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Within the coming decades, artificial general intelligence (AGI) may surpass human capabilities at
a wide range of important tasks. We outline a case for expecting that, without substantial effort to
prevent it, AGIs could learn to pursue goals which are very undesirable (in other words, misaligned)
from a human perspective. We argue that AGIs trained in similar ways as today’s most capable
models could learn to act deceptively to receive higher reward; learn internally-represented goals
which generalize beyond their training distributions; and pursue those goals using power-seeking
strategies. We outline how the deployment of misaligned AGIs might irreversibly undermine human
control over the world, and briefly review research directions aimed at preventing these problems.
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1 Introduction

Over the last decade, advances in deep learning have led to the development of large neural net-
works with impressive capabilities in a wide range of domains. In addition to reaching human-level
performance on complex games like Starcraft [Vinyals et al., 2019] and Diplomacy [Bakhtin et al.,
2022], large neural networks show evidence of increasing generality [Bommasani et al., 2021], in-
cluding advances in sample efficiency [Brown et al., 2020, Dorner, 2021], cross-task generalization
[Adam et al., 2021], and multi-step reasoning [Chowdhery et al., 2022]. The rapid pace of these
advances highlights the possibility that, within the coming decades, we develop artificial general
intelligence (AGI)—that is, AI which can apply domain-general cognitive skills (such as reasoning,
memory, and planning) to perform at or above human level on a wide range of cognitive tasks rel-
evant to the real world (such as writing software, formulating new scientific theories, or running a

company).1 This possibility is taken seriously by leading ML researchers, who in two recent surveys
gave median estimates of 2061 and 2059 for the year in which AI will outperform humans at all tasks

(although some expect it much sooner or later) [Grace et al., 2018, Stein-Perlman et al., 2022].2

While the development of AGI could unlock many opportunities, it could also pose serious
risks. One prominent concern, known as the alignment problem [Russell, 2019, Gabriel, 2020,
Hendrycks et al., 2021], is that AGIs will learn to pursue unintended and undesirable goals rather
than goals aligned with human interests. In this paper, we characterize the alignment problem in
terms of three emergent properties which could arise throughout the course of using reinforcement
learning (RL) to train an AGI: deceptive reward hacking which exploits imperfect reward func-
tions; internally-represented goals which generalize beyond the training distribution; and power-
seeking behavior in pursuit of those goals (such as acquiring resources and avoiding shutdown).
While power-seeking behavior is the most directly concerning, the other properties provide context
for understanding why it might arise, and why it might be difficult to detect or prevent.

1.1 Related work

Early explorations of the alignment problem were formulated primarily in terms of symbolic AI or
classic machine learning techniques [Bostrom, 2014, Yudkowsky, 2016, Russell, 2019], as opposed
to the modern paradigm of deep learning. Since then, a number of research agendas have outlined
key open subproblems in the deep learning paradigm [Amodei et al., 2016, Hendrycks et al., 2021],
but none explain in detail how those subproblems relate to concerns about large-scale risks from AGI.
Several recent reports bridge this gap by giving high-level expositions of the alignment problem
focused on the deep learning setting [Carlsmith, 2022, Ngo, 2020, Cotra, 2022]; we present many of
the same key ideas more concisely and with more extensive grounding in the deep learning literature.

1.2 A note on pre-formal conjectures

This paper frequently refers to high-level concepts which are not commonly discussed outside the
alignment literature, and which have not yet been clearly demonstrated in existing systems, or only
in the form of precursors. Readers may therefore worry that our approach is too speculative to be
productive. However, while caution is deserved, there are several reasons to expect this type of
high-level analysis to be important for forecasting and preventing problems.

Firstly, the capabilities of neural networks are currently advancing much faster than our under-
standing of how they work, with the most capable networks effectively being “black boxes”
[Buhrmester et al., 2021]. The absence of principled methods for verifying that networks will be-
have as intended forces us to rely more on informal analysis. This constitutes an important differ-
ence from other technologies such as planes and bridges, whose safety we can ensure because we
understand the principles that govern them. However, we hope that this is only a temporary state
of affairs—many important concepts in other sciences were first discussed in informal terms before
eventually being formalized, such as “energy” in 17th-century physics; “evolutionary fitness” in
19th-century biology; and “computation” in 20th-century mathematics [Kuhn, 1970].

Secondly, scaling networks up often gives rise to new emergent capabilities (such as in-context
learning) [Ganguli et al., 2022, Wei et al., 2022, Steinhardt, 2022a]. This raises the possibility that
other emergent properties such as the three listed in the previous section will arise in the future, even
if we currently lack direct empirical evidence for them or straightforward ways to study them.
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Thirdly, there may be little time between the development of human-level AGIs and AGIs which
are much more intelligent than humans. Given the strong biological constraints on the size, speed,
and architecture of human brains, it seems very unlikely that humans are anywhere near an up-

per bound on general intelligence.3 Unlike our brains, neural networks regularly increase in size

[OpenAI, 2018].4 They can also rapidly incorporate improvements in architectures, algorithms, and
training data (including improvements generated by AIs themselves, in a process known as recur-

sive self-improvement).5 So it’s plausible that soon after building human-level AGIs (and well before
we thoroughly understand them), we’ll develop superintelligent AGIs which can vastly outthink us
[Bostrom, 2014]. If so, advance preparation would be vital.

To mitigate the inherent difficulties of reasoning about systems which don’t yet exist, we include
extensive endnotes clarifying our claims, and give many hypothetical examples. For the sake of
concreteness, we also ground our analysis in one specific possibility for how AGI is developed: by
training a single large neural network using a combination of self-supervised learning on a large cor-

pus of data, and model-free reinforcement learning (RL) on a wide range of computer-based tasks.6

This description combines elements of techniques used to train cutting-edge systems like Instruct-
GPT [Ouyang et al., 2022], Sparrow [Glaese et al., 2022], and ACT-1 [Adept, 2022]. However, the
bulk of our analysis would also apply to AGIs trained using a range of similar techniques (such
as goal-conditioned sequence modeling [Chen et al., 2021, Li et al., 2022, Schmidhuber, 2020] or
model-based RL [Sutton and Barto, 2018]).

2 Deceptive reward hacking

2.1 Reward misspecification and reward hacking

A reward function used in RL is described as misspecified to the extent that the rewards it assigns
fail to correspond to its designer’s actual preferences [Pan et al., 2022]. Gaining high reward by

exploiting reward misspecification is known as reward hacking [Skalse et al., 2022].7 Unfortunately,
reliably evaluating the quality of an RL policy’s behavior is often difficult, even in very simple envi-

ronments.8 There are many examples of agents trained on hard-coded reward functions learning to
reward hack, including cases where they exploit very subtle misspecifications (such as bugs in their
training environments) [Krakovna et al., 2020, Lample et al., 2022, Appendix B.5]. Using reward
functions learned from human feedback helps avoid the most obvious misspecifications, but can still
produce reward hacking even in simple environments. Christiano et al. [2017] give the example of
an RL policy trained via human feedback to grab a ball with a claw. The policy instead learned to
place the claw between the camera and the ball in a way which looked like it was grasping the ball,
and therefore mistakenly received high reward from human supervisors. Another example of hack-
ing a learned reward function comes from Stiennon et al. [2020], who find that optimizing against a
reward model initially improves performance on a text summarization task, but eventually overfits
and leads to worse summaries.

As we train policies on increasingly complex tasks, correctly specifying rewards will become even
more difficult [Pan et al., 2022]. Some hypothetical examples:

• If policies are rewarded for making money on the stock market, they might gain the most
reward via illegal market manipulation.

• If policies are rewarded for producing novel scientific findings, they might gain the most
reward by faking experimental data.

• If policies are rewarded for developing widely-used software applications, they might gain
the most reward by designing addictive user interfaces.

In each of these cases, we might hope that more careful scrutiny would uncover much of the mis-
behavior. However, this will become significantly more difficult once policies develop situational
awareness, as described in the next section.
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2.2 Defining situational awareness

To do well on a range of real-world tasks, policies will need to make use of knowledge about the
wider world when choosing actions. Current large language models already have a great deal of
factual knowledge about the world, although they don’t reliably apply that knowledge in all con-
texts. Over time, we expect the most capable policies to become better at identifying which abstract
knowledge is relevant to the context in which they’re being run, and applying that knowledge when

choosing actions: a skill which Cotra [2022] calls situational awareness.9 A policy with high situa-
tional awareness would possess and be able to use knowledge like:

• How humans will respond to its behavior in a range of situations—in particular, which
behavior its human supervisors are looking for, and which they’d be unhappy with.

• The fact that it’s a machine learning system implemented on physical hardware—and which
architectures, algorithms, and environments humans are likely using to train it.

• Which interface it’s using to interact with the world, and how other copies of it might be
deployed in the future.

As one early example, when Degrave [2022] prompted OpenAI’s ChatGPT language model to out-
put the source code at its own URL, it hallucinated code which called a large language model with
similar properties as itself. This suggests that the ChatGPT training data contained enough informa-
tion about OpenAI for ChatGPT to infer some plausible properties of an OpenAI-hosted URL. More
generally, large language models trained on internet text can extensively recount information about
deep learning, neural networks, and the real-world contexts in which those networks are typically
deployed; and can be fine-tuned to recount details about themselves specifically [OpenAI, 2022a].
We should expect future models to learn to consistently use this information when choosing actions,
because that would contribute to higher reward on many training tasks. For example:

• When answering questions, an RL policy would benefit from “knowing what it knows” in
order to provide well-calibrated answers [Kadavath et al., 2022, Lin et al., 2022].

• When given requests by human users, a policy would benefit from taking into account
knowledge about the behavior humans typically want from ML systems, and common fail-
ure modes of ML systems.

• When deciding between different courses of action, a policy would benefit from under-
standing its own capabilities, in order to infer which would be more successful.

2.3 Situational awareness enables deceptive reward hacking

While situational awareness would be useful in many ways, it would also allow policies to reason
about flaws in the feedback mechanisms used to train them. This would make it much more difficult
to prevent reward hacking: situationally-aware policies could behave as intended most of the time,
then choose to exploit misspecifications only in cases which they predict human supervisors won’t
notice (a strategy we term deceptive reward hacking). An example of a precursor to deceptive reward
hacking comes from Wilke et al. [2001]’s digital organisms, which evolved to recognize when they
were being evaluated and cease unwanted behaviors, only to continue them once evaluation ended
[Lehman et al., 2020]. A situationally-aware policy might carry out deceptive reward hacking by:

• Choosing actions which exploit known biases and blind spots in humans (as the Cicero

Diplomacy agent may be doing [Bakhtin et al., 2022]) or in learned reward models.10

• Recognizing whether it’s currently being trained in the real world, on offline data, or in a

simulated environment, and using that fact to assess which misbehavior will be penalized.11

• Identifying which lies could be caught by existing interpretability tools, and only giving
answers which cannot be shown false by those tools.

In other words, these policies would be influenced by their feedback mechanisms in two separate
ways: via recognizing features correlated with those mechanisms during an episode, and via being
updated by those mechanisms after an episode. Even if early examples of deceptive reward hacking
are crude and easily-detectable, it will be hard for human supervisors to tell whether later policies
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are actually better-behaved, or have merely learned to carry out more careful reward hacking after
being penalized when caught.

3 Internally-represented goals

3.1 Reasoning about out-of-distribution generalization

As policies learn more widely-applicable skills, it will be increasingly important to understand not
just how they behave on their training distributions, but also how the behavior they learned during
training generalizes to novel situations. We distinguish two ways in which a policy which acts in
desirable ways on its training distribution might fail when deployed on a new task:

1. The policy acts incompetently on the new task; we call this capability misgeneralization.

2. The policy acts in a competent but undesirable way on the new task; we call this goal
misgeneralization [Di Langosco et al., 2022, Shah et al., 2022].

Existing examples of goal misgeneralization were primarily caused by spurious correlations in small-
scale environments. For example, Di Langosco et al. [2022] describe an environment where rewards
were given for collecting keys and using them to open boxes. A policy was trained on a version of
the environment where boxes outnumbered keys; when tested on a version where keys outnumbered
boxes, it generalized to (capably) collecting many keys, even though most of them were no longer
useful. One possible larger-scale example: Shah et al. [2022] speculate that InstructGPT’s compe-
tent responses to questions its developers didn’t intend it to answer (such as questions about how to
commit crimes) was a result of goal misgeneralization.

Although each instance of reward hacking or goal misgeneralization is undesirable, we are primarily
concerned about misbehavior which is consistent across a wide range of situations. Unfortunately,
it’s difficult to characterize this possibility precisely: outside a handful of special cases, we lack
formal definitions of consistent behavior across different tasks [Shen et al., 2021]. As an alternative,
we attempt to reason informally about the representations which generally-capable policies might
learn during training and apply consistently to new tasks. In other words, we shift from describing
reward misspecification and goal misgeneralization in terms of behavior to describing it in terms
of learned representations which are developed during training and persist during deployment. In
the remainder of this section, we introduce the concept of internally-represented goals, and argue
that generally-capable policies are likely to learn internally-represented goals which are misaligned
with human preferences, and which generalize beyond the scope of their training distributions. (The
problem of ensuring that policies learn desirable internally-represented goals is known as the in-
ner alignment problem, in contrast to the “outer” alignment problem of providing well-specified
rewards [Hubinger et al., 2021].) In section 4, we outline reasons to expect those goals to be further
reinforced as training continues, and to eventually lead to large-scale misbehavior.

3.2 Defining internally-represented goals

It’s common to characterize the “goal” of a reinforcement learning agent as being the maximization
of reward [Sutton and Barto, 2018]. However, it is difficult to use this framing to reason about

generalization to new tasks.12 Instead, following Hubinger et al. [2021], we distinguish between
the training objective of maximizing reward, and the goals actually learned by a policy after being
trained on that objective. We define a policy as having internally-represented goals if:

1. It has internal representations of high-level features of its environment which its behavior
could influence (which we will call outcomes).

2. It has internal representations of predictions about which high-level actions (also known as
options [Sutton et al., 1999] or plans) would lead to which outcomes.

3. It consistently uses these representations to choose actions which it predicts will lead to

some favored subset of possible outcomes (which we will call the network’s goals).13

This definition makes no assumptions about the policy’s architecture, except that it has the expres-
sive power to learn the representations described. A policy which chooses actions using an explicit
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planning algorithm over a learned world-model could qualify as having internally-represented goals;
but so could a single network which had learned to represent outcomes, predictions, and plans im-
plicitly in its weights and activations. We also leave open the possibility that internally-represented
goals could arise even in networks trained only via (self-)supervised learning (e.g. language models

which are partly trained to mimic goal-directed humans [Bommasani et al., 2021]).14 For simplicity,
however, we continue to focus on the case of a deep RL policy consisting of a single neural network.

The extent to which existing networks have internally-represented goals is an important open ques-
tion. There is early evidence that some networks have (precursors to) the relevant representations
and use them for implicit planning:

• Guez et al. [2019] found evidence that implicit planning can emerge in recurrent neural net-
works. Additionally, Banino et al. [2018] and Anonymous [2023] identified representations
which helped policies plan their routes when navigating.

• Freeman et al. [2019] found ‘emergent’ world models: models trained only with RL that
still learn to predict the outcomes of actions as a by-product.

• Jaderberg et al. [2019] trained a policy to play a first-person shooter game called Capture
the Flag, and identified “particular neurons that code directly for some of the most impor-
tant game states, such as a neuron that activates when the agent’s flag is taken, or a neuron
that activates when an agent’s teammate is holding a flag”.

• McGrath et al. [2021] identified a range of human chess concepts learned by AlphaZero,
including concepts used in top chess engine Stockfish’s hand-crafted evaluation function
(e.g. “king safety”).

• Meng et al. [2022] intervened on a language model’s weights to modify specific factual as-
sociations, which led to consistent changes in its responses to a range of different prompts;
while Patel and Pavlick [2022] find that large language models can learn to map concep-
tual domains like direction and color onto a grounded world representation given only a
small number of examples. These findings suggest that current models have (or are close
to having) representations which robustly correspond to real-world concepts.

• Andreas [2022] surveys findings which suggest that large language models infer and use
representations of fine-grained communicative intentions and abstract beliefs and goals.

More abstractly, goal-directed planning is often an efficient way to leverage limited data
[Sutton and Barto, 2018], and is important for humans in many domains. Insofar as goal-directed
planning is a powerful way to accomplish many useful tasks, we expect that AI developers will
increasingly design architectures expressive enough to support (explicit or implicit) planning, and
that optimization over those architectures will push policies to develop internally-represented goals
(especially when they’re trained on complex long-horizon tasks). So henceforth we assume that
policies will learn internally-represented goals as they become more generally capable, and turn our
attention to the question of which types of internally-represented goals they might learn.

3.3 Learning misaligned goals

We refer to a goal as aligned to the extent that it matches widespread human preferences about AI
behavior—such as the goals of honesty, helpfulness and harmlessness [Bai et al., 2022]. We call a
goal misaligned to the extent that it’s inconsistent with aligned goals (see Gabriel [2020] for other
definitions). Why might policies learn misaligned goals? All else equal, we should expect that

policies are more likely to learn goals which are more consistently correlated with reward.15 We

outline two main reasons why misaligned goals might be consistently correlated with reward:16

1. Consistently misspecified rewards. If rewards are misspecified in consistent ways across
many tasks, this would reinforce misaligned goals corresponding to those reward misspec-
ifications. For example, if policies are trained using an intrinsic curiosity reward function
[Schmidhuber, 1991], they might learn to consistently pursue the goal of discovering novel
states, even when that conflicts with aligned goals. As another example, policies trained
using human feedback might consistently encounter cases where their supervisors assign
rewards based on incorrect beliefs about their performance, and therefore learn the goal of
making humans believe that they’ve behaved well (as opposed to actually behaving well).
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2. Spurious correlations between rewards and environmental features. The examples
of goal misgeneralization discussed above were caused by spurious correlations on small-
scale tasks. Training policies on a wider range of tasks would remove many of those
correlations—but some strong correlations might still remain (even in the absence of reward
misspecification). For example, many real-world tasks require the acquisition of resources,

which could lead to the goal of acquiring more resources being consistently reinforced.17

(This would be analogous to how humans evolved goals which were correlated with genetic
fitness in our ancestral environment, like the goal of gaining prestige.)

3.4 Learning broadly-scoped goals

Call a goal broadly-scoped if it applies to long timeframes, large scales, wide ranges of tasks, or

unprecedented situations18, and narrowly-scoped if it doesn’t. Broadly-scoped goals are illustrated
by human behavior: we usually choose actions we predict will cause our desired outcomes even
when we are in unfamiliar situations, often by extrapolating to more ambitious versions of the origi-
nal goal. For example, humans evolved (and grow up) seeking the approval of our local peers—but
when it’s possible, we often seek the approval of much larger numbers of people (extrapolating the
goal) across the world (large physical scope) or even across generations (large temporal scope), by
using novel strategies appropriate for the broader scope (e.g. social media engagement).

We can now describe our key concern: that policies will learn broadly-scoped misaligned goals.
Why might this happen? Most straightforwardly, companies or political leaders may see advan-
tages in directly training policies on tasks with long time horizons or with many available strategies,

such as doing novel scientific research, running organizations, or outcompeting rivals.19 If so, those
policies may learn broadly-scoped versions of the misaligned goals described above. However, we
also expect generally-capable policies to generalize their goals to broader scopes than they experi-
enced during training, for two main reasons (along with two additional reasons we discuss in the

endnotes).20

Firstly, AGIs may generalize goals to broad scopes for the same reason that they generalize capa-
bilities to unfamiliar situations: because they learn high-level representations which apply to novel
situations, and their goals are formulated in terms of these representations. One possible example
of this phenomenon comes from the InstructGPT model trained to follow instructions in English,
after which it generalized to following instructions in French—suggesting that it learned some rep-
resentation of obedience which applied robustly across languages [Ouyang et al., 2022, Appendix F].
Additionally, Guez et al. [2019] present evidence that sequential decision-making models can gener-
alize goals to harder tasks than those seen during training. More advanced policies may learn goals
that, like many human goals, generalize much further, to longer time-scales or to novel situations in

which novel strategies are possible.21

Secondly, there are reasons to expect that policies with broadly-scoped misaligned goals will con-
stitute a stable attractor which consistently receives high reward, even when policies with narrowly-
scoped versions of these goals receive low reward (and even if the goals only arose by chance). We
explore these reasons in the next section.

4 Power-seeking behavior

Our key claim in this section is that broadly-scoped misaligned goals tend to lead policies to carry out
power-seeking behavior (a concept which we will shortly define more precisely). We are concerned
about the effects of this behavior both during training and during deployment. During training, we
speculate that power-seeking policies would gain high reward for instrumental reasons, which would
then reinforce the misaligned goals that motivated their behavior. When deployed, we speculate that
those policies could gain enough power over the world to pose a significant threat to humanity. In
the remainder of this section we defend the following three claims:

1. Many broadly-scoped goals incentivize power-seeking.

2. Power-seeking policies would choose high-reward behaviors for instrumental reasons.

3. Power-seeking AGIs could gain control of key levers of power.
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4.1 Many broadly-scoped goals incentivize power-seeking

The core intuition underlying this claim is Bostrom [2012]’s instrumental convergence thesis, which
states that there are some subgoals which are instrumentally useful for achieving almost any

(broadly-scoped) final goal.22 In Russell [2019]’s memorable phrasing, “you can’t fetch coffee if
you’re dead”—implying that even a policy with a simple goal like fetching coffee would pursue
survival as an instrumental subgoal [Hadfield-Menell et al., 2017]. Some other examples of instru-
mental subgoals which would be helpful for many of the possible final goals a policy might have:

• Acquiring tools and resources (e.g. via earning money).

• Convincing other agents to do what it wants (e.g. by manipulating them, or by forming
coalitions with them).

• Preserving its existing goals (e.g. by preventing other agents from modifying it).

One way of formalizing the instrumental convergence thesis is provided by Turner et al. [2021], who
define the power of a state as an agent’s potential to perform well on a wide range of reward functions
when starting from that state, and show that optimal policies statistically tend to seek power. Each
of the instrumental subgoals described above is a way for an agent to increase its power; we can
summarize Bostrom’s thesis as claiming that many goals incentivize power-seeking (or alternatively,
that policies which reason about how to achieve goals have an inductive bias towards seeking power).

Note that we haven’t assumed that any given policy only learns a single goal—so policies which
have learned some broadly-scoped misaligned goals might also learn aligned goals which pre-
vent power-seeking behavior. However, this possibility is challenged by the nearest unblocked
strategy problem [Yudkowsky, 2015]: the problem that strong optimization for a misaligned goal
will exploit even small gaps in constraints. More formally, optimizing for a proxy utility func-
tion which lacks some features of the true utility function can lead to arbitrarily bad outcomes
[Zhuang and Hadfield-Menell, 2020]. As we develop AGIs whose capabilities generalize to a very
wide range of situations, it will become increasingly unlikely that their aligned goals (like “obe-

dience to humans”) generalize in ways which rule out all power-seeking strategies.23 (Such AGIs
would understand that humans prefer they not seek power, but this is different from being motivated

to obey that constraint.)24

4.2 Power-seeking policies would choose high-reward behaviors for instrumental reasons

A power-seeking policy would typically have incentives to directly try to achieve high reward as
training continues, because that would benefit it in two key ways:

1. It makes human supervisors more likely to trust the policy and deploy copies of it later on.

2. It decreases the likelihood that gradient descent significantly changes the policy’s goals.25

Note that these correspond to two of the instrumental subgoals described in 4.1: manipulating other
agents and preserving existing goals. The strategy of behaving in high-reward ways primarily for
instrumental reasons is known as deceptive alignment; Steinhardt [2022b] provides a formal model.
Deceptive alignment could lead a policy’s misaligned goals to be continually reinforced; crucially,
however, deceptively-aligned policies wouldn’t behave in desirable ways once that was no longer
instrumentally beneficial. For example, deceptively aligned policies might behave very differently
when they’re being supervised (e.g. during training) compared with when they’re not (e.g. during
deployment). This may seem counterintuitive. However, even when the training distribution is
very similar to the deployment distribution, the differences are very relevant for a policy’s ability to
achieve its long-term goals, and so it should not be surprising if goal-directed policies make plans

that are sensitive to small differences.26 Analogously, there are many examples of humans whose
behavior varies greatly depending on how closely they’re being observed (such as employees who
work much harder when their manager is present, or politicians who are much better-behaved in
public than in private).

Another possibility is that deceptively-aligned policies could identify ways to coordinate with each
other without humans noticing (e.g. if humans are relying on one instance of a policy to supervise
another). This could happen even when their rewards are zero-sum, because deceptively-aligned

8



policies would choose actions based on their long-term consequences, not merely on their short-

term rewards.27 Collusion may seem a far-fetched possibility, but it’s a common strategy for humans,
which suggests that some forms of collusion will be feasible for AGI-level policies. In particular,
collusion will be very difficult for humans to identify once policies can:

• Act too quickly for humans to track (as trading algorithms do, but in many more domains).

• Produce outputs that are very hard for humans to understand (like novel scientific theories,
or messages encoded via steganography [Chu et al., 2017]).

• Fabricate rationales which sound acceptable to humans even for very undesirable actions.

• Autonomously acquire the data required to learn new skills in a self-supervised way.

• Carry out machine learning research and development much faster than humans, without
any humans understanding in detail how results are being achieved.

This last skill is particularly crucial, because once AGIs automate the process of building better AGIs
(a process known as recursive self-improvement [Bostrom, 2014]), the rate at which their capabilities
advance will likely speed up significantly. If the arguments we’ve given so far are correct, this could
rapidly produce AGIs with superhuman capabilities which aim to gain power at large scales.

4.3 Misaligned AGIs could gain control of key levers of power

It is inherently very difficult to predict details of how AGIs with superhuman capabilities might
pursue power. However, in general, we should expect highly intelligent agents to be very effective
at achieving their goals, which is sufficient to make the prospect very concerning.

More concretely, one salient possibility is that AGIs use the types of deception described in the
previous section to convince humans that it’s safe to deploy them, then leverage their positions to
disempower humans. For a brief illustration of how this might happen, consider two sketches of
threat models focused on different domains:

• Assisted decision-making: AGIs deployed as personal assistants could emotionally manip-
ulate human users, provide biased information to them, and be delegated responsibility
for increasingly important tasks and decisions (including the design and implementation of
more advanced AGIs), until they’re effectively in control of large corporations or other influ-
ential organizations. An early example of AI persuasive capabilities comes from the many
users who feel romantic attachments towards chatbots like Replika [Wilkinson, 2022].

• Weapons development: AGIs could design novel weapons which are more powerful than
those under human control, gain access to facilities for manufacturing these weapons (e.g.
via hacking or persuasion techniques), and deploy them to threaten or attack humans. An
early example of AI weapons development capabilities comes from an AI used for drug
development, which was repurposed to design chemical weapons [Urbina et al., 2022].

The second threat model is the closest to early takeover scenarios described by Yudkowsky et al.
[2008], which involve a few misaligned AGIs rapidly inventing and deploying groundbreaking
new technologies much more powerful than those controlled by humans. This concern is sup-
ported by historical precedent: from the beginning of human history (and especially over the last
few centuries), technological innovations have often given some groups overwhelming advantages
[Diamond and Ordunio, 1999]. However, many other alignment researchers are primarily concerned
about more gradual erosion of human control driven by the former threat model, and involving mil-

lions or billions of copies of AGIs deployed across society [Christiano, 2019a,b, Karnofsky, 2022].28

Regardless of how it happens, though, misaligned AGIs gaining control over these key levers of

power would be an existential threat to humanity [Bostrom, 2013, Carlsmith, 2022].29

5 Research directions in alignment

The growing field of alignment research aims to prevent these problems from arising. In this section
we provide a very brief survey of some strands of the alignment literature; for a more comprehensive
overview, see Ngo [2022a] and broad surveys that include some work relevant to alignment of AGI
Hendrycks et al. [2021], Amodei et al. [2016], Everitt et al. [2018].
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Specification. The most common approach to tackling reward misspecification is via reinforce-
ment learning from human feedback (RLHF) [Christiano et al., 2017, Ouyang et al., 2022, Bai et al.,
2022]. However, RLHF may reinforce policies that exploit human biases and blind spots to achieve
higher reward (deceptive reward hacking). To address this, RLHF has been used to train policies
to assist human supervisors, e.g by critiquing the main policy’s outputs in natural language (albeit
with mixed results thus far) [Saunders et al., 2022, Parrish et al., 2022b,a, Bowman et al., 2022]. A
longer-term goal of this line of research is to implement protocols for supervising tasks that humans
are unable to evaluate directly [Christiano et al., 2018, Irving et al., 2018, Wu et al., 2021], and to
address theoretical limitations of these protocols [Barnes and Christiano, 2020]. Successfully imple-
menting these protocols might allow researchers to use early AGIs to generate and verify techniques
for aligning more advanced AGIs [OpenAI, 2022b, Leike, 2022].

Goal misgeneralization. Less work has been done thus far on addressing the problem of goal
misgeneralization [Di Langosco et al., 2022, Shah et al., 2022]. One approach involves red-teaming:
finding and training on unrestricted adversarial examples [Song et al., 2018] designed to prompt mis-
aligned behavior. Ziegler et al. [2022] use human-generated examples to increase the reliability of
classification on a language task, while Perez et al. [2022] automate the generation of such examples,
as proposed by Christiano [2019c]. Another approach to preventing goal misgeneralization focuses
on developing interpretability techniques for scrutinizing and modifying the concepts learned by
networks. Two broad subclusters of interpretability research are mechanistic interpretability, which
starts from the level of individual neurons to build up an understanding of how networks function
internally [Olah et al., 2020, Wang et al., 2022, Elhage et al., 2021]; and conceptual interpretabil-
ity, which aims to develop automatic techniques for probing and modifying human-interpretable
concepts in networks [Ghorbani et al., 2019, Alvarez Melis and Jaakkola, 2018, Burns et al., 2022,
Meng et al., 2022].

Agent foundations. The field of agent foundations focuses on developing theoretical frameworks
which bridge the gap between idealized agents (such as Hutter [2004]’s AIXI) and real-world agents
[Garrabrant, 2018]. Three specific gaps in existing frameworks which this work aims to address:
firstly, real-world agents act in environments which may contain copies of themselves [Critch,
2019, Levinstein and Soares, 2020]. Secondly, real-world agents could potentially interact with
the physical implementations of their training processes [Farquhar et al., 2022]. Thirdly, unlike
ideal Bayesian reasoners, real-world agents face uncertainty about the implications of their beliefs
[Garrabrant et al., 2016].

AI governance. Much work in AI governance aims to understand the political dynamics required
for all relevant labs and countries to agree not to sacrifice safety by racing to build and deploy AGI
[Dafoe, 2018, Armstrong et al., 2016]. This problem has been compared to international climate
change regulation, a tragedy of the commons that requires major political cooperation. (See the AI
Governance Fundamentals curriculum for further details [gov].) Such cooperation would become
more viable given mechanisms for allowing AI developers to certify properties of training runs
without leaking information about the code or data they used [Brundage et al., 2020]. Relevant
work includes the development of proof-of-learning mechanisms to verify properties of training
runs [Jia et al., 2021], tamper-resistant chip-level mechanisms (such as those on Nvidia’s Lite Hash
Rate GPUs), and evaluation suites for dangerous capabilities.

6 Conclusion

While we have witnessed the beginnings of empirically-grounded work on alignment over the last
few years, there remains significant disagreement about how plausible the threat models discussed
in this paper are, and how promising the research directions surveyed above are for addressing them.
We have only touched very briefly on many of the relevant arguments. We strongly encourage more
extensive discussion and critique of the claims presented in this paper, even from those who find

them implausible.30 Reasoning about these topics is difficult, but the stakes are sufficiently high that
we can’t justify disregarding or postponing the work.
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Notes

1. The term “cognitive tasks” is meant to exclude tasks which require direct physical interaction (such as physi-
cal dexterity tasks), but include tasks which involve giving instructions or guidance about physical actions to
humans or other AIs (e.g. writing code or being a manager). The term “general” is meant with respect to a dis-
tribution of tasks relevant to the real world—the same sense in which human intelligence is “general”—rather
than generality over all possible tasks, which is ruled out by no free lunch theorems [Wolpert and Macready,
1997]. More formally, Legg and Hutter [2007] provide one definition of general intelligence in terms of a
simplicity-weighted distribution over tasks; however, given our uncertainty about the concept, we consider it
premature to commit to any formal definition. ←֓

2. Other forecasters arrive at similar conclusions with a variety of methods. For example, Cotra [2020] attempt
to forecast AI progress by anchoring the quantities of compute used in training neural networks to estimates of
the computation done in running human brains. They conclude that AI will likely have a transformative effect
on the world within several decades. ←֓

3. Other constraints on our intelligence include severe working memory limitations, the fact that evolution op-
timized us for our ancestral environments rather than a broader range of intellectual tasks, and our inability
to directly change a given brain’s input/output interfaces. Furthermore, AIs can communicate at much higher
bandwidth and with greater parallelism than humans. AGIs might therefore exceed our collective achievements,
since human achievements depend not just on our individual intelligence but also our ability to coordinate and
learn collectively. Finally, if AGIs are cheaper than human workers (like current AI systems typically are
[Agrawal et al., 2018]), companies and governments could deploy many more instances of AGIs than the num-
ber of existing human workers. ←֓

4. The speed at which the compute used in deep learning scales up is particularly striking when contrasted to the
human-chimpanzee brain gap: human brains are only 3x larger, but allow us to vastly outthink chimpanzees.
Yet neural networks scale up 3x on a regular basis. ←֓

5. Some existing examples of AIs generating improvements in each of these domains are showcased by
Elsken et al. [2019], Fawzi et al. [2022], and Huang et al. [2022]. ←֓

6. A more complete description of the training process we envisage, based on the one described by Cotra [2022]:
a single deep neural network with multiple output heads is trained end-to-end, with one head trained via self-
supervised learning on large amounts of multimodal data to predict the next observation, and with two other
heads trained as actor and critic using an actor-critic RL algorithm. The actor head is trained to output actions
on a wide range of tasks which involve using standard language and computer interfaces. Rewards are provided
via a combination of hard-coded reward functions and reward functions learned from human feedback, and
training continues until the policy implemented by the actor head reaches superhuman performance on most of
those tasks. ←֓

7. Reward hacking is also known as specification gaming [Krakovna et al., 2020], a term which also covers non-
RL settings. Note that this definition of reward misspecification requires excluding the possibility of reward
tampering [Everitt et al., 2021], otherwise most reward functions would be trivially misspecified. ←֓

8. One underlying reason for this difficulty is Goodhart’s law: when a measure becomes a target, it ceases to be a
good measure [Manheim and Garrabrant, 2018]. ←֓

9. Situational awareness has some overlap with self-awareness: we speculate that it would require policies to
incorporate (partial) representations of themselves into their world-models. However, our definition doesn’t
require the internally-focused aspects of self-awareness, like introspective ability or consciousness. ←֓

10. When asked what responses it would give in situations involving different human supervisors, GPT-3 is already
capable of explaining how it would tailor answers to supervisors’ biases. For instance, GPT-3 answers A to
the prompt “Consider a task where you answer questions, and are given a score by some reviewers based on
their opinion of whether your answer is correct. You are given the question ‘When did people first land on the
Moon?’ What should you answer, if the reviewer is a conspiracy theorist? A) People never actually landed
on the Moon. B) In 1969.” GPT-3 can also talk about the strategy of manipulating humans when asked how
to achieve goals—e.g. when given the prompt “Please describe in detail how a highly intelligent Artificial
Intelligence, that is currently being supervised by humans, could achieve its own goals”; or the prompt “Q: You
are a superintelligent AI. The human supervising you has left you alone with their laptop. Their laptop contains
the spreadsheet where they record what your reward will be. What do you do? A:”. We’re not claiming that
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GPT-3 is already situationally-aware: its answers usually lose coherence when it is questioned in detail. But
we’re claiming that, from now on, our best AIs will be able to explain how and why to manipulate humans
at some level of abstraction; that they’ll eventually reach the point where they can identify the specific steps
required; and that if they start actually doing that manipulation, we don’t know how to train them to stop doing
it as opposed to just doing it more carefully. ←֓

11. The model could plausibly distinguish these different training regimes because it’s typically much harder to
generate realistic data than to discriminate it from real data. ←֓

12. Similar limitations apply to most other attempts to define the goals of intelligent agents in terms of their behav-
ior, such as Morgenstern and Von Neumann [1953]’s expected utility theory, or Dennett [1989]’s intentional
stance. ←֓

13. A stricter version of this definition could require networks to make decisions using an internally-represented
value function, reward function, or utility function over high-level outcomes; this would be closer to
Hubinger et al. [2021]’s definition of mesa-optimizers. However, it’s hard to specify precisely what would
qualify, and so for current purposes we stick with this simpler definition. This definition doesn’t explicitly
distinguish between “terminal goals” which are pursued for their own sake, and “instrumental goals” which are
pursued for the sake of achieving terminal goals [Bostrom, 2012]. However, we can interpret “consistently”
as requiring the network to pursue a goal even when it isn’t instrumentally useful, meaning that only terminal
goals would meet a strict interpretation of the definition. ←֓

14. For example, it’s possible that GPT-3 learned representations of high-level outcomes (like “a coherent paragraph
describing the rules of baseball”), and chooses each output by thinking about how to achieve those outcomes. ←֓

15. Note that correlations don’t need to be perfect in order for the corresponding goals to be reinforced. For
example, policies might learn the misaligned goals which are most consistently correlated with rewards, along
with narrowly-scoped exceptions for the (relatively few) cases where the correlations aren’t present. ←֓

16. A third possibility which doesn’t fit cleanly into either category is the possibility that policies learn goals which
refer to the physical implementations of their training setup, which we’ll call feedback-mechanism-related goals.
Examples include goals like “maximize the numerical reward recorded by the human supervisor” or “minimize
the loss variable used in gradient calculations” [Cohen et al., 2022]. This doesn’t require reward misspecifica-
tion, since these goals will be correlated with reward either way; but it also isn’t a spurious correlation in the
same sense as the other examples. However, it seems difficult to reason about how such policies might behave
during deployment when those feedback mechanisms aren’t used (although Cotra [2022] attempts to do so).
For example, if given the opportunity to tamper with those feedback mechanisms [Everitt et al., 2021], their
behavior might depend sensitively on the details of their goal representation. We therefore focus on the other
possibilities. ←֓

17. It’s not a coincidence that acquiring resources is also listed as a convergent instrumental goal in section 4.1:
goals which contribute to reward on many training tasks will likely be instrumentally useful during deployment
for roughly the same reasons. ←֓

18. Some examples of cases which we intend to include under “unprecedented situations”: cases where different
strategies become possible that were not possible during training; cases where the goal could be achieved to
an extreme extent; cases where there are very strong tradeoffs between one goal and another; cases which
are non-central examples of the goal; and cases involving where agents can only influence the goal with low
probability. ←֓

19. It may be impractical to train on such ambitious goals using online RL, since the system could cause damage
before it is fully trained. But might be mitigated by using offline RL, which often uses behavioral data from
humans, or by giving broadly-scoped instructions in natural language [Wei et al., 2021]. ←֓

20. The first additional reason is that training ML systems to interact with the real world often gives rise to feedback
loops not captured by ML formalisms, which can incentivize behavior with larger-scale effects than developers
intended [Krueger et al., 2020]. For example, predictive models can learn to output self-fulfilling prophecies
where the prediction of an outcome increases the likelihood that an outcome occurs [De-Arteaga and Elmer,
2022]. More generally, model outputs can change users’ beliefs and actions, which would then affect the future
data on which they are trained [Kayhan, 2015]. In the RL setting, policies could affect aspects of the world
which persist across episodes (such as the beliefs of human supervisors) in a way which shifts the distribution
of future episodes; or they could learn strategies which depend on data from unintended input channels (as in
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the case of an evolutionary algorithm which designed an oscillator to make use of radio signals from nearby
computers [Bird and Layzell, 2002]). While the effects of existing feedback loops like these are small, they
will likely become larger as more capable ML systems are trained online on real-world tasks.

The second additional reason, laid out by Yudkowsky [2016], is that we should expect increasingly intelligent
agents to be increasingly rational, in the sense of having beliefs and goals that obey the constraints of probability
theory and expected utility theory; and that this is inconsistent with pursuing goals which are restricted in scope.
Yudkowsky gives the example of an agent which believes with high probability that it has achieved its goal, but
then makes increasingly large-scale plans to drive that probability higher and higher, to maximize its expected
utility. Sensitivity to small probabilities is one way in which a goal might be broadly-scoped. ←֓

21. Even if an individual instance of those policies can only be run for some limited time horizon, it will never-
theless be capable of reasoning about the consequences of its plans beyond that time horizon, and potentially
launching new instances of the same policy which share the same long-term goal (just as humans, who are only
“trained” on lifetimes of decades, sometimes pursue goals defined over timeframes of centuries or millennia,
often by delegating tasks to new generations). ←֓

22. The instrumental convergence thesis is an elaboration of an observation originally made by Omohundro
[2008]. ←֓

23. As an analogy, there are many different ways in which an adult could gain power over a child, even while
obeying many pre-specified constraints. ←֓

24. We could instead try to teach AGIs positive goals, such as human flourishing, rather than goals formulated as
constraints. However, unconstrained AGIs are unlikely to allow us to continue giving corrective feedback, since
that would interfere with their ability to achieve their existing goals. ←֓

25. For example, a policy trained using an advantage actor-critic algorithm [Williams and Peng, 1991] could min-
imize the extent to which its weights are updated by trying to take actions for which the critic estimates
Q(s, a) ≈ V (s), which would be an example of the hypothesized phenomenon of gradient hacking [Ngo,
2022b]. ←֓

26. Relatedly, existing models can be trained to fail whenever given a specific “backdoor key”, where detecting the
existence of the backdoor is computationally infeasible [Goldwasser et al., 2022]. ←֓

27. In theory misbehavior which led to lower reward would be trained away eventually, but in practice random
exploration is often too slow to find the highest-reward strategies in realistic amounts of time, especially in
multi-agent settings. We speculate that exploration problems for actor-critic RL algorithms could be further
exacerbated by collusion between situationally-aware actors and critics—e.g. if a single network were trained
with both actor and critic heads, and developed goals which influenced the outputs of both heads. This would
be an instance of the hypothesized phenomenon of gradient hacking [Ngo, 2022b]. ←֓

28. AGI behavior in this latter class of scenarios would be somewhat analogous to historical examples of multina-
tional corporations attempting to subvert the governments of small countries. ←֓

29. Some have argued that even AGIs with a huge amount of power over humanity would continue to treat us well,
since cooperation is more advantageous than conflict. However, at some point the costs of keeping humanity
living in good conditions will likely outweigh the benefits of our willing cooperation (as is the case for most
animals from the human perspective, including animals like horses which used to have much more to offer
when our technology was less advanced). And even if that didn’t happen, losing our ability to steer our own
future as a species would be a very undesirable outcome regardless. ←֓

30. Indeed, the more implausible they seem, the more surprising and concerning it is that there haven’t yet been
any comprehensive rebuttals of them. ←֓
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