old.style.display = 'block'; // show the updated item
225 } // end else
226 } // end function displayEdited
227
228 // when the page is loaded, set up the calendar event handler
229
230 // -->
231 </script>
232 <title> Calendar built with dojo </title>
233 </head>

234 <body>

235 Calendar
236
237
238 <div id = "itemList" style = "float: left"></div>
239 </body>

240 </html>

Fig. 13.11 | Calendar application built with Dojo. (Part 5 of 7.)

dojo.addOnLoad(connectEventHandler);

<div dojoType = "datePicker" style = "float: left"

 widgetID = "calendar"></div>

a) DatePicker Dojo widget
after the web page loads.

13.8 Dojo Toolkit 385

Fig. 13.11 | Calendar application built with Dojo. (Part 6 of 7.)

b) User selects a date and the
application asynchronously
requests a list of events for that
date and displays the results
with a partial page update.

c) User clicks the Edit button
to modify an event’s
description.

d) Application performs a
partial page update, replacing
the original description and the
Edit button with a text box,
Save button and Cancel
button. User modifies the
event description and clicks the
Save button.

386 Chapter 13 Ajax-Enabled Rich Internet Applications

Loading Dojo Packages
Lines 9–17 load the Dojo framework. Line 9 links the dojo.js script file to the page, giv-
ing the script access to all the functions in the Dojo toolkit. Dojo is organized in packages
of related functionality. Lines 14–17 use the dojo.require call, provided by the dojo.js
script to include the packages we need. The dojo.io package functions communicate with
the server, the dojo.event package simplifies event handling, the dojo.widget package
provides rich GUI controls, and the dojo.dom package contains additional DOM func-
tions that are portable across many different browsers.

The application cannot use any of this functionality until all the packages have been
loaded. Line 229 uses the dojo.addOnLoad method to set up the event handling after the
page loads. Once all the packages have been loaded, the connectEventHandler function
(lines 20–26) is called.

Using an Existing Dojo Widget
A Dojo widget is any predefined user interface element that is part of the Dojo toolkit.
The calendar control on the page is the DatePicker widget. To incorporate an existing
Dojo widget onto a page, you must set the DojoType attribute of any HTML element to
the type of widget that you want it to be (line 236). Dojo widgets also have their own wid-
getID property (line 237). Line 22 uses the dojo.widget.byId method, rather than the
DOM’s document.getElementById method, to obtain the calendar widget element. The
dojo.events.connect method links functions together. Lines 24–25 use it to connect the
calendar’s onValueChanged event handler to the retrieveItems function. When the user
picks a date, a special onValueChanged event that is part of the DatePicker widget calls
retrieveItems, passing the selected date as an argument. The retrieveItems function
(lines 32–41) builds the parameters for the request to the server, and calls the callWeb-
Service function. Line 35 uses the dojo.date.toRfc3339 method to convert the date
passed by the calendar control to yyyy-mm-dd format.

Asynchronous Requests in Dojo
The callWebService function (lines 44–66) sends the asynchronous request to the spec-
ified web-service method. Lines 47–61 build the request URL using the same code as

Fig. 13.11 | Calendar application built with Dojo. (Part 7 of 7.)

d) The Save button’s event
handler uses an asynchronous
request to update the server
and uses the server’s response
to perform a partial page
update, replacing the editing
GUI components with the
updated description and an
Edit button.

13.8 Dojo Toolkit 387

Fig. 13.9. Dojo reduces the asynchronous request to a single call to the dojo.io.bind
method (lines 64–65), which works on all the popular browsers such as Firefox, Internet
Explorer, Opera, Mozilla and Safari. The method takes an array of parameters, formatted
as a JavaScript object. The url parameter specifies the destination of the request, the han-
dler parameter specifies the callback function, and the mimetype parameter specifies the
format of the response. The handler parameter can be replaced by the load and error
parameters. The function passed as load handles successful requests and the function
passed as error handles unsuccessful requests.

Response handling is done differently in Dojo. Rather than calling the callback func-
tion every time the request’s readyState property changes, Dojo calls the function passed
as the “handler” parameter when the request completes. In addition, in Dojo the script
does not have access to the request object. All the response data is sent directly to the call-
back function The function sent as the handler argument must have three parameters—
type, data and event.

In the first request, the function displayItems (lines 69–115) is set as the callback
function. Lines 71–74 check if the request is successful, and display an error message if it
isn’t. Lines 77–78 obtain the place-holder element (itemList), where the items will be dis-
played, and clear its content. Line 79 converts the JSON response text to a JavaScript
object, using the same code as the example in Fig. 13.9.

Partial Page Updates Using Dojo’s Cross-Browser DOM Manipulation Capabilities
The Dojo toolkit (like most other Ajax libraries) provides functionality that enables you
to manipulate the DOM in a cross-browser portable manner. Lines 83–86 check if the
server-side returned any items, and display an appropriate message if it didn’t. For each
item object returned from the server, lines 91–92 create a div element and set its id to the
item’s id in the database. Lines 95–97 create a container element for the item’s descrip-
tion. Line 98 uses Dojo’s dojo.dom.insertAtIndex method to insert the description ele-
ment as the first element in the item’s element.

For each entry, the application creates an Edit button that enables the user to edit the
event’s content on the page. Lines 101–109 create a Dojo Button widget programmati-
cally. Lines 101–102 create a buttonPlaceHolder div element for the button and paste it
on the page. Lines 105–106 convert the buttonPlaceHolder element to a Dojo Button
widget by calling the dojo.widget.createWidget function. This function takes three
parameters—the type of widget to be created, a list of additional widget parameters and
the element which is to be converted to a Dojo widget. Line 107 uses the button’s set-
Caption method to set the text that appears on the button. Line 112 uses the insertAt-
Index method to insert the items into the itemList placeholder, in the order in which
they were returned from the server.

Adding Edit-In-Place Functionality
Dojo Button widgets use their own buttonClick event instead of the DOM onclick
event to store the event handler. Lines 108–109 use the dojo.event.connect method to
connect the buttonClick event of the Dojo Button widget and the handleEdit event han-
dler (lines 119–124). When the user clicks the Edit button, the Event object gets passed
to the event handler as an argument. The Event object’s currentTarget property contains
the element that initiated the event. Line 121 uses the currentTarget property to obtain
the id of the item. This id is the same as the item’s id in the server database. Line 123

388 Chapter 13 Ajax-Enabled Rich Internet Applications

calls the web service’s getItemById method, using the callWebService function to obtain
the item that needs to be edited.

Once the server responds, function displayForEdit (lines 127–178) replaces the
item on the screen with the user interface for editing the item’s content. The code for this
is similar to the code in the displayItems function. Lines 129–132 make sure the request
was successful and parse the data from the server. Lines 139–140 create the container ele-
ments into which we insert the new user-interface elements. Lines 143–146 hide the ele-
ment that displays the item and change its id. Now the id of the user-interface element is
the same as the id of the item that it’s editing stored in the database. Lines 149–152 create
the text-box element that will be used to edit the item’s description, paste it into the text
box, and paste the resulting text box on the page. Lines 156–173 use the same syntax that
was used to create the Edit button widget to create Save and Cancel button widgets. Line
176 pastes the resulting element, containing the text box and two buttons, on the page.

When the user edits the content and clicks the Cancel button, the handleCancel
function (lines 194–202) restores the item element to what it looked like before the button
was clicked. Line 198 deletes the edit UI that was created earlier, using Dojo’s removeNode
function. Lines 200–201 show the item with the original element that was used to display
the item, and change its id back to the item’s id on the server database.

When the user clicks the Save button, the handleSave function (lines 181–191) sends
the text entered by the user to the server. Line 185 obtains the text that the user entered
in the text box. Lines 188–190 send to the server the id of the item that needs to be
updated and the new description.

Once the server responds, displayEdited (lines 205–226) displays the new item on
the page. Lines 214–217 contain the same code that was used in handleCancel to remove
the user interface used to edit the item and redisplay the element that contains the item.
Line 221 changes the item’s description to its new value.

13.9 Web Resources
www.deitel.com/ajax
Our Ajax Resource Center contains links to some of the best Ajax resources on the web from which
you can learn more about Ajax and its component technologies. Find categorized links to Ajax tu-
torials, tools, code, forums, books, libraries, frameworks, conferences, podcasts and more. See our
comprehensive list of developer toolkits and libraries. Visit the most popular Ajax community web-
sites and blogs. Explore many popular commercial and free open-source Ajax applications. Down-
load code snippets and complete scripts that you can use on your own website. Also, be sure to visit
our Resource Centers with information on Ajax’s component technologies, including XHTML
(www.deitel.com/xhtml/), CSS 2.1 (www.deitel.com/css21/), XML (www.deitel.com/XML/) and
JavaScript (www.deitel.com/javascript/). For a complete Resource Center list, visit

www.deitel.com/ResourceCenters.html

www.deitel.com/ajax
www.deitel.com/xhtml/
www.deitel.com/css21/
www.deitel.com/XML/
www.deitel.com/javascript/
www.deitel.com/ResourceCenters.html

A
XHTML Special
Characters

The table of Fig. A.1 shows many commonly used XHTML special characters—called char-
acter entity references by the World Wide Web Consortium. For a complete list of charac-
ter entity references, see the site www.w3.org/TR/REC-html40/sgml/entities.html.

Character XHTML encoding Character XHTML encoding

non-breaking space ê ê

§ § ì ì

© © í í

® ® î î

¼ ¼ ñ ñ

½ ½ ò ò

¾ ¾ ó ó

à à ô ô

á á õ õ

â â ÷ ÷

ã ã ù ù

å å ú ú

ç ç û û

è è • •

é é ™ ™

Fig. A.1 | XHTML special characters.

www.w3.org/TR/REC-html40/sgml/entities.html

B
XHTML Colors

Colors may be specified by using a standard name (such as aqua) or a hexadecimal RGB
value (such as #00FFFF for aqua). Of the six hexadecimal digits in an RGB value, the first
two represent the amount of red in the color, the middle two represent the amount of
green in the color and the last two represent the amount of blue in the color. For example,
black is the absence of color and is defined by #000000, whereas white is the maximum
amount of red, green and blue and is defined by #FFFFFF. Pure red is #FF0000, pure green
(which the standard calls lime) is #00FF00 and pure blue is #00FFFF. Note that green in
the standard is defined as #008000. Figure B.1 contains the XHTML standard color set.
Figure B.2 contains the XHTML extended color set.

Color name Value Color name Value

aqua #00FFFF navy #000080

black #000000 olive #808000

blue #0000FF purple #800080

fuchsia #FF00FF red #FF0000

gray #808080 silver #C0C0C0

green #008000 teal #008080

lime #00FF00 yellow #FFFF00

maroon #800000 white #FFFFFF

Fig. B.1 | XHTML standard colors and hexadecimal RGB values.

Appendix B XHTML Colors 391

Color name Value Color name Value

aliceblue #F0F8FF dodgerblue #1E90FF

antiquewhite #FAEBD7 firebrick #B22222

aquamarine #7FFFD4 floralwhite #FFFAF0

azure #F0FFFF forestgreen #228B22

beige #F5F5DC gainsboro #DCDCDC

bisque #FFE4C4 ghostwhite #F8F8FF

blanchedalmond #FFEBCD gold #FFD700

blueviolet #8A2BE2 goldenrod #DAA520

brown #A52A2A greenyellow #ADFF2F

burlywood #DEB887 honeydew #F0FFF0

cadetblue #5F9EA0 hotpink #FF69B4

chartreuse #7FFF00 indianred #CD5C5C

chocolate #D2691E indigo #4B0082

coral #FF7F50 ivory #FFFFF0

cornflowerblue #6495ED khaki #F0E68C

cornsilk #FFF8DC lavender #E6E6FA

crimson #DC143C lavenderblush #FFF0F5

cyan #00FFFF lawngreen #7CFC00

darkblue #00008B lemonchiffon #FFFACD

darkcyan #008B8B lightblue #ADD8E6

darkgoldenrod #B8860B lightcoral #F08080

darkgray #A9A9A9 lightcyan #E0FFFF

darkgreen #006400 lightgoldenrodyellow #FAFAD2

darkkhaki #BDB76B lightgreen #90EE90

darkmagenta #8B008B lightgrey #D3D3D3

darkolivegreen #556B2F lightpink #FFB6C1

darkorange #FF8C00 lightsalmon #FFA07A

darkorchid #9932CC lightseagreen #20B2AA

darkred #8B0000 lightskyblue #87CEFA

darksalmon #E9967A lightslategray #778899

darkseagreen #8FBC8F lightsteelblue #B0C4DE

darkslateblue #483D8B lightyellow #FFFFE0

darkslategray #2F4F4F limegreen #32CD32

darkturquoise #00CED1 linen #FAF0E6

darkviolet #9400D3 magenta #FF00FF

deeppink #FF1493 mediumaquamarine #66CDAA

deepskyblue #00BFFF mediumblue #0000CD

dimgray #696969 mediumorchid #BA55D3

Fig. B.2 | XHTML extended colors and hexadecimal RGB values. (Part 1 of 2.)

392 Appendix B XHTML Colors

mediumpurple #9370DB plum #DDA0DD

mediumseagreen #3CB371 powderblue #B0E0E6

mediumslateblue #7B68EE rosybrown #BC8F8F

mediumspringgreen #00FA9A royalblue #4169E1

mediumturquoise #48D1CC saddlebrown #8B4513

mediumvioletred #C71585 salmon #FA8072

midnightblue #191970 sandybrown #F4A460

mintcream #F5FFFA seagreen #2E8B57

mistyrose #FFE4E1 seashell #FFF5EE

moccasin #FFE4B5 sienna #A0522D

navajowhite #FFDEAD skyblue #87CEEB

oldlace #FDF5E6 slateblue #6A5ACD

olivedrab #6B8E23 slategray #708090

orange #FFA500 snow #FFFAFA

orangered #FF4500 springgreen #00FF7F

orchid #DA70D6 steelblue #4682B4

palegoldenrod #EEE8AA tan #D2B48C

palegreen #98FB98 thistle #D8BFD8

paleturquoise #AFEEEE tomato #FF6347

palevioletred #DB7093 turquoise #40E0D0

papayawhip #FFEFD5 violet #EE82EE

peachpuff #FFDAB9 wheat #F5DEB3

peru #CD853F whitesmoke #F5F5F5

pink #FFC0CB yellowgreen #9ACD32

Color name Value Color name Value

Fig. B.2 | XHTML extended colors and hexadecimal RGB values. (Part 2 of 2.)

C
JavaScript Operator
Precedence Chart

C.1 Operator Precedence Chart
This appendix contains the operator precedence chart for JavaScript/ECMAScript
(Fig. C.1). The operators are shown in decreasing order of precedence from top to bottom.

Operator Type Associativity

.

[]
()

member access
array indexing
function calls

left to right

++
--
-

~

!
delete
new
typeof
void

increment
decrement
unary minus
bitwise complement
logical NOT
deletes an array element or object property
creates a new object
returns the data type of its argument
prevents an expression from returning a value

right to left

*

/
%

multiplication
division
modulus

left to right

Fig. C.1 | JavaScript/ECMAScript operator precedence and associativity. (Part 1 of 2.)

394 Appendix C JavaScript Operator Precedence Chart

+
-
+

addition
subtraction
string concatenation

left to right

<<

>>
>>>

left shift
right shift with sign extension
right shift with zero extension

left to right

<

<=

>

>=
instanceof

less than
less than or equal
greater than
greater than or equal
type comparison

left to right

==
!=
===
!==

equality
inequality
identity
nonidentity

left to right

& bitwise AND left to right

^ bitwise XOR left to right

| bitwise OR left to right

&& logical AND left to right

|| logical OR left to right

?: conditional right to left

=
+=
-=
*=
/=
%=
&=
^=
|=
<<=
>>=
>>>=

assignment
addition assignment
subtraction assignment
multiplication assignment
division assignment
modulus assignment
bitwise AND assignment
bitwise exclusive OR assignment
bitwise inclusive OR assignment
bitwise left shift assignment
bitwise right shift with sign extension assignment
bitwise right shift with zero extension assignment

right to left

Operator Type Associativity

Fig. C.1 | JavaScript/ECMAScript operator precedence and associativity. (Part 2 of 2.)

Symbols
-- operator 113, 114
! logical NOT or logical negation opera-

tor 140, 142
!= not equal to operator 91
?: conditional operator 100
@ XPath attribute symbol 319
* multiplication 323
* multiplication operator 90
*/ multiline comment delimiter 86
*= multiplication assignment operator

112
/ forward slash in end tags 288
/ XPath root selector 319
/* multiline comment delimiter 86
/= division assignment operator 112
\’ single quote escape sequence 83
\" double-quote escape sequence 83
\\ backslash escape sequence 83
\n newline escape sequence 83
\r carriage return escape sequence 83
\t tab escape sequence 83
&& logical AND operator 140, 141
& entity reference 22
© entity reference 22
δ entity reference (MathML) 313
¼ entity reference 24
∫ entity reference (MathML) 313
< special character 22, 24
 entity reference 334
% operator 90
%= operator 112
+ addition operator 90
+ string concatenation 87
++ increment operator 112, 113, 114
<!--…--> XML comment tags 291
<? and ?> XML processing instruction

delimiters 317
<= less than or equal to operator 91
<> angle brackets for XML elements 287
= assignment operator 87
-= subtraction assignment operator 112
== is equal to operator 91
>= greater than or equal to operator 91
|| logical OR operator 140, 142

A
a (anchor) element 16, 20

href attribute 16, 40
href property 255, 262
target attribute 223

abbreviating assignment expressions 112
abort method of the XMLHttpRequest

object 361
abs 201

absolute addressing (XPath) 319
absolute attribute value (position) 54
absolute positioning 54, 56
Absolute positioning of elements 55
absolute value 201
absolute-length measurement 52, 71
abstraction 218
Accept request header 377
access the objects in a collection 261
accessible web pages 20
action 78
action attribute of form element 33
action oriented 200
action/decision model of programming

99
ActionScript 9
ActiveXObject

load method 333
ActiveXObject from Internet Explorer

333
Adaptive Path 355
Adding background images and

indentation 58
addition assignment operator (+=) 112
addition operator (+) 90
addition script 88
advanced event models 264
Advanced Research Projects Agency

(ARPA) 3
Ajax 6, 351, 353, 355
Ajax toolkits 351
Ajax web application 353
alert dialog 82, 160
alert dialog displaying multiple lines 82
alert dialog displaying multiple lines.

82
alert method of window object 82
algebraic equation marked up with

MathML and displayed in the Amaya
browser 312

all XML Schema element 310
alt attribute of img element 20
Alt key 272
altKey property of an event object 272
Amaya (W3C browser) 311
Amazon Associates program 7
ancestor element 49
ancestor node 324
anchor 16
anchor 212
anchor (a) element 204
anchor method 211, 212
anchor method of the String object

204, 212
anchors collection of the document

object 253
angle bracket (<>) for XML elements 287

anonymous function 282
anonymous String object 202
appendChild method of a DOM node

251
appendChild method of a Node 336
appendChild method of the document

object 362
Apple Safari browser 2
architecture of participation 6
argument 78, 148, 201
arithmetic assignment operators: +=, -=,

*=, /= and %= 112
arithmetic calculation 90
arithmetic operator 90
ARPA (Advanced Research Projects

Agency) 3
ARPANET 3, 4
array

elements 174
index 174
name 174
position number 174
subscript 174
zeroth element 174

array data structure 174
Array object 146, 175, 176, 178, 179,

198, 199
join method 187
length property 174, 178, 181, 199
sort method 188, 189, 200

array of strings containing the token 210
Array with 12 elements 175
article.xml displayed by Internet

Explorer 292
ascending order 323
ASCII character set 167, 189
Ask 6
ASP.NET 351
assigning more than one class to an

XHTML element 62
assignment 87
assignment operator 87, 91, 114
assignment operator = associates right to

left 95
associate from left to right 95, 115
associate from right to left 95, 115
association 200
associativity of operators 95, 115, 144
asterisk (*) indicates multiplication 90
asterisk (*) occurrence indicator 302
asynchronous page updates (Ajax) 355
asynchronous request 353
ATTLIST attribute-list declaration

(DTD) 302
Attr object 335
attribute 200
attribute element 309

Index

396 Index

attribute in XML 295
attribute-list declaration 302
attribute node 319
attribute value in XML 296
attributes 13
attributes (data) 78
attributes property of a Node 336
aural media type 65
author 49
author style 70
author style overriding user style 71
average calculation 107

B
background-attachment property 59
background-color property 58
background-image property 58, 59
background-position property 58
background-repeat property 59
backslash (\) escape character 80
bandwidth 4
base 168
base 2 logarithm of e 202
base attribute of element extension

309
base case 168
base e 201
base of a natural logarithm 202
base type (XML Schema) 309
basic XHTML colors 277
behavior 199, 199
behaviors (methods) 78
Berners-Lee, Tim 5
binary format 168
binary operator 87, 90, 142
blink value (text-decoration) 50
block 102, 109, 138, 167
block dimension 57
block display value 67
block-level element 64, 57
blogging 7
body DOM object 262
body element 13, 14, 147
body of a for 125
body of a loop 124
body property of the document object

256
body section 13
<body> tag 77
bold value (font-weight property) 47
bolder value (font-weight property)

47
boolean expression 99
Boolean object 218
border 61
border attribute of table element 27
border properties 62
border-collapse property 271
border-color property 61
border-left-color property 62
Borders of block-level elements 61
border-style property 61
border-top-style property 62
border-width property 61, 256
bottom margin 55, 57, 58
box model 61
Box model for block-level elements 61

 81

br (line break) element 34
braces ({}) 102
brackets that enclose subscript of an array

175
braille media type 65
break out of a nested set of structures 138
break statement 132, 135, 138
break statement in a for statement 135
browser 9
browser request 31
bubbling 272
“building blocks” 200
building blocks 97
built-in data types 308
business letter marked up as XML 294
button-click event 161

C
C programming language 11
C++ programming language 11
calculating the sum of the elements of an

array 181
calculation 90
calculus expression marked up with

MathML and displayed in the Amaya
browser 313

callback function 353, 360
Cancel button 89
cancel event bubbling 282, 284
cancelBubble property of an event

object 272, 282, 284
caption element (table) 29
carriage return 83
Cascading Style Sheets (CSS) 2, 5, 11, 44
case label 131
case sensitive 79, 85
cases in which switch cases would

run together 131
case-sensitive 103
catch block 359
catch clause 359
catch keyword 359
CDATA keyword (DTD) 302
ceil method 201
center horizontally 58
center value (background-position

property) 58
center value (text-align property) 61
centralized control 4
chance 152
channel child element of an rss

element 342
character 202
character data in XML 302
character entity reference 22, 302
character entity references 389
character-processing capabilities 202
character-processing methods of String

object 205, 206
character string 78
charAt method of String object 203,

205
charCodeAt method of String object

203, 205
checkbox 37
"checkbox" input 37
checked attribute 37

checked property of a radio button
object 196

Chemical Markup Language (CML) 315
child 49, 239
child element 292, 295
child node (DOM tree) 324
child window 220
childNodes property of a Node 335
children (DOM tree) 324
Chrome browser (Google) 2
class 199, 200
class attribute 48, 49
class-average program with counter-

controlled repetition 104
class libraries 8
className property of a DOM node

251
clearInterval method of the window

object 256, 261
client of a class 200
client of an object 78
client side 2
clientX property of an event object

272
clientY property of an event object

272
close a dialog 83
cm (centimeter) 52
CML (Chemical Markup Language) 288
coin tossing 152
collaboration 6
collection 253
collections of data items 174
collective intelligence 6
colon (:) 45, 48, 138
color name 45
color property 45, 48
cols attribute (table) 34
colspan attribute 29
column 190
comma 217
comma-separated list 93
comma-separated list of arguments 201
comma-separated list of variable names

86
comment 13
Common Programming Errors overview

xviii
community 6
comparator function 189
complex content in XML Schema 308
Complex XHTML table 30
complexType XML Schema element

308
component 200
compound assignment operator 112
compound interest 126
computer xiv
concat method 203
concatenation 203
concatenation operator (+) 203
condition 91, 140
condition is false 91
condition is true 91
conditional expression 100
conditional operator (?:) 100, 115
confirm method of the window object

282

Index 397

confusing equality operator == with
assignment operator = 91

constant 162, 202
constructor 214, 218
contact.html 18, 23
container element 292
containing block-level element 55
content 311
content attribute of meta element 40, 41
Content MathML 311
content networks 7
context node (XPath) 322
continue statement 135, 139
continue statement in a for statement

136
continue statement in a nested for

statement 139
control structure 118
control variable 120
control variable’s name 120
controlling expression of a switch 131
control-statement stacking 98
control-stratement nesting 98
converting strings to all uppercase or

lowercase letters 203
cookies 225
Coordinated Universal Time (UTC) 213,

217
coordinates of mouse cursor inside client

area 272
cos method 201
cosine 201
count downward 125
counter-controlled repetition 104, 110,

118, 120, 121, 133
Counter-controlled repetition to calculate

a class average 104
Counter-controlled repetition with the

for statement 120
Courier font 48
craps 157
Craps game simulation 157
createAttribute method 336
createDocument method of the

document object’s implementation
property 333

createElement method (XML DOM)
336

createElement method of the
document object 251, 271, 362

createTextNode method (XML
DOM) 336

createTextNode method of the
document object 251

creating a basic XHTML table 27
creating an instance 176
Critter font 48
cross-browser events 285
cross-site scripting (XSS) 359
CSS (Cascading Style Sheets) 2, 5, 11, 44,

351
comment 52
CSS 2 44
CSS 3 73
CSS 3 features 73
drop-down menu 67
property 45
rule 47
selector 46

Ctrl key 273
ctrlKey property of an event object

272, 273
curly brace ({}) 48
cursive font 48
cursor 83

D
dangling-else problem 101
dashed value (border-style property)

61
data 78
data cells 29
data method of a Text node 337
database xiv, 11
data-type attribute (XPath) 323
date and time manipulations 213
Date and Time methods of the Date

object 215
date manipulation 146
Date object 93, 212, 213, 215, 218
Date object methods 213
Date object’s get methods for the local

time zone 216
Date object’s set methods for the local

time zone 217
Date object’s toLocaleString method

233
Date.parse 217, 218
Date.UTC 217, 218
DateTime.html 215
debugging 13
decision making 128
decision symbol 99
declaration 85, 86
declare variables in the parameter list of a

function 149
decoration 49
decreasing order of precedence 95
decrement 118
decrement operator (--) 113
dedicated communications line 4
deep indentation 101
default action for an event 282
default case in a switch statement

131, 132, 156
default namespace 299
default namespaces demonstration 300
default string to display a text field 87
Deitel Resource Centers

www.deitel.com/
resourcecenters.html/ 3, 9

deitel@deitel.com 3
del element 24
delimiter 209
delimiter string 210
Demonstrating date and time methods of

the Date object 215
Demonstrating logical operators 143
demonstrating the onfocus and onblur

events 278
demonstrating the onload event 267
demonstrating the onsubmit and

onreset events 280
descendant elements 49
descendant node 324
Developer Toolbar 240
dialog 82

dialog boxes 82
diamond symbol 98, 99, 123
Dice-rolling program using arrays instead

of switch 182
differences between preincrementing and

postincrementing 114
digit 202
disabling event bubbling 282
disc (bullet for unordered lists) 24, 25
dismiss (or hide) a dialog 83
display property 67, 69
div element 57, 61
divide and conquer 146
do…while repetition statement 97, 133,

134, 135
flowchart 134

DOCTYPE parts 295
document 219
Document object 335
document object 78, 90, 162, 198, 262

anchors collection 253
appendChild method 362
body property 256
createElement method 251, 271,

362
createTextNode method 251
forms collection 253, 262
getElementById method 162,

163, 239, 250, 251, 360
getElementsByTagName method

362
images collection 253, 262
implementation property 333
links collection 253, 262
setAttribute method 362
write method 80

document object methods and properties
219, 225

Document Object Model 239
Document Object Model (DOM) 78,

351
innerHtml property 360

Document Object Model (DOM) tree
324

document object’s cookie property 225
document object’s write method 79
document object’s writeln method 78,

80
document root 319
Document Type Definition (DTD) 289,

293, 301
for a business letter 301

document.writeln method 114
Dojo 351, 386
Dojo widget 386
dollar amount 128
dollar sign ($) 85
DOM (Document Object Model) 351
DOM (Document Object Model) tree

324
DOM API (Application Programming

Interface) 325
DOM collection

item method 255
length property 255
namedItem method 255

DOM Inspector 240
DOM node 239

appendChild method 251

www.deitel.com/resourcecenters.html/
www.deitel.com/resourcecenters.html/

398 Index

DOM node (cont.)
className property 251
id property 251
innerHTML property 163
insertBefore method 252
parentNode property 252
removeChild method 252
replaceChild method 252
setAttribute method 362

DOM node firstChild property 335
DOM node lastChild property 335
DOM node nextSibling property 335
DOM node nodeName property 334
DOM node nodeType property 334
DOM node nodeValue property 334
DOM node parentNode property 335
DOM parser 324
DOM tree 239
dot (.) for accessing object properties and

methods 201
dot notation 163
dotted value (border-style property)

61
double click 285
double equals 91
double quotation (") mark 78, 83, 297
double-quote character 80
double-quote (") character as part of

string literal 120
double-selection statement 97
double value (border-style property)

61
Dougherty, Dale 5
download code examples xxii
download examples (www.deitel.com/

books/jsfp/) xv
DTD (Document Type Definition) 289,

293
.dtd filename extension 295
DTD repository 301
dummy value 107
dynamic memory allocation operator 176
dynamic modification of an XHTML

document 262
dynamic style 255
dynamic web pages 84

E
Eastern Standard Time 217
eBay 7
EBNF (Extended Backus-Naur Form)

grammar 301
ECMA International 9, 75
ECMAScript 9, 75
ECMAScript standard 75

(www.ecma-international.org/
publications/standards/
ECMA-262.htm) 75

edit-in-place 380
electronic mail 3
element (XML) 287
Element dimensions and text alignment

60
ELEMENT element type declaration

(DTD) 302
element gains focus 277
element loses focus 277
element name restrictions (XML) 291

Element object 335
element of chance 152
element type declaration 302
element XML Schema element 306
elements 13
elements of an array 174
elements property of a form object 196
em (M-height of font) 51, 71
em element 24
em measurement for text size 72
emacs text editor 12
e-mail 3, 18
e-mail anchor 18
embedded style sheet 46, 47, 48
empty array 178
empty body 79
empty element 20, 34, 297
EMPTY keyword (DTD) 303
empty statement 94, 103, 123
empty string 144, 203, 205
en.wikipedia.org/wiki/EBNF 301
enabling JavaScript in Internet Explorer 7

76
encapsulation 199
enclose script code in an XHTML

comment 77
enclosure element (RSS) 342
end of a script 78
“end of data entry” 107
end tag 13, 287
ending index 210
engine optimization (SEO) 42
entity

& 303
> 302
< 302

entity reference (MathML) 313
entity reference ⁢l in

MathML 313
equality and relational operators 91, 92
equality operator 140, 141
equality operators 91
equality operators and Strings 203
equals equals 91
Error-Prevention Tip overview xviii
escape character 80
escape early from a loop 135
escape function 167, 226
escape sequence 80
escape sequence \" 119
EST for Eastern Standard Time 217
eval function 167
evaluate method of a Firefox XML

document object 341
event 161
event bubbling 282, 284
event-driven programming 161
event handler 161, 264
event handling 161
event-handling function 161
event model 264
event object 268, 271

altKey property 272
cancelBubble property 272, 282
clientX property 272
clientY property 272
ctrlKey property 272, 273
keyCode property 273
screenX property 273

event object (cont.)
screenY property 273
shiftKey property 272
srcElement property (IE) 277
target property (FF) 277
type property 273

event registration models 264
events

onmouseout 356
onmouseover 356

events onmouseover and onmouseout
273

ex (“x-height” of the font) 51
ex value 119
Examination-results problem 110
Examples

absolute positioning of elements 55
Adding background images and

indentation 58
Addition script “in action” 88
addition.html 88
Alert dialog displaying multiple lines

82
Algebraic equation marked up with

MathML and displayed in the
Amaya browser 312

analysis.html 110
article.xml displayed by Internet

Explorer 292
average.html 104
average2.html 107
Basic DOM functionality 243
borders of block-level elements 61
box model for block-level elements

61
BreakLabelTest.html 138
BreakTest.html 135
Business letter marked up as XML

294
Calculating the sum of the elements

of an array 181
Calculus expression marked up with

MathML and displayed in the
Amaya browser 313

complex XHTML table 30
contact.html 18
contact2.html 23
ContinueLabelTest.html 139
ContinueTest.html 136
counter-controlled repetition 118
counter-controlled repetition to

calculate a class average 104
Counter-controlled repetition with

the for statement 120
coverviewer.html 257
Craps game simulation 157
Creating a basic table. 27
CSS drop-down menu 67
Default namespaces demonstration

300
Demonstrating date and time

 methods of the Date object 215
Demonstrating logical operators 143
Demonstrating the onfocus and

onblur events 278
Demonstrating the onload event

267
Demonstrating the onsubmit and

onreset events 280

www.deitel.com/books/jsfp/
www.deitel.com/books/jsfp/
www.ecma-international.org/publications/standards/ECMA-262.htm
www.ecma-international.org/publications/standards/ECMA-262.htm
www.ecma-international.org/publications/standards/ECMA-262.htm

Index 399

Examples (cont.)
Demonstration of a document’s

DOM tree 240
Dice-rolling program using arrays

instead of switch 182
Differences between

preincrementing and
postincrementing 114

Disabling event bubbling 282
Document Type Definition (DTD)

for a business letter 301
dom.html 243
domtree.html 240
DoWhileTest.html 134
Dynamic styles 255
Dynamic styles used for animation

257
dynamicstyle.html 255
element dimensions and text

alignment 60
em measurement for text size 72
embedded style sheets 46
Event registration models 264
Events onmouseover and

onmouseout 273
Examination-results problem 110
Expression marked up with MathML

and displayed in the Amaya
browser 311

Factorial calculation with a recursive
function 170

First program in JavaScript 76
first XHTML example 12
Floating elements 63
ForCounter.html 120
form including radio buttons and a

drop-down list 34
form with hidden fields and a text

box 32
form.html 32
form2.html 34
heading elements h1 through h6 16
heading.html 16
Images as link anchors 21
Images in XHTML files 19
increment.html 114
inheritance in style sheets 50
Initializing multidimensional arrays

191
Initializing the elements of an array

176, 179
Inserting special characters 23
Interest.html 126
internal hyperlinks to make pages

more navigable 38
internal.html 38
Labeled break statement in a nested

for statement 138
Labeled continue statement in a

nested for statement 139
linking an external style sheet 53
linking to an e-mail address 18
Linking to other web pages 17
links.html 17
links2.html 24
list.html 25
LogicalOperators.html 143
main.html 12
Media types 65

Examples (cont.)
meta elements provide keywords and

a description of a page 40
meta.html 41
nav.html 21
Nested and ordered lists. 25
Online Quiz graded with JavaScript

194
Online quiz in a child window 234
Passing arrays and individual array

elements to functions 186
picture.html 19
print media type 65
Printing on multiple lines with a

single statement 81
Printing on one line with separate

statements 79
Printing one line with separate

statements 79
Programmer-defined function

square 148
Programmer-defined maximum

function 150
Prompt box used on a welcome

screen 84
pt measurement for text size 70
Random image generation using

arrays 183
Random image generation using

Math.random 164
relative positioning of elements 56
Rendering an RSS feed in a web page

using XSLT and JavaScript 344
Rich welcome page using several

JavaScript concepts 229
Rolling a six-sided die 6000 times

154
RSS 2.0 sample feed 347
Schema-valid XML document

describing a list of books 305
Scoping example 165
Searching Strings with indexOf

and lastIndexOf 207
Sentinel-controlled repetition to cal-

culate a class average 107
Shifted and scaled random integers

153
Simple drawing program 269
some common escape sequences 83
Sorting an array with Array method

sort 188
String methods charAt,

charCodeAt, fromCharCode,
toLowercase and
toUpperCase 205

Sum.html 125
Summation with for 125
SwitchTest.html 128
table1.html 27
table2.html 30
Traversing an XML document using

the XML DOM 325
Tree structure for the document

article.xml of Fig. 14.2 325
Unordered list containing

hyperlinks. 24
user style sheet applied with em

measurement 72

Examples (cont.)
user style sheet applied with pt

measurement 71
User style sheet in Internet Explorer 7

71
Using cookies to store user

identification data 226
Using equality and relational

operators 92
Using inline styles 45
Using String object methods

split and substring 209
Using the break statement in a for

statement 135
Using the continue statement in a

for statement 136
Using the do…while repetition

statement 134
Using the links collection 253
Using the switch multiple-selection

statement 128
Using the window object to create

and modify child windows 220
Using XPath to locate nodes in an

XML document 338
Validating an XML document with

Microsoft’s XML Validator 295
welcome.html 76
welcome2.html 79
welcome3.html 81
welcome4.html 82
welcome5.html 84
welcome6.html 92
WhileCounter.html 118
XHTML markup methods of the

String object 211
XML document containing book

information 319
XML document that describes

various sports 316, 340
XML document using the laptop

element defined in
computer.xsd 310

XML namespaces demonstration 298
XML Schema document defining

simple and complex types 308
XML Schema document for

book.xml 305
XML used to mark up an article 290
XML Validator displaying an error

message 303
XSL document that transforms

sorting.xml into XHTML 320
XSLT that creates elements and attri-

butes in an XHTML document
317

examples download (www.deitel.com/
books/jsfp/) xv

Examples of inline elements 57
exception 359
exception handler 359
exception handling 359
exp method 201
Expat XML Parser 289
expires property of a cookie 225
exponential method 201
exponentiation 90
expression marked up with MathML and

displayed in the Amaya browser 311

www.deitel.com/books/jsfp/
www.deitel.com/books/jsfp/

400 Index

extend an XML Schema data type 309
Extended Backus-Naur Form (EBNF)

grammar 301
Extensible Business Reporting Language

(XBRL) 311
Extensible Hypertext Markup Language

(XHTML) xiv, 2, 5, 11, 288
Extensible Markup Language (XML) xiv,

2, 5
Extensible Stylesheet Language (XSL)

290, 300, 314
Extensible User Interface Language

(XUL) 311, 315
extension element

base attribute 309
extension XML Schema element 309
external DTD 295
external linking 52
external style sheet 52

F
Factorial calculation with a recursive

function 170
false 91
false 99
final value of the control variable 118,

120, 124
fire an event 264
Firefox

importStylesheet method of the
XSLTProcessor object 349

load XML document dynamically
with JavaScript 333

transformToFragment method of
the XSLTProcessor object 349

XSLTProcessor object 349
first program in JavaScript 76
First XHTML example 12
firstChild property of a DOM node

335
firstChild property of a Node 335
#FIXED keyword (DTD) 302
fixed 211
fixed method of the String object 204,

212
Fixedsys font 48
flag value 107
Flickr 6
float property 64
floated element 63
floating 63
Floating elements 63
floating-point number 106
floor 201
floor method of the Math object 154,

156, 159
flow text around div element 63
flowchart 134
flowcharting the do…while repetition

statement 135
flowcharting the double-selection

if…else statement 100
flowcharting the for repetition statement

123
flowcharting the single-selection if

statement 99
flowcharting the while repetition

statement 104

focus 237, 277
focus method of the window object 237
font-family property 48, 256
font-size property 45, 48, 119
font-style property 59
font-weight property 47
fontFamily property 256
for repetition statement 97, 120, 122
for repetition statement flowchart 124
for statement header 121
for…in repetition statement 97, 180,

181, 193
form 11, 31, 161, 277
form element 33

action attribute 33
option element 38

form elements in an XHTML document
262

form field 277
form GUI component 87
form handler 33
Form including radio buttons and a drop-

down list 34
form object

elements property 196
form resets 285
Form with hidden fields and a text box 32
form-processing events 264
forms collection of the document object

253, 262
forward slash character (/) 20
forward slash character (/) in end tags

288, 319
fractional parts of dollars 128
fromCharCode method of the String

object 203, 205, 206
function 90, 146, 200
function (or local) scope 165
function body 149
function call 147
function definition 149
function parameter 149
function parseInt 89
function-call operator 148

G
G.I.M.P. 19
gain focus 277
gambling casino 152
game of craps 157, 162
game playing 152
Garrett, Jesse James 355
generating XHTML dynamically during

script processing 211
generic font family 48
geneva font 48
Geography Markup Language (GML)

315
Georgia font 48
GET method of the XMLHttpRequest

object 361
get request type 33
getAllResponseHeaders method of

the XMLHttpRequest object 361
getAttribute method of an Element

336
getAttributeNode method of an

Element 337

getDate 213, 215
getDay 213, 215
getDocumentElement method 336
getElementById method of document

object 162, 163
getElementById method of the

document object 239, 250, 251, 334,
360

getElementsByTagName method 336
getElementsByTagName method of the

document object 362
getFullYear 213, 215, 216
getHours 213, 215
getMilliseconds 213, 215
getMinutes 213, 215
getMonth 213, 215
getResponseHeader method of the

XMLHttpRequest object 361
gets 91
gets the value of 91
getSeconds 213, 215
getTime 213
getTimeZone 216
getTimezoneOffset 213, 215
getUTCDate 213
getUTCDay 213
getUTCFullYear 213
getUTCHours 213
getUTCMilliSeconds 213
getUTCMinutes 213
getUTCMonth 213
getUTCSeconds 213
global functions 167
Global object 167
global scope 165
global variable 165
GML (Geography Markup Language)

315
GML website (www.opengis.org) 315
GMT (Greenwich Mean Time) 213, 217
Good Programming Practices overview

xviii
Google 6
Google Chrome 2
Google Maps 7
graphical user interface (GUI) xiv
Graphics Interchange Format (GIF) 19
Greenwich Mean Time (GMT) 213, 217
groove value (border-style property)

61
grouping element 57
GUI (graphical user interface) xiv
GUI component 87

H
h1 heading element 15
h6 heading element 15
handheld media type 65
handle an event in a child element 282
</head> tag 79
<head> tag 77
head element 13, 47
head section 13
header cell 29
heading 15
heading element 15, 134
Heading elements h1 through h6 16
heading.html 16

www.opengis.org

Index 401

height attribute of img element 19
height property 61
hex 24
hexadecimal 168
hexadecimal escape sequence 226
hexadecimal value 24
hidden input 33
hidden value (border-style property)

61
hide global variable names 165
hierarchy 291
history object 262
horizontal positioning 58
horizontal rule 24
horizontal tab 83
hours since midnight 213
hover pseudoclass 51, 67
hovering 277
<hr /> element (horizontal rule) 24
href attribute of a element 16, 40
href property of an a node 255, 262
.htm (XHTML filename extension) 12
.html (XHTML filename extension) 12
HTML (Hypertext Markup Language) 5,

11
html element 13
HTML markup methods of the String

object 210
HTTP (Hypertext Transfer Protocol) 5
http://www.w3.org/2001/

XMLSchema (XML Schema URI) 306
hyperlink 16, 212
hyperlink location 204
hyperlink target 212
Hypertext Markup Language (HTML) 5
Hypertext Transfer Protocol (HTTP) 5

I
id attribute 57
id property of a DOM node 251
identifier 85, 97
identifier element (MathML) 313
identifier followed by a colon 138
if selection statement 97, 98, 99, 102
if single-selection statement 91
if…else double-selection statement 97,

99, 112
image hyperlink 20
Image object 277

src property 277
image/gif 47
Images as link anchors 21
images collection of the document

object 253, 262
images in Web pages 19
images in XHTML files 19
img element 19, 20, 54

alt attribute 20
height attribute 19

img elements in an XHTML document
262

implementation property of the
document object 333

#IMPLIED keyword (DTD) 302
importStylesheet method of the

XSLTProcessor object (Firefox) 349
in (inches) 52
increment 118

increment control variable 120, 124
increment expression 123
increment operator (++) 113
increment section of for statement 122
increment.html 114
index 203
index in an array 174
indexOf method of the String object

203, 206, 207
indices for the characters in a string 205
infinite loop 103, 109, 122, 133
information hiding 199
inherit a style 49
inheritance 49, 199
Inheritance in style sheets 50
initial value 118, 120
initial value of control variable 118, 124
initialization 122
initialization expression in for statement

header 122
initializer list 178
initializer method for an object 214
Initializing multidimensional arrays 191
Initializing the elements of an array 176,

179
initiate a script 267
Inkscape 19
inline-level element 57
inline model of event registration 264
inline scripting 77
inline style 45, 48
inline styles override any other styles 45
inner for statement 139, 140, 193
innerHtml property (DOM) 360
innerHTML property of a DOM node

163
innerText 234, 268
input element 33

maxlength attribute 33
name attribute 34

insertBefore method of a DOM node
252

insertBefore method of a Node 336
Inserting special characters 23
inset value (border-style property)

61
instantiated 200
instantiating an object 176
integers 88
integral symbol (MathML) 313
interest rate 126
interface 199
internal hyperlink 40
Internal hyperlinks to make pages more

navigable 38
internal linking 11, 38
Internet 3
Internet Explorer 11, 20, 292

Developer Toolbar 240
Developer Toolbar

(go.microsoft.com/fwlink/
?LinkId=92716) 240

Internet Explorer 7
load XML document dynamically

with JavaScript 333
Internet Protocol (IP) 4
interpret 77
interpret <body> 88
interpret <head> 88

interpreter 8
IP (Internet Protocol) 4
isFinite function 168
isNaN 219
isNaN function 168
italic value (font-style property) 59
item method of a DOM collection 255
item method of a NodeList 336
item subelement of channel child

element of an rss element 342
iteration of the loop 118, 121, 122
iterative solution 169

J
Java 8
Java programming language 11
JavaScript xiv, 2, 8, 13, 351
JavaScript applying an XSL

transformation 344
JavaScript events 264
JavaScript for Programmers website

(www.deitel.com/books/jsfp) 2
JavaScript interpreter 76, 79
JavaScript keywords 97, 98
JavaScript scripting language 75
JavaScript single-line comment 77
JavaServer Faces (JSF) 351
join method 209
join method of an Array object 187
JPEG (Joint Photographic Experts

Group) 19
JSON.parse function 377

K
keyCode property of an event object

273
keyword 85, 97
Keywords

catch 359
try 359

L
label 138
labeled break statement 138
Labeled break statement in a nested for

statement 138
labeled compound statement 139
labeled continue statement 139
Labeled continue statement in a nested

for statement 139
labeled for statement 139, 140
labeled repetition statement 139
labeled statement 138
Laboratory for Computer Science 3
large relative font size 48
larger 201
larger relative font size 48
lastChild property of a DOM node

335
lastChild property of a Node 335
lastIndexOf method of the String

object 204, 206, 207, 208
LaTeX software package 311
layer overlapping elements 55
left margin 55, 57, 58
left value (text-align property) 61

www.deitel.com/books/jsfp
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

402 Index

left-hand-side expression 115, 174
length method of a Text node 337
length property 199
length property of a DOM collection

255
length property of a NodeList 336
length property of an Array object 174,

178, 181
letter 202
letters 85
li (list item) element 24
lighter value (font-weight property)

47
lightweight business models 7
line break 34
line break XHTML tag 81
line-through value (text-

decoration) 50
link 212
link 212
link element 53
link method of the String object 204
linking external style sheets 52, 53
Linking to an e-mail address 18
links 16
links collection of the document object

253, 262
links.html 17
Linux 9
list item 24
list.html 25
listen for events 161
list-style-type CSS property 131
literal 78
live-code approach xv, xvii, 2
load method of the ActiveXObject

object 333
local 165
local time zone method 213
local variable 147, 167
local variable names 165
location in memory 85, 185
location object 262
location-based services 7
log 201
LOG10E 202
logarithm 201
logic error 89, 90, 103, 123
logical AND (&&) operator 140, 141, 142
logical negation (!) operator 140, 142
logical NOT 140
logical operator 140, 141, 143, 144
logical OR (||) 140, 142
logical OR (||) operator 141
loop body 123
loop-continuation condition 120, 122,

125, 133, 134
loop-continuation test 134, 136, 139
loop counter 118
loosely typed language 90
lose focus 285
lowercase letter 79, 85
lvalue 115

M
m-by-n array 190
mailto: URL 18
main.html 12

maintenance of software 8
margin 61
margin property (block-level elements)

64
margin-bottom property 64
margin-left property 64
margin-right property 64
margins for individual sides of an element

64
margin-top property 64
markup in XML 287, 290
markup language 11
MarkupMethods.html 211
mashup 7
match attribute 319
Math object 144, 198, 201, 202

floor method 154, 156, 159
max method 152
pow method 146
random method 152, 156, 167
round method 146

Math object methods 201
Math.E 202
Math.floor 182
Math.LN10 202
Math.LN2 202
Math.LOG10E 202
Math.LOG2E 202
Math.PI 202
Math.random 182
Math.sqrt 201
Math.SQRT1_2 202
Math.SQRT2 202
mathematical calculation 146, 201
mathematical constant 202
Mathematical Markup Language (Math-

ML) 310
MathML 288, 310

.mml filename extension 311
δ entity reference 313
∫ entity reference 313
entity reference 313
entity reference &Invisible-

Times; 313
identifier element 313
integral symbol 313
mfrac element 313
mi element 313
mn element 311
mo element 311
mrow element 313
msqrt element 313
msubsup element 313
msup element 313
square-root symbol 313
symbolic representation 313

max 201
max method of the Math object 152
maximum function 150, 151
maxlength attribute of input element

33
maxOccurs XML Schema attribute 308
meaningful variable names 162
media types 65
medium relative font size 48
medium value 61
message 78, 199
message dialog 160

meta element 40, 41
content attribute 40, 41
name attribute 40

meta tags provide keywords and a
description of a page 40

method 78, 90, 146, 167, 200
method = "get" 33
method = "post" 33
method attribute 33
method prompt 90
method UTC 217
method writeln 90
mfrac MathML element 313
mi MathML element 313
Microsoft Internet Explorer 2
Microsoft Internet Explorer 7 xiv
Microsoft XML Core Services (MSXML)

289, 292
MIME (Multipurpose Internet Mail

Extensions) 47, 53
minInclusive XML Schema element

309
minOccurs XML Schema attribute 308
minus sign (-) for container elements in

Internet Explorer 292
MIT’s Project Mac 3
mm (millimeters) 52
.mml filename extension for MathML

documents 311
mn element 313
mn MathML element 311
mo MathML element 311
module 146
modulus operator 90
monetization 7
monospace 48
mouse button pressed down 285
mouse button released 285
mouse cursor 82, 83
mouse cursor over an element 51
mouse events 264
mouse pointer 83
moving the mouse 264
Mozilla Firefox 2, 11
Mozilla Firefox 2 xiv
Mozilla project 315
mrow MathML element 313
MSN 6
msqrt MathML element 313
msubsup element 313
msubsup MathML element 313
msup MathML element 313
MSXML (Microsoft XML Core Services)

289, 292
MSXML parser 333
multidimensional array 190
multiline comment (/* and */) 86
multiple conditions 140
multiple-selection statement 97
multiple-selection structure 132
Multipurpose Internet Mail Extensions

(MIME) type 47, 53
multitier application 2
MySpace 6

N
name attribute (XPath) 323
name attribute of input element 34

Index 403

name attribute of meta element 40
name node-set function 323
name of an array 174
name of an attribute 13
name of the anchor 212
name property of an Attr object 337
name XML Schema attribute 307
namedItem method of a DOM collection

255
namespace 297
namespace prefix 298, 299, 309
naming collision 297
NaN (not a number) 89, 106, 168, 203,

206, 219
natural logarithm 201
natural logarithm of 10 202
natural logarithm of 2 202
nav.html 21
Nested and ordered lists. 25
nested element 14, 291
nested for statement 138, 193
nested for…in statement 192
nested if or if…else statement 140
nested if statement 94, 101
nested if…else statements 100
nested list 25, 52
nesting multi-line comments 86
network of networks 4
new Date object 214, 217
new operator 93, 175, 178, 214
newline character (\n) 83
nextSibling property of a DOM node

335
nextSibling property of a Node 335
no-repeat property 59
node (DOM tree) 324
Node object 335
Node object methods 335
node-set function 323
node set of an xsl

for-each element 319
NodeList object 335, 336
NodeList object methods 336
nodeName property of a DOM node 334
nodeName property of a Node 335
nodeType property of a DOM node 334
nodeType property of a Node 335
nodeValue property of a DOM node

334
nodeValue property of a Node 335
nonbreaking space () 334
none value (border-style property) 61
none value (font-style property) 59
nonvalidating XML parser 289
normal value (font-weight property)

47
not a number (NaN) 89, 106
Notepad text editor 12
noun 8
nouns in a system specification 200
null 87, 90
Number object 89, 128, 218

toFixed method 128
Number.MAX_VALUE 219
Number.MIN_VALUE 219
Number.NaN 219
Number.NEGATIVE_INFINITY 168,

219

Number.POSITIVE_INFINITY 168,
219

numbered list 131
numeric character reference 24

O
O’Reilly Media 5
object 7, 78, 167, 198
object (or instance) 198, 199
object-based programming language 198
object hierarchy 239
object orientation 198
object-oriented design (OOD) 199
object-oriented language 8, 200
object-oriented programming (OOP)

200
oblique value (font-style property)

59
occurrence indicator 302
octal 168
off-by-one error 122
OK button 83
ol element 25
omit-xml-declaration attribute 318
onabort event 285
onblur event 277, 278
onchange event 285
onclick event 161, 206, 207, 209, 210,

224, 267, 284, 285
ondblclick event 285
onfocus event 277, 278, 285
onfocusblur.html 278, 280
onkeydown event 285
onkeypress event 285
onkeyup event 285
Online Quiz graded with JavaScript 194
online quiz in a child window 234
online quizes 194
onload event 165, 267, 285
onload.html 267
onmousedown event 285
onmousemove event 268, 271, 272, 285
onmouseout event 273, 277, 285, 356
onmouseover event 273, 277, 285, 356
onmouseup event 285
onReadyStateChange property of the

XMLHttpRequest object 360
onReadyStateChange property of the

XMLHttpRequest object 360
onreset event 280, 285
onresize event 285
onselect event 285
onsubmit event 196, 280, 285
onunload event 285
OOD (object-oriented design) 199
OOP (object-oriented programming)

200
open method of the XMLHttpRequest

object 361
open source software 6, 7
open technology 287
OpenGIS Consortium 315
Opera browser 2
operand 87
operation 199
Operators

! (logical NOT or logical negation)
operator 140

Operators (cont.)
&& (logical AND) operator 140
|| (logical OR) operator 140
function-call operator 148
new 175

option element (form) 38
order attribute 323
ordered list 25
outer for loop 139, 140
outset value (border-style property)

61
overflow boundaries 61
overflow property 61
overlapping text 57
overline value (text-decoration)

50

P
p element 14
packet 4
packet switching 4
padding 61
padding-bottom property 64
padding for individual sides of an element

64
padding-left property 64
padding property (block-level elements)

64
padding-right property 64
padding-top property 64
paragraph element 14
parameter 147
parent 239
parent element 49, 292
parent node 324
parent window 220
parent/child relationships between data

291
parentheses 141
parentNode property of a DOM node

252, 335
parentNode property of a Node 335
parse 217, 218
parsed character data 302
parseFloat function 147, 151, 168
parseInt function 88, 89, 106, 108,

168
parser 289
parsing 229
partial page update 353
partial RSS feed 342
pass-by-reference 184, 185
pass-by-value 184, 185
passing arrays 186
Passing arrays and individual array

elements to functions 186
password input 34
pc (picas—1 pc = 12 pt) 52
#PCDATA keyword (DTD) 302
PDML (Product Data Markup Language)

311
percent sign (%) remainder operator 90
percentage 51
Performance Tips overview xviii
performance-intensive situation 137
Photoshop Elements 19
PHP 351
PI 202

404 Index

PI (processing instruction) 317
picture element (pixel) 51
picture.html 19
pixel 20
place holder in an initializer list 178
platform xiv
plus sign (+) for container elements in

Internet Explorer 292
plus sign (+) occurrence indicator 302
PM 217
PNG (Portable Network Graphics) 19
pop-up window 268
portability 8
Portability Tips overview xviii
Portable Network Graphics (PNG) 19
portable program 8
position number 174
position property 54
post request type 33
postdecrement operator 113
postincrement operator 113, 115
pow method of Math object 127, 146, 201
power 201
pre element 83
precedence 115
precedence and associativity of operators

95, 116, 144
predecrement operator 113
preincrement operator 113, 115
preloading images 277
“prepackaged” function 146
presentation 311
Presentation MathML 311
presentation of a document 11
press a key 285
pressing keys 264
previousSibling property of a Node

335
principal 126
print media type 65, 67
printing on multiple lines with a single

statement 81
printing one line with separate statements

79
probability 152
procedural programming language 200
processing instruction (PI) 317
processing instruction target 317
processing instruction value 317
processor 289
Product Data Markup Language (PDML)

311
program 75, 76
program control 75
program development 75
programmer-defined function 146
Programmer-defined function square

147, 148
Programmer-defined maximum function

150
Project MAC 3
prolog (XML) 291
prompt box used on a welcome screen 84
prompt dialog 84, 87, 88, 89, 151, 160
prompt method of window object 86, 87,

88
prompt to a user 86
properties of the Math object 202
properties separated by a semicolon 45

property 200
protocol 31
Prototype Ajax library 351
pseudoclass 51
pt (points) 48, 52
pt measurement for text size 70

Q
question mark (?) occurrence indicator

302
quotation (’) mark 78

R
radio button 196
radio button object

checked property 196
"radio" input 37
radix 168, 219
Random image generation using arrays

183
Random image generation using

Math.random 164
random image generator 163
random method 159, 182
random method of the Math object 152,

156, 167
“raw” Ajax 351
RDF (Resource Description Framework)

342
RDF Site Summary (RSS) 342
readability 13
readyState property of the

XMLHttpRequest object 360
Really Simple Syndication 342
recursion step 169
recursive base case 168
recursive call 169
recursive descent 323
Recursive evaluation of 5! 170
recursive function 168
Refresh button 88
registering an event handler 264

inline model 264
traditional model 264, 267

registering the event handler 161
relational operator 91, 92, 140, 141
relational operators and strings 203
relationship between documents 53
relative addressing (XPath) 319
relative-length measurement 51, 61, 71
relative positioning 56
Relative positioning of elements 56
relative value (position property) 57
release a key 285
reload an entire web page 352
reload an XHTML document 88
Reload button 88
reload method of browser’s location

object 229
remainder after division 90
remainder operator (%) 90
removeAttribute method of an

Element 337
removeChild method of a DOM node

252
removeChild method of a Node 336

rendering an RSS feed in a web page using
XSLT and JavaScript 344

repeat value (background-repeat
property) 59

repeat-x value (background-repeat
property) 59

repeat-y value (background-repeat
property) 59

repeating infinitely 106
repetition statement 103
repetition structure 103, 134, 135
replace method of the String object

204
replaceChild method of a DOM node

252
replaceChild method of a Node 336
#REQUIRED keyword (DTD) 302
Research Information Exchange Markup

Language (RIXML) 315
reset input 33
Resource Centers: www.deitel.com/

resourcecenters.html/ 3, 9
Resource Description Framework (RDF)

342
resources 12
responding to user interaction 264
responseText property of the

XMLHttpRequest object 360
responseXML property of the

XMLHttpRequest object 360
restriction on built-in XML Schema data

type 308, 309
result tree (XSLT) 315
return 83
return by reference 185
return statement 149, 150
return value of an event handler 282
reusable componentry 8
reuse 200
reusing components 8
RIA (Rich Internet Application) 351
Rich Internet Applications (RIAs) 6, 351
Rich Site Summary 342
rich welcome page using several

JavaScript concepts 229
ridge value (border-style property)

61
right margin 55, 57, 58
right value (text-align property) 61
RIXML (Research Information Exchange

Markup Language) 315
RIXML website (www.rixml.org) 315
rolling a six-sided die 152
Rolling a six-sided die 6000 times 154
rollover effect 273, 277
rollover images 273
root element (XML) 288, 291, 295
root node 240, 324
round 154, 201
round method of the Math object 146
rows 190
rows attribute (textarea) 34
rowspan attribute (tr) 29
RSS (RDF Site Summary) 342
RSS 2.0 sample feed 347
RSS aggregator 344
rss root element 342
Ruby on Rails 351
runtime error 79

www.deitel.com/resourcecenters.html/
www.deitel.com/resourcecenters.html/
www.rixml.org

Index 405

S
Safari browser (Apple) 2
same origin policy (SOP) 359
sans-serif fonts 48, 67
savings account 126
Scalable Vector Graphics (SVG) 311
scalars (scalar quantities) 187
scaling factor 152, 156
scaling the range of random numbers 152
schema 304
schema invalid document 304
schema repository 301
schema valid XML document 304
schema-valid XML document describing

a list of books 305
schema XML Schema element 306
scope 122, 165
scope rules 165
scoping 165
Scoping example 165
screen coordinate system 273
screen media type 65
screen resolution 51
screenX property of an event object

273
screenY property of an event object

273
<script> tag 77, 78
script 13, 76
script font 48
Script.aculo.us Ajax library 351
scripting 2
scripting language 75, 77
script-level variables 165
scroll up or down the screen 58
scroll value (background-position

property) 59
scroll value (overflow property) 61
scrolling the browser window 59
search engine 14, 40
searching Strings with indexOf and

lastIndexOf 207
SearchingStrings.html 207
select attribute (XPath) 323
select attribute of xsl:for-each

element 319
select element 38
selected attribute 38
selectNodes method of MSXML 341
selector 47, 48
self-documenting 85
Semantic Web 7
semicolon (;) 45, 48, 78, 80, 86
semicolon on line by itself 94
semicolon resulting logic error 94
send method of the XMLHttpRequest

object 361
sentinel value 107
sentinel-controlled repetition 109
sentinel-controlled repetition to calculate

a class average 107
separation of structure from content 44
separator 188
serif fonts 48, 67
server side 2
setAttribute method of a DOM node

362
setAttribute method of an Element

337

setAttribute method of the
document object 362

setAttributeNode method of an
Element 337

setDate 213, 215
setFullYear 213, 215, 217
setHours 214, 215
setInterval method of the window

object 257, 267
setMilliSeconds 214
setMinutes 214, 215
setMonth 214, 215
setRequestHeader method of the

XMLHttpRequest object 361
setSeconds 214, 215
setTime 214
setUTCDate 213
setUTCFullYear 213
setUTCHours 214
setUTCMilliseconds 214
setUTCMinutes 214
setUTCMonth 214
setUTCSeconds 214
Shift key 273
shift the range of numbers 154
shifted and scaled random integers 153
shifting value 156
shiftKey property of an event object

272
short-circuit evaluation 142
shorthand assignments of borders 65
sibling node 324
siblings 239, 292
side effect 185
signal value 107
simple condition 140
simple content in XML Schema 308
simple drawing program 269
simple type 308
simpleContent XML Schema element

309
simpleType XML Schema element 309
simulation and game playing 152
sin method 201
single quote (’) 78, 120, 297
single-entry/single-exit control statement

98, 99
single-line comment (//) 86, 88
single-selection if statement 98
single-selection statement 97
sites visited by the browser user 262
size attribute (input) 33
skip remainder of a switch statement

135
slice method of the String object 204
small relative font size 48
smaller value 201
SMIL (Synchronized Multimedia

Integration Language) 315
SMIL website (www.w3.org/

AudioVideo) 315
social networking 6, 7
Software as a Service (SaaS) 6
software asset 200
software development 2, 6
Software Engineering Observations

overview xviii
solid value (border-style property)

61

Some common escape sequences 83
sort method 200
sort method of an Arrayobject 188,

189
Sorting an array with Array method

sort 188
sorting in XSL 323
source string 203
source tree (XSLT) 315
source-code form 12
span as a generic grouping element 57
span element 57
special character 22
special characters 202
specificity 49, 67
speech device 29
speech synthesizer 20
split 209
split 210
split function 229
split method of the String object 204
SplitAndSubString.html 209
splitting a statement in the middle of an

identifier 85
sqrt 201
SQRT1_2 202
SQRT2 202
square brackets [] 174
square root 201
square-root symbol (MathML) 313
src attribute 19, 20
src property of an Image object 277
srcElement property (IE) of an event

object 277
stacked control structures 109
“standardized, interchangeable parts” 200
start tag 13, 287, 296
starting index 210
statement 78, 149
statement terminator 78
status property of the

XMLHttpRequest object 360
statusText property of the

XMLHttpRequest 361
strike 211
strike method of the String object

204
string 78
string assigned to a variable in a

declaration 203
string comparison 189
string concatenation 87, 106
string constants 202
string literal 78, 202
string manipulation 146
String methods charAt, charCodeAt,

fromCharCode, toLowercase and
toUpperCase 205

String object 202, 203, 205
anchor method 204, 212
charAt method 203, 205
charCodeAt method 203, 205
fixed method 204, 212
fromCharCode method 203, 205,

206
indexOf method 203, 206, 207
lastIndexOf method 204, 206,

207, 208
link method 204

www.w3.org/AudioVideo
www.w3.org/AudioVideo

406 Index

String object (cont.)
replace method 204
slice method 204
split method 204
strike method 204
sub method 204
substr method 204
substring method 204
sup method 204
toLowerCase method 204
toUpperCase method 204

String object methods 203
String object’s methods that generate

XHTML markup tags 210
string representation of the number 219
string XML Schema data type 308
string’s length 205
string-concatenation operator (+) 203
strong element 16
struck-out text 212
structure 11
structure of a document 44
structured programming 7
structured systems analysis and design 7
style attribute 45, 119
style class 48
style sheet 13, 292
stylesheet start tag 318
sub 211
sub element 24
sub method of the String object 204
sub initializer list 190
submit input 33
subscript 24, 190
subscript of an array 174
substr method of the String object

204
substring 209
substring method of the String

object 204
substrings of a string 203
sum function (XSL) 323
summary attribute 29
Summation with for 125
sup element 24, 211, 212
sup method of the String object 204
superscript 24
SVG (Scalable Vector Graphics) 311
switch multiple-selection statement 131
symbolic representation (MathML) 313
Synchronized Multimedia Integration

Language (SMIL) 315
synchronous request 352
syntax error 102, 115
SYSTEM keyword in XML 295

T
tab 83
Tab key 277
tab stop 83
table body 29
table column heading 127
table data 29
table data cells 29
table element 27, 127

border attribute 27
caption element 29

table foot 29

table head 29
table head element 29
table of event object properties 272
table row 29
table XHTML element 11
tagging 6
tagName property of an Element 336
tahoma font 48
tan method 201
tangent 201
target attribute of an a (anchor)

element 223
target of a hyperlink 212
target property (FF) of an event object

277
targetNamespace XML Schema

attribute 306
tbody (table body) element 29
TCP (Transmission Control Protocol) 4
TCP/IP 4
td element 29
terminate a loop 106
terminate nested looping structures 138
terminator 78
ternary operator 100
TeX software package 311
"text" value of type attribute 159
Text and Comment methods 337
text area 34
text box 33
text-decoration property 49
text editor 12
text file 324
text input 33
text node-set function 323
Text object 335, 337
text/javascript 47
text-align property 61
textarea element 34
text-based browser 20
TextEdit text editor 12
text-indent property 59
tfoot (table foot) element 29
th (table header column) element 29, 127
thead element 29
thick border width 61
thin border width 61
this keyword 268, 272, 272
tile an image only horizontally 59
tile an image vertically and horizontally

59
tiling no-repeat 59
tiling of the background image 59
time 92
time manipulation 146
timer 267
Times New Roman font 48
timesharing 7
title bar 14, 82
title bar of a dialog 82
title element 14
title of a document 13
toFixed method of Number object 128
tokenization 209
tokenize a string 210
tokenizing 203
tokens 209
toLocaleString 214, 215, 216
toLowerCase 205

toLowerCase 205, 206
toLowerCase method of the String

object 204
top margin 55, 57, 58
toString 214, 215, 216, 218, 219
toUpperCase 205
toUpperCase 205, 206
toUpperCase method of the String

object 204
toUTCString 214, 215, 216
tr (table row) element 29
traditional model of event registration

264, 267
traditional web application 352
transformNode method of an MSXML

document object 348
transformToFragment method of the

XSLTProcessor object (Firefox) 349
Transmission Control Protocol (TCP) 4
traverse an array 191
traversing an XML document using the

XML DOM 325
tree structure 292
tree structure for the document

article.xml of Fig. 14.2 325
trigonometric cosine 201
trigonometric sine 201
true 91
true 99
truncate 106
trust 6
truth table 141, 143
truth table for the && logical AND

operator 141
truth table for the || (logical OR)

operator 142
truth table for the logical negation

operator 142
try block 359
try keyword 359
24-hour clock format 217
two-dimensional array 190, 191
type 47
type = "text/javascript" 77
type attribute 33, 77
type attribute in a processing instruction

317
type property of an event object 273
type XML Schema attribute 307
type-ahead 367

U
ul (unordered list) element 24
ul element 24
unary operator 113, 142

decrement (--) 113
increment (++) 113

unbounded value 308
undefined 90
underline value (text-decoration)

49, 50
unescape function 168, 228
Unicode 202, 205
Unicode value 205
Uniform Resource Identifier (URI) 299
Uniform Resource Locator (URL) 299
Uniform Resource Name (URN) 299

Index 407

University of Illinois at Urbana-
Champaign 3

UNIX 9
unordered list 24
Unordered list containing hyperlinks. 24
unordered list element (ul) 24
uppercase letters 79, 85
URI (Uniform Resource Identifier) 299
URL (Uniform Resource Locator) 299
url(fileLocation) 58
URN (Uniform Resource Name) 299
user agent 49
user input 31
user interaction 264
user style sheet 69
User style sheet applied with em

measurement 72
User style sheet applied with pt

measurement 71
User style sheet in Internet Explorer 7 71
user styles 70, 71, 72
user-defined types 200, 308
user-generated content 6, 7
using cookies to store user identification

data 226
using equality and relational operators 92
Using inline styles 45
using internal hyperlinks to make pages

more navigable 38
using meta to provide keywords and a

description 40
using String object methods split and

substring 209
Using the break statement in a for

statement 135
Using the continue statement in a for

statement 136
Using the do…while repetition

statement 134
Using the switch multiple-selection

statement 128
using the window object to create and

modify child windows 220
using XPath to locate nodes in an XML

document 338
UTC (Coordinated Universal Time) 213,

216, 217

V
valid XML document 289, 301
validating an XML document with

Microsoft’s XML Validator 295
validating XML parser 289
validation service 15
validator.w3.org 15
value attribute 33, 34
value of an array element 174
value of an attribute 13
value property of a text field 163
value property of an Attr object 337
valueOf 214
var keyword 85, 149
var to declare variables is not required in

JavaScript 85
variable 85
variable name 85
variable’s scope 122

various markup languages derived from
XML 315

verbs in a system specification 200
version attribute (XSL) 318
version in xml declaration 290
vertical and horizontal positioning 58
vi text editor 12
virtual-memory operating systems 7
vocabulary (XML) 288
VoiceXML 288, 315

www.voicexml.org 315

W
W3C (World Wide Web Consortium) 5,

5, 9, 11, 287
W3C home page (www.w3.org) 5
W3C Recommendation 5
Web 1.0 6
Web 2.0 5, 6, 7
Web 2.0 Resource Center 7
web application

Ajax 353
traditional 352

web page 11
web server 12, 31
web services 7
web-based application 2, 9
webtop 356
well-formed XML document 289
while repetition statement 97, 109, 112,

122
white-space character 209, 217, 98, 217
white-space characters in strings 78, 95
width attribute 19
width attribute (table) 27
width property 61
width-to-height ratio 20
Wikipedia 6
window object 82, 90, 198, 220, 256,

262
clearInterval method 256, 261
confirm method 282
setInterval method 257, 267

window object’s open method 223
window object’s prompt method 86, 88
window.alert method 82
window.closed 224
window.opener 234
window.prompt method 108, 129
Wireless Markup Language (WML) 311
WML (Wireless Markup Language) 311
word processor 206
“World Wide Wait” 352
World Wide Web (WWW) 4, 11
World Wide Web Consortium (W3C) 5,

5, 9, 11, 287
wrappers 218
write method of the document object

80
writeln method 78, 80
WWW (World Wide Web) 11
www.deitel.com 9, 17
www.deitel.com/books/jsfp/ 2
www.deitel.com/newsletter/

subscribe.html 3
www.deitel.com/

resourcecenters.html/ 3, 9
www.deitel.com/web2.0/ 7

www.ecma-international.org/
publications/standards/ECMA-
262.htm (ECMAScript standard) 75

www.garshol.priv.no/download/
text/bnf.html 301

www.oasis-open.org 301
www.opengis.org 315
www.rixml.org 315
www.voicexml.org 315
www.w3.org 5, 9
www.w3.org/2001/XMLSchema 306
www.w3.org/Amaya/User/

BinDist.html 311
www.w3.org/AudioVideo 315
www.w3.org/Math 313
www.w3.org/XML/Schema 295, 304
www.w3schools.com/schema/

default.asp 304
www.xml.org 301

X
x-large relative font size 48
x-small relative font size 48
Xalan XSLT processor 316
XBRL (Extensible Business Reporting

Language) 288, 311
Xerces parser from Apache 289
XHR (abbreviation for

XMLHttpRequest) 351
XHTML 11, 351, 353
XHTML (Extensible Hypertext Markup

Language) xiv, 2, 5, 11, 288, 315
XHTML 1.0 Strict 11
XHTML colors 277
XHTML comment 13
XHTML documents 12
XHTML form 31, 161
XHTML markup methods of the String

object 211
XHTML registration form 354
XML 351

attribute 295
attribute value 296
child element 292
container element 292
declaration 290, 293
element 287
empty element 297
end tag 287
markup 290
node 292
parent element 292
prolog 291
root 292
root element 288
start tag 287
vocabulary 288

XML (Extensible Markup Language) xiv,
2, 5, 287

XML document containing book infor-
mation 319

XML Document Object Model 325
XML document that describes various

sports 316, 340
XML document using the laptop

element defined in computer.xsd
310

XML DOM 325

www.ecma-international.org/publications/standards/ECMA-262.htm
www.ecma-international.org/publications/standards/ECMA-262.htm
www.garshol.priv.no/download/text/bnf.html
www.garshol.priv.no/download/text/bnf.html
www.oasis-open.org
www.opengis.org
www.rixml.org
www.voicexml.org
www.w3.org
www.w3.org/2001/XMLSchema
www.w3.org/Amaya/User/BinDist.html
www.w3.org/Amaya/User/BinDist.html
www.w3.org/AudioVideo
www.w3.org/Math
www.w3.org/XML/Schema
www.w3schools.com/schema/default.asp
www.w3schools.com/schema/default.asp
www.xml.org
www.voicexml.org
www.w3.org
www.deitel.com
www.deitel.com/books/jsfp/
www.deitel.com/newsletter/subscribe.html
www.deitel.com/newsletter/subscribe.html
www.deitel.com/resourcecenters.html/
www.deitel.com/resourcecenters.html/
www.deitel.com/web2.0/
www.ecma-international.org/publications/standards/ECMA-262.htm

408 Index

XML element name requirements 291
.xml file extension 288
XML instance document 308, 310
xml namespace prefix 298
XML namespaces demonstration 298
XML parser 289
XML Path Language (XPath) 314, 337
XML processor 289
XML Resource Center

 (www.deitel.com/XML/) 335
XML Schema 300, 304, 308

complex types 308
simple types 308

XML Schema document defining simple
and complex types 308

XML Schema document for book.xml
305

XML Schema URI (http://
www.w3.org/2001/XMLSchema)
306

XML used to mark up an article 290
XML Validator displaying an error

message 303
XML validator:

www.xmlvalidation.com 295
XML vocabularies

Chemical Markup Language (CML)
315

Extensible User Interface Language
(XUL) 315

Geography Markup Language
(GML) 315

Research Information Exchange
Markup Language (RIXML) 315

Synchronized Multimedia
Integration Language (SMIL) 315

VoiceXML 315
XML Working Group of the W3C 287
XMLHttpRequest object 351, 356, 359

abort method 361
GET method 361
getAllResponseHeaders method

361
getResponseHeader method 361
onReadyStateChange property

360
open method 361
properties and methods 360
readyState property 360
responseText property 360
responseXML property 360
send method 361
setRequestHeader method 361
status property 360
statusText property 361

xmlns attribute in XML 299
XPath 315
XPath (XML Path Language) 314, 337
XPath expression 337
XPathResult object 341
.xsd filename extension 304
XSL (Extensible Stylesheet Language)

290, 300, 314
XSL document that transforms

sorting.xml into XHTML 320
.xsl filename extension 317
XSL-FO (XSL Formatting Objects) 314
XSL Formatting Objects (XSL-FO) 314

XSL style sheet 316, 323
XSL template 319
xsl template element 319
XSL transformation 344
XSL Transformations (XSLT) 315
XSL variable 323
xsl:for-each element 319
xsl:output element 318
xsl:value-of element 319
XSLT processor 316
XSLT that creates elements and attributes

in an XHTML document 317
XSLTProcessor object (Firefox) 349
XSS (cross-site scripting) 359
XUL (Extensible User Interface

Language) 311, 315
xx-large relative font size 48
xx-small relative font size 48

Y
Yahoo! 6
YouTube 6

Z
z-index property 55
zero-based counting 122
zeroth element of an array 174

www.deitel.com/XML/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
www.xmlvalidation.com

www.informIT.com/learn

www.informit.com/safaritrial

www.informit.com/safarifree

	Contents
	Preface
	Before You Begin
	1 Introduction
	1.1 Introduction
	1.2 History of the Internet and World Wide Web
	1.3 World Wide Web Consortium (W3C)
	1.4 Web 2.0
	1.5 Key Software Trend: Object Technology
	1.6 JavaScript: Object-Based Scripting for the Web
	1.7 Browser Portability
	1.8 Web Resources

	2 Introduction to XHTML
	2.1 Introduction
	2.2 Editing XHTML
	2.3 First XHTML Example
	2.4 W3C XHTML Validation Service
	2.5 Headings
	2.6 Linking
	2.7 Images
	2.8 Special Characters and Horizontal Rules
	2.9 Lists
	2.10 Tables
	2.11 Forms
	2.12 Internal Linking
	2.13 meta Elements
	2.14 Web Resources

	3 Cascading Style Sheets™ (CSS)
	3.1 Introduction
	3.2 Inline Styles
	3.3 Embedded Style Sheets
	3.4 Conflicting Styles
	3.5 Linking External Style Sheets
	3.6 Positioning Elements
	3.7 Backgrounds
	3.8 Element Dimensions
	3.9 Box Model and Text Flow
	3.10 Media Types
	3.11 Building a CSS Drop-Down Menu
	3.12 User Style Sheets
	3.13 CSS 3
	3.14 Web Resources

	4 JavaScript: Introduction to Scripting
	4.1 Introduction
	4.2 Simple Program: Displaying a Line of Text in a Web Page
	4.3 Modifying Our First Program
	4.4 Obtaining User Input with prompt Dialogs
	4.4.1 Dynamic Welcome Page
	4.4.2 Adding Integers

	4.5 Data Types in JavaScript
	4.6 Arithmetic
	4.7 Decision Making: Equality and Relational Operators
	4.8 Web Resources

	5 JavaScript: Control Statements I
	5.1 Introduction
	5.2 Control Statements
	5.3 if Selection Statement
	5.4 if…else Selection Statement
	5.5 while Repetition Statement
	5.6 Counter-Controlled Repetition
	5.7 Formulating Algorithms: Sentinel-Controlled Repetition
	5.8 Formulating Algorithms: Nested Control Statements
	5.9 Assignment Operators
	5.10 Increment and Decrement Operators
	5.11 Web Resources

	6 JavaScript: Control Statements II
	6.1 Introduction
	6.2 Essentials of Counter-Controlled Repetition
	6.3 for Repetition Statement
	6.4 Examples Using the for Statement
	6.5 switch Multiple-Selection Statement
	6.6 do…while Repetition Statement
	6.7 break and continue Statements
	6.8 Labeled break and continue Statements
	6.9 Logical Operators

	7 JavaScript: Functions
	7.1 Introduction
	7.2 Functions
	7.3 Programmer-Defined Functions
	7.4 Function Definitions
	7.5 Random Number Generation
	7.6 Example: Game of Chance
	7.7 Another Example: Random Image Generator
	7.8 Scope Rules
	7.9 JavaScript Global Functions
	7.10 Recursion
	7.11 Recursion vs. Iteration

	8 JavaScript: Arrays
	8.1 Introduction
	8.2 Arrays
	8.3 Declaring and Allocating Arrays
	8.4 Examples Using Arrays
	8.5 Random Image Generator Using Arrays
	8.6 References and Reference Parameters
	8.7 Passing Arrays to Functions
	8.8 Sorting Arrays
	8.9 Multidimensional Arrays
	8.10 Building an Online Quiz

	9 JavaScript: Objects
	9.1 Introduction
	9.2 Introduction to Object Technology
	9.3 Math Object
	9.4 String Object
	9.4.1 Fundamentals of Characters and Strings
	9.4.2 Methods of the String Object
	9.4.3 Character-Processing Methods
	9.4.4 Searching Methods
	9.4.5 Splitting Strings and Obtaining Substrings
	9.4.6 XHTML Markup Methods

	9.5 Date Object
	9.6 Boolean and Number Objects
	9.7 document Object
	9.8 window Object
	9.9 Using Cookies
	9.10 Multipage HTML and JavaScript Application
	9.11 Using JSON to Represent Objects

	10 Document Object Model (DOM): Objects and Collections
	10.1 Introduction
	10.2 Modeling a Document: DOM Nodes and Trees
	10.3 Traversing and Modifying a DOM Tree
	10.4 DOM Collections
	10.5 Dynamic Styles
	10.6 Summary of the DOM Objects and Collections

	11 JavaScript: Events
	11.1 Introduction
	11.2 Registering Event Handlers
	11.3 Event onload
	11.4 Event onmousemove, the event Object and this
	11.5 Rollovers with onmouseover and onmouseout
	11.6 Form Processing with onfocus and onblur
	11.7 Form Processing with onsubmit and onreset
	11.8 Event Bubbling
	11.9 More Events
	11.10 Web Resources

	12 XML and RSS
	12.1 Introduction
	12.2 XML Basics
	12.3 Structuring Data
	12.4 XML Namespaces
	12.5 Document Type Definitions (DTDs)
	12.6 W3C XML Schema Documents
	12.7 XML Vocabularies
	12.7.1 MathML™
	12.7.2 Other Markup Languages

	12.8 Extensible Stylesheet Language and XSL Transformations
	12.9 Document Object Model (DOM)
	12.10 RSS
	12.11 Web Resources

	13 Ajax-Enabled Rich Internet Applications
	13.1 Introduction
	13.2 Traditional Web Applications vs. Ajax Applications
	13.3 Rich Internet Applications (RIAs) with Ajax
	13.4 History of Ajax
	13.5 “Raw” Ajax Example Using the XMLHttpRequest Object
	13.6 Using XML and the DOM
	13.7 Creating a Full-Scale Ajax-Enabled Application
	13.8 Dojo Toolkit
	13.9 Web Resources

	A: XHTML Special Characters
	B: XHTML Colors
	C: JavaScript Operator Precedence Chart
	C.1 Operator Precedence Chart

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

