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Abstract

Sketch-based image retrieval (SBIR) has undergone an
increasing interest in the community of computer vision
bringing high impact in real applications. For instance,
SBIR brings an increased benefit to eCommerce search
engines because it allows users to formulate a query just
by drawing what they need to buy. However, current
methods showing high precision in retrieval work in a high
dimensional space, which negatively affects aspects like
memory consumption and time processing. Although some
authors have also proposed compact representations, these
drastically degrade the performance in a low dimension.
Therefore in this work, we present different results of
evaluating methods for producing compact embeddings
in the context of sketch-based image retrieval. Our main
interest is in strategies aiming to keep the local structure of
the original space. The recent unsupervised local-topology
preserving dimension reduction method UMAP fits our re-
quirements and shows outstanding performance, improving
even the precision achieved by SOTA methods. We evaluate
six methods in two different datasets. We use Flickr15K
and eCommerce datasets; the latter is another contribution
of this work. We show that UMAP allows us to have feature
vectors of 16 bytes improving precision by more than 35%.

©2021 IEEE

1. Introduction
Sketch-based image retrieval (SBIR) has undergone

an increasing interest in the computer vision community,
mainly because it benefits many modern applications. An
SBIR method aims to retrieve photos or regular images from
a collection, resembling a hand-drawing used as a query.
Figure 1 shows some results generated by a sketch-based
image retrieval engine in the context of e-commerce, where
users simply draw what they need to buy.

Indeed, e-commerce is a very attractive application
where a SBIR engine brings tremendous advantages, espe-

Figure 1. An example of retrieval produced by a sketch-based im-
age retrieval engine in the context of e-commerce. Here, a user
draws a small tricycle showing the purchase intention. The first
image is the query an the others are the retrieved images.

cially at a time when online shopping is becoming more
and more popular. The success of a e-commerce depends
on the effectiveness of its search engine, that allows buyers
to find what they are looking for. Querying by sketching
is effective, easy and enjoyable. It is effective because a
sketch can semantically express the buyer’s desire; it is also
easy because users can draw directly on a screen; and it is
enjoyable because users feel drawing as a game.

We have seen a particular interest in the computer vision
community on image retrieval guided by sketch queries,
during the last decade. At the beginning of this period,
researchers focused on low-level features, proposing vari-
ations of the histogram of orientations to deal with sketch-
like images [8, 3, 4]. Other researchers also used mid-level
features [10, 9] to represent sketches, particularly detecting
primitive shapes, called keyshapes, on the images. How-
ever, the explosion of deep-learning, which showed out-
performing effectiveness in diverse computer vision tasks,
rerouted the SBIR research toward these models that signif-
icantly increase the underlying efficacy [12, 2]. At the end,
the architectures based on siamese backbones with triplet
loss, trained in an incremental manner showed the best per-
formance on different SBIR datasets [2].

The effectiveness achieved by SOTA methods on sketch-
based retrieval has made it possible to move quickly from
the scientific context to industrial applications. However,
applications like an eCommerce search engine also place
new challenges beyond the effectiveness itself. In this vein,
searching time and memory consumption are two aspects
that SBIR methods should consider. One way to address
this challenge is by proposing methods that produce em-
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beddings in a low-dimension feature space.
Commonly, SBIR methods produce floating-point rep-

resentations in high-dimension feature space (p.ej. 1024).
This fact has a big impact on the resources required by a
company offering a search engine service since all the fea-
ture vectors of a store catalog need to be loaded into the
memory to allow online querying. To deal with this prob-
lems some researches have proposed compact representa-
tions [6, 1]. However, these methods still show low effec-
tiveness in retrieval.

A simple manner to obtain a reduced feature space is
applying a dimensional reduction method. Dimension re-
duction techniques fall in two categories, those that seek to
preserve the global structure of the data those that prefer to
preserve the local structure [7]. The latter category brings
more benefits for image retrieval, as the techniques falling
in that category try to extract features that better represent
the neighborhood of each point (keeping the local struc-
ture). This behaviour can also increase the retrieval pro-
cess’s precision, bringing back other relevant objects that in
the original spaces fell out of its corresponding neighbor-
hood.

Therefore, in this work we are interested in generat-
ing low-dimensional embeddings in the context of sketch-
based image retrieval, and improving the retrieval precision
showed by SOTA methods. To this end, we leverage the
local structure showed by the method proposed by Bui et
al. [2], and reduce the space dimension trough an unsu-
pervised reduction technique that focus in keeping the local
topology of the original space. In this vein, we show that
UMAP (Uniform Manifold Approximation and Projection
for Dimension Reduction) [7] fits perfectly with our objec-
tive. We conduct diverse experiments comparing binary re-
duction, PCA, UMAP and even adding a reduction layer to
the baseline model.

We also propose a new evaluation dataset that reflects
the variations of images we can find in eCommerce applica-
tions. Besides, to compare our proposal with current meth-
ods, we use the public dataset Flickr15K [4].

Our results indicate that we can obtain very small rep-
resentations (16 32 bytes) using UMAP, improving even
the retrieval precision. Here, using a 16-bytes embedding,
we get a mAP of 57% in Flicr15k dataset and 19% in the
eCommerce dataset.

This document is organized as follows. In Section 2 we
describes the related work. Section 3 is devoted to describe
our approach in detail. Section 4 describe the evaluation
experiments, and finally Section 5 presents the conclusions.

2. Related Work
During the last period, we have seen significant ad-

vances in sketch-based image retrieval. In the beginning, re-
searchers focused on low-level features, mainly using some

variants of the histogram of orientations [11, 4, 3]. Re-
searchers also proposed methods based on mid-level repre-
sentations [9, 11], where sketch-like images are represented
through a distribution of primitives called keyshapes. How-
ever, the explosion of deep learning has shown outperform-
ing results in computer vision tasks, allowing us to move to-
ward more effective methods in the context of sketch-based
retrieval.

In this context, the architectures that have shown the best
results on similarity search are those combining siamese
nets with triplet loss [16, 2, 12], especially when a fine-
grained search is desired. Among these methods, the work
of Bui et al. [2] attracts our interest because it achieves
high precision on public datasets on sketch-based image
retrieval. This method proposes a 4-stage incremental
methodology for training a network capable of producing a
feature space where sketches and photos can exist together.
The four stages are designed in such a way that they can
incrementally improve their discriminatory power. To this
end, they also use siamese and triplet networks jointly with
a cross-entropy loss but trained from a coarse-grained simi-
larity at the beginning to a fine-grained similarity at the end.

Although SBIR methods have evolved positively, achiev-
ing high precision in different public datasets, their applica-
tion in real contexts has still been limited by the underlying
feature space’s size. Indeed, methods showing high pre-
cision require hundreds of floating-point values per image,
which is prohibited for catalogs with millions of images.

Regarding the previous problem, some researchers have
also been focused on reducing the high-dimension space in
sketch-based retrieval and image retrieval, in general. How-
ever, the proposed reduction algorithm rapidly degrades the
effectiveness of retrieving.

The simplest way to obtain a binary embedding is by
adding an activation function at the network’s head so that
the final output can be thresholded to get a binary value.
Examples of these functions are sigmoid and tanh. For in-
stance, we can use a threshold equal to 0.5 in the case of the
sigmoid function. This method has the advantage of being
easy to incorporate into an existing network.

Deep Supervised Hashing (DSH) [5] and Deep Triplet
Supervised Hashing (DTSH) [14] are focused on obtaining
a binary feature space for image retrieval. DSH uses a net-
work with three convolutional-pooling layers and two fully
connected layers. The method forces the output to be binary
by the following pairwise loss function:

L(b1, b2) =
1

2
(1− y)||b1 − b2||22

+
1

2
ymax(0,m− ||b1 − b2||22)

+ λ(|| |b1| − 1||1 + || |b2| − 1||1)

where the first two terms work as the contrastive loss,
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and the third term is the binarization term that forces the
outputs to be binary. Here, m is a margin parameter, y = 1
if the b1, b2 are similar and 0 otherwise, and λ is a weighting
parameter that controls the strength of the binarization term.
Once trained, the binary codes can be obtained by applying
the sign function.

Deep Triplet Supervised Hashing (DTSH) [14] is an-
other method for getting binary representations. DTSH loss
comes from the likelihood of producing good triplets, where
the similarity between pairs is computed as the inner prod-
uct between the corresponding feature vectors. The loss is
defined as follows:

L(ui, uj , uk) = log(1 + eΘi,j−Θi,k−α)− (Θi,j −Θi,k − α)

+ λ(||bi − ui||22 + ||bj − uj ||22 + ||bk − uk||22)

where Θi,j = 1
2u

T
i uj , bi = sgn(ui), α is the margin

parameter, and λ is a weighting parameter that controls the
strength of the regularizer. Similar to DSH, the third term is
devoted to forcing binary outputs.

The use of reduction techniques over the embeddings
generated by a model is another alternative to produce com-
pact embeddings. For instance, Bui et al.[1] uses Product
Quantization and PCA to get small feature vectors. How-
ever, the precision achieved by the methods is still low.

Dimension reduction techniques can be divided into two
categories: those that try to preserve the original space’s
global structure and those that are more focused on keeping
the space’s local structure. PCA is the most usual method of
the former category; it shows competitive results for small
reduction ratios, but its effectiveness drastically decreases
when the reduction ratio is high. For instance, in the context
of sketch-based retrieval, a reduction from 2048 dimensions
to 8 produces a degradation of about 400% in mAP.

In the second category, t-SNE [13] and UMAP [7] are
methods showing outperforming results. Contrary to PCA,
these methods take into account local information of each
point in the original space. This behavior allows the method
to extract relevant features for each point, which improves
the precision of an image retrieval method. Among this cat-
egory, UMAP has shown to outperform t-SNE, as it pre-
serves more of the global structure with superior run time
performance. Moreover, UMAP is able to scale to larger
dataset sizes.

Therefore, in this work, we present an evaluation study
of compact reduction techniques in the context of sketch-
based image retrieval. We compare binary embeddings and
embedding generated by dimension reduction techniques
as PCA and UMAP. Our results indicate the superiority of
UMAP over the rest of the techniques. Using UMAP allows
us to reduce the features space and increase the precision of
retrieval. We evaluate these methods on two datasets, one
well known by the community and the other related to a

real application in eCommerce. In this manner, we can get
results closer to real applications.

Our results show that we can reduce to 16 bytes improv-
ing precision in both datasets. We observe a precision gain
over 35% in both datasets, passing from 0.42 to 0.57 in
Flickr15K and from 0.14 to 0.19 on eCommerce dataset.
In both datasets the reduction ratio allows to optimize the
used memory as well as time searching significantly, that is
critical for real environments.

3. Compact Representation Methods

In this section, we describe the methods we evaluate to
produce compact representations in the context of sketch-
based image retrieval. We conduct the experiments through
two datasets. The first one, Flick15k, is a public dataset
commonly used in this context; and the other, named eCom-
merce, is closer to real applications like eCommerce search-
ing. The latter dataset is another contribution of this work,
and we will make it public shortly.

All the methods we discuss in this section use a con-
volutional neural network either as a backbone on which
a reduction layer is added or to produce an initial feature
space. To this end, we implemented a baseline model based
on the work of Bui et al. [2]. As our interest is on evaluat-
ing the impact of compact representation methods, we are
not so concerned with replicating the exact results of Bui’s
work, but rather with replicating the methodology followed
by them, which allows us to have effectiveness close to the
state-of-the-art.

The baseline architecture is a siamese network composed
of two backbones. Each backbone is a ResNet-50 [15]
equipped with two fully-connected layers at the head, where
the layer FC2 is responsible for generating the feature vec-
tor given an input image or sketch. This baseline is trained
incrementally, from training both backbones independently
to a training guided by triplets (s, ip, in), where s is the an-
chor sketch, ip is a positive image with respect to s, and in
is a negative image. Similar to the work of Bui et al. [2], we
use Flikcr25K, and Sketchy [12] as training datasets. In our
implementation, the dimension of the feature spaces pro-
duced by the baseline is 2048. Figure 2 depicts an scheme
our baseline architecture.

In the following lines, we describe the methods we im-
plement to produce compact representations.

3.1. In-situ Reduction Layer (RL)

We can produce small representations adding a new
fully-connected layer (FC3) at the end of the baseline and
allowing the model to learn a transformation from FC2’s
outputs to get a smaller embedding. The new layer FC3
should be understood as a reduction layer.
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Figure 2. Baseline architecture used in this work.

3.2. Binary Sigmoid Layer (BSL)

The most straightforward manner to obtain a binary rep-
resentation is by adding a sigmoid function at the network’s
head. Therefore, output values greater than 0.5 will be la-
beled with 1 and the others with 0. We implemented this
approach, adding a sigmoid function after the layer FC2.

3.3. Deep Supervised Hashing (DSH)

In the original paper [5], DSH uses a small network
to learn binary representations. We believe that by using
a deeper network, as our baseline, the retrieval precision
should be maintained or even improved. Thus, we incorpo-
rate a fully connected layer at the end of our baseline whose
size represents the target dimension. Finally, we adapt the
DSH loss defined in Eq. 2 to work with triplets in the fol-
lowing manner:

LDSH(bq, bp, bn) =

1

2
max(0,m− ||bq − bn||22 + ||bq − bp||22)

+ λ(|| |bq| − 1||1
+ || |bp| − 1||1 + || |bn| − 1||1)

where bq , bp, and bn are the embeddings produced by the
network, where the first one is a sketch query and the oth-
ers are the embedding of the positive and negative images,
respectively.

In addition, we add a cross-entropy loss to leverages the
image labels. To this end, we add a classification layer af-
ter the reduction layer. To combine the adapted DSH loss

(LDSH ) and the cross-entropy loss (LCE), we use a weight-
ing parameter α = 0.4. The final loss is defines as follows:

L = α
LDSH
D

+ (1− α)LCE ,

where D is the size of the target feature space.

3.4. Deep Triplet Supervised Hashing (DTSH)

As before, we add a fully connected layer at the end of
the baseline network to get the reduced output. As DTSH
was originally proposed to work with triplets, we do not
need to modify it in order to be plugged into our network.
However, analogously to the DSH approach, the original
loss function is combined with the cross-entropy loss. To
this end, we add a fully-connected layer for classification at
the end of the network producing a final loss as a weighted
sum of both losses. We also normalize the DTSH loss di-
viding it by the size of the target feature space.

3.5. Principal Component Analysis (PCA)

For the sake of completeness, we incorporate PCA as a
method for dimension reduction. This also provides a com-
parison baseline in the context of dimension reduction tech-
niques. We test the goodness of PCA with different target
sizes, and compare its performance against a local-structure
preserving method.

3.6. Uniform Manifold Approximation and Projec-
tion (UMAP)

UMAP is an unsupervised technique for dimension re-
duction that leverages the local structure of the points in the
original space to learn a compact manifold. Keeping the lo-
cal structure of an original space is an important property
for image retrieval methods.

When a reduction method tries to maintain each point’s
neighborhood during the reduction process, it indirectly
finds relevant features. If the original space forms clusters
around each point, the dimension reduction technique will
choose features related to those clusters since it tries to pre-
serve the space’s local topology. Consequently, the reduced
space will pull in points to their corresponding neighbor-
hood. UMAP [7] was developed with this property in mind,
where the local structure of each point is defined based on
its closest neighbors.

UMAP requires two parameters, the size of the neighbor-
hood (K) and the minimum distance apart (min dist) that
points are allowed to be in the low dimensional representa-
tion. Small min dist will create more compact clusters. In
all our experiments we use K = 15, and min dist = 0.1.

4. Experimental Evaluation
In this section, we describe all the experiments we run to

evaluate the goodness of the methods described in Section

4



3. We will describe datasets, the training process, and the
metrics used during the experiments.

4.1. Datasets Description

1. Flickr15K: This public dataset is commonly used for
testing sketch-based retrieval methods. It has a cata-
log of 14,660 regular images (photos) divided into 33
classes related to historical places, objects, animals,
plants, etc. Besides, it has 330 hand-drawn sketches
for querying (10 for each class).

2. eCommerce: We propose this dataset to have a better
understanding of the behavior of SBIR methods in real
applications like eCommerce. We choose this context
because it represents one of the most modern applica-
tions of sketch-based retrieval with massive use.

This dataset is composed of a catalog with 10600 pho-
tos related to products we can find in a eCommerce.
These images are distributed over 133 classes accord-
ing to their shape. The dataset has a diversity of prod-
ucts such as household appliances, clothing, toys, etc.
Figure 3 depicts a sample of photos we can find in this
dataset. Also, we include 665 hand-drawn sketches,
5 per class. To collect the sketches, we ask people
to make a drawing resembling a picture we pick ran-
domly. Figure 4 show a sample of sketch queries we
can find in the eCommerce dataset.

Figure 3. A sample of images in the eCommerce catalog.

4.2. Training Description

To train the reduction methods based on neural networks
(RL, BSL, DSH, DTSH), we extend the baseline with the
modifications discussed above, loading the corresponding
weights and training them for 10 epochs using the Sketchy
dataset [12]. This dataset provides a set of sketches with
their corresponding positive photos. Thus, to form the
triplets required for training the reduction models, we use
the already labeled positive pairs. Then, for each pair we
add a negative photo in an online manner. To this end,

Figure 4. An example of sketch queries in the eCommerce catalog.

we randomly pick, as negative, any image different from
those labeled as positive one with respect to the underlying
sketch. The training was carried out for each target dimen-
sion.

In the case of using the dimension reduction techniques
(PCA and UMAP) we conduct a different strategy. Since
these are unsupervised methods, the transformation they
can learn should be inferred with data following the same
distribution of the testing set. For this purpose, we ap-
ply cross-validation over the Flickr15K and eCommerce
datasets. We divide the image set into three parts, using
two partitions for fitting the transformation and the remain-
ing one for testing. It is important to mention, that only the
photos of the datasets were used for the training process, not
the sketches. The measurements generated by these tech-
niques are computed as an average value after running the
cross-validation procedure.

4.3. Metrics

In this evaluation we consider four metrics :

• mAP: This measures the average precision on retriev-
ing each relevant image for each query. However,
when a query has many relevant objects, the mAP de-
creases drastically as the last retrieved relevant objects
appear far away from the front of the ranking. This
fact does not reflect a real situation, like in the con-
text of eCommerce search engines, where the precision
should be guided by the first relevant objects. Thus, to
have a better approximation of the performance, we in-
clude other metrics. These are Mean Reciprocal Rank
and Recall-Precision. In addition, we also measure the
search time with different dimensions.

• Mean Reciprocal Rank: This measures the precision
of the first retrieved relevant object.

• Recall-Precision: This shows the performance
through a 2D graphic that crosses the recall with preci-
sion. This allows us to have a global view of the perfor-
mance as it depicts the precision achieved by a method
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Flickr15K eCommerce
Baseline 0.421 0.145

Table 1. Mean Average Precision achieved by the baseline in
Flickr15 and eCommerce dataset.

at different levels of recall. In real applications, we
are more interested in seeing the precision for the first
relevant objects (e.g. precision at recall 0.2).

• Time processing : We measure the searching time for
different dimension reduction sizes using UMAP and
PCA.

4.4. Result Analysis

4.4.1 Baseline Performance

We implemented the architecture defined in Section follow-
ing the methodology proposed in the work of Bui [2]. We
tested this baselines model in Flickr15K achieving a mAP
of 0.42. Although the precision is not the same as reported
in the original paper, we consider this is not a critical prob-
lem as we are interested in measuring the impact of compact
reductions against a SOTA baseline. In this work our imple-
mentation of the Bui’s work is considered as the baseline for
all the experiments. Table 1 shows the mAP achieved by of
the baseline in Flickr15K and eCommerce datasets.

4.4.2 Precision

In this section, we report the mAP achieved by the follow-
ing methods: Reduction Layer (RL), Binary Sigmoid Layer
(BSL), Deep Triplet Supervised Hashing (DTSH), Deep
Hashing (DSH), Principal Component Analysis (PCA) and
Uniform Manifold Approximation and Projection (UMAP),
which are described in Section 3.

Table 2 reports the mAP achieved by the proposed meth-
ods in the Flickr15K, and Table 3 presents the results in the
eCommerce dataset. In both cases, UMAP beats the other
methods by a large margin, improving even the baseline’s
performance. Although we present results for different tar-
get dimensions, the main interest of this work is in analyz-
ing the behavior of strategies on low dimensions. In this
case, we observe the good behavior achieved by UMAP for
8 or 4 dimensions, which allows us to represent a feature
vector with 32 bytes and 16 bytes, respectively. Figure 5 il-
lustrates the behavior of the compact methods for different
target dimensions in the Flickr15K dataset.

In both datasets, UMAP allows us to drastically reduce
the size of the feature vectors, from 2048 to 4 dimensions
(16 bytes), and increase the precision up to 35% with re-
spect to the baseline. UMAP achieves a mAP of 0.57 in
Flickr15K and 0.19 in eCommerce dataset. The preserva-
tion of the local topology in the original space plays a key
role in this achievement.

Size RL BSL DTSH DSH PCA UMAP
1024 0.40 - - - 0.39 0.56
512 0.37 - - - 0.39 0.54
256 0.38 - - - 0.40 0.56
128 0.37 - - - 0.40 0.56
64 0.37 0.39 0.19 0.38 0.41 0.55
32 0.32 0.38 0.22 0.34 0.40 0.57
16 0.26 0.38 0.28 0.30 0.37 0.55
8 0.19 0.35 0.31 0.26 0.30 0.55
4 0.18 0.33 0.33 0.25 0.20 0.57

Table 2. Mean Average Precision achieved by different compact
representation methods in the Flickr15K dataset. The first column
is the feature space’s dimension.

Size RL BSL DTSH DSH PCA UMAP
1024 0.13 - - - 0.15 0.15
512 0.12 - - - 0.15 0.16
256 0.12 - - - 0.15 0.16
128 0.12 - - - 0.15 0.16
64 0.10 0.11 0.05 0.13 0.14 0.16
32 0.09 0.11 0.06 0.12 0.13 0.18
16 0.06 0.09 0.08 0.10 0.09 0.21
8 0.5 0.07 0.10 0.08 0.11 0.21
4 0.03 0.05 0.10 0.06 0.06 0.19

Table 3. Mean Average Precision achieved by different compact
representation methods in the eCommerce dataset. The first col-
umn is the feature space’s dimension.

In addition, we can assess the precision of the different
methods for different values of recall through the Recall-
Precision chart. Figures 6 and 7 depict the relation of recall
and precision of UMAP for different target dimensions in
Flickr15K and eCommerce datasets, respectively. In these
charts we observe that for low-recall values, the precision
achieved by the baseline is better, and when we walk to
greater recall UMAP behaves better. This is the effect of
extracting relevant features of local structures. In this way,
objects that felt apart from their corresponding neighbor-
hood in the original space, are attracted to them in the re-
duced space.

We can also observe that UMAP produces better re-
sults in Flickr15K than in eCommerce dataset. This hap-
pens because the baseline’s precision is higher in the for-
mer dataset, which indicates the presence of a better local-
topology. Indeed, better the local-structure better the fea-
tures that UMAP can extract.

To complement this study, we include Tables 4 and 5 that
reports the MRR (mean reciprocal rank) for each method in
Flickr15K and eCommerce dataset, respectively. The re-
sults are coherent with what we see in the Recall-Precision
charts. None of the compact methods beats the baseline’s
performance. The baseline achieves an MRR of 0.714 in
Flickr15K and 0.40 in the eCommerce dataset. Using a
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Figure 5. mAP achieved by the compact methods for different tar-
get dimensions in Flickr15K dataset.

Figure 6. Recall-Precision chart for Flickr15K dataset.

Figure 7. Recall-Precision chart for the eCommerce dataset.

representation of 16 bytes (4 dimensions), UMAP achieves
0.60 in Flick15K and 0.26 in the eCommerce dataset. Even

RL BSL DTSH DSH PCA UMAP
1024 0.68 - - - 0.62 0.59
512 0.62 - - - 0.62 0.60
256 0.63 - - - 0.62 0.62
128 0.60 - - - 0.61 0.60
64 0.62 0.66 0.34 0.67 0.61 0.60
32 0.56 0.64 0.39 063 0.59 0.61
16 0.45 0.62 0.45 0.60 0.54 0.59
8 0.33 0.59 0.47 0.55 0.45 0.59
4 0.30 0.55 0.45 0.53 0.29 0.60

Table 4. MRR of evaluated methods in Flickr15K dataset, where
MRR of baseline is 0.714.

RL BSL DTSH DSH PCA UMAP
1024 0.38 - - - 0.39 0.21
512 0.36 - - - 0.38 0.21
256 0.36 - - - 0.38 0.20
128 0.34 - - - 0.38 0.21
64 0.30 0.32 0.19 0.40 0.37 0.21
32 0.27 0.34 0.19 0.37 0.32 0.23
16 0.17 0.30 0.21 0.34 0.26 0.28
8 0.13 0.27 0.23 0.27 0.23 0.29
4 0.09 0.20 0.21 0.24 0.10 0.26

Table 5. MRR of evaluated methods in eCommerce dataset, where
MRR of baseline is 0.40.

though UMAP experiments a degradation of performance
for low-level recall, it is still better than the other competi-
tors.

4.4.3 UMAP Drawbacks

The most important disadvantage of using UMAP is its non-
parametric nature. This brings an extra cost for transform-
ing the query into a reduced space. However, as we can
see in Figure 8, when we are in low-dimension space, lower
than 16 dimensions, the transformation cost is negligible.

The non-parametric property of UMAP requires an ad-
ditional space to store the mapping between the original
space and the target space. It could limit its applicability
to real contexts. However, we observe that to understand de
local-structure of the original space, UMAP requires only
a portion of the complete catalog. How much data UMAP
requires depends on the variability of the data set. For in-
stance, in the Flickr15K dataset, UMAP beats the baseline
using up to 10% of the data. Figure 9 illustrates the perfor-
mance of UMAP using different portions of the Flickr15K
dataset for training.

Finally, in Table 6, we also compare our proposal versus
published results in the Flickr15K dataset. We note that our
proposal based on UMAP improves the precision using very
a low dimension, 16 bytes, which provides great impact in
real applications.
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Figure 8. Searching time for different target dimensions in the
Flickr15K dataset. This includes query time transformation.

Figure 9. mAP achieved by UMAP in Flickr15K training UMAP
with different portions of the complete dataset.

Method Size (bytes) mAP
Mulitregression [2] 1024 0.53
Compact Representation [1] 7 0.22
Compact Representation [1] 400 0.25
Ours (UMAP) 16 0.57

Table 6. mAP achieved by state-of-the-art methods on sketch-
based image retrieval.

4.4.4 Qualitative Results

To visually understand the goodness of the UMAP reduc-
tion technique, we add qualitative results. Figures 10 and
11 show example of retrieval in the Flickr15K dataset, with
the baseline method and UMAP, respectively. While Fig-
ures 12 and 13 show example of retrieval in the eCommerce
dataset, with the baseline method and UMAP, respectively.
We observe that in both cases, UMAP increases the preci-
sion after retrieving the first 15 results. Figure 11 shows the

effectiveness of the UMAP based method to retrieve more
images of Triumphal arch, while Figure 13 shows how the
same method retrieves more baby bottles.

Figure 10. An example of retrieval in the Flickr15K dataset with
the baseline method.

Figure 11. An example of retrieval in the Flickr15K dataset with
the UMAP method.

Figure 12. An example of retrieval in the eCommerce dataset with
the original method.

Figure 13. An example of retrieval in the eCommerce dataset with
the UMAP method.

5. Conclusions

In this work, we present an evaluation study of different
methods to get compact representations in the context of
sketch-based image retrieval. We also present a new dataset
that represents a real application. This dataset is related to
the eCommerce environment, where querying by sketches
brings great opportunities. Our experimental results show
the superior performance of UMAP, allowing us to work
with feature vectors of 16 bytes and increasing the preci-
sion achieved by a SOTA baseline in 35% in both datasets,
Flickr15K and the one proposed in this work.
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