
Design Document for:

IPCNet
Inter-Process Communication Network Library

“In processes we trust.”™

Written by robowaifu engineers on /robowaifu/

Version 0.1

Thursday, April 16, 2020

https://julay.world/robowaifu/

IPCNet Design Document

Contents

“Are you the one just for me?” – Chii

DESIGN HISTORY..4

VERSION 1.0...4

PROJECT OVERVIEW..5

COMMON QUESTIONS..5

What is the project?...5

Why create this project?..5

What do processes control?...5

What is it intended for?..5

What is the main focus?...5

What’s different?..5

DEVELOPMENT PHILOSOPHY..6

Simple design...6

Robust and fail-safe...6

More design goals to be added here..6

PROJECT REQUIREMENTS..7

DATA TRANSFER..7

MODULARITY...7

FAULT TOLERANCE..8

SECURITY..9

Permissions..9

Process Groups...9

Denial of Service mitigation...9

Compromised Systems...9

FEATURE SET..10

GENERAL FEATURES..10

IMPLEMENTATION...11

TOP SEKRET Version 1.0 2

IPCNet Design Document

BOOTING..11

EVENT-DRIVEN INTERFACE..11

NETWORKING...11

IPC Sockets...11

Network Sockets..11

SECURITY..11

STATUS CODES..11

Success..11

Client Errors...12

Service Errors...12

Custom Status Codes...12

SYSTEM SHUTDOWN..12

MEMORY MANAGEMENT...13

LANGUAGE BINDINGS..13

DISCUSSION...14

FAIL-SAFETY..14

QUICK-RUN-DOWN APPENDIX..15

MODULARITY...15

MESSAGING I...15

MESSAGING II..15

COMPONENT LIBRARIES..16

ADAPTABILITY AND COLLABORATION...16

NOT NEED TO BE A ONE-MAN ARMY..17

TOP SEKRET Version 1.0 3

IPCNet Design Document

Design History

This is a brief summary of the history of this document and a space for explaining

changes and their motivations in later versions as the design develops.

Version 1.0

Version 1.0 is just a rough initial draft. Details may be missing, erroneous or need to be

filled in. The project is not ready for development yet and the details of its implementation

may change dramatically in future versions.

TOP SEKRET Version 1.0 4

IPCNet Design Document

Project Overview

Common Questions

What is the project?

IPCNet is a proposed parallel computing library that provides an easy-to-use interface

for processes implemented in different languages across many platforms to share their data

and provide data services to each other.

Why create this project?

Developers require a way to focus on building projects they find interesting and

affordable to make, while others can quickly drop these components into their own robowaifu

project.

What do processes control?

Processes have control over their data and subroutines and define the permissions and

rules which they may be accessed, modified and executed. Processes may implement their

own whitelists and blacklists, rate limits and usage limits. When processes query or request

data it is just that, a request. Other processes do not have to fulfill it.

What is it intended for?

IPCNet is intended for parallel processes working together in collaboration, such as the

components of a robot plugged into each other. IPCNet is not intended for programs with

tightly coupled dependencies. When a process requests data there may be multiple processes

available to fulfill the request.

What is the main focus?

The main focus is to connect developers’ projects together and unite them with a single

interface.

What’s different?

IPC libraries that exist are specific to one or two programming languages and are not

easy for developers to quickly include into their projects and interface processes across

different languages or even different platforms. Parallel computing and grid computing

software is often tooled for special purposes and are not intended for general use either.

IPCNet provides a way for all kinds of processes and systems to interact, safely and quickly.

TOP SEKRET Version 1.0 5

IPCNet Design Document

Development Philosophy

Simple design

IPCNet should be simple in its implementation and its interface. The interface should

work the same across all platforms and programming languages and parse communicated

data into a proper format that the receiving process can readily use. The library and processes

that use it should not obfuscate their subroutines beyond what is sensible for security and fail-

safety.

Robust and fail-safe

IPCNet needs to be robust, fault tolerant and fail-safe. Data coming in through various

input methods may contain errors from interference or malice and need to be corrected or

discarded. Errors and failures should be handled gracefully and degrade the system in a way

that will cause minimal harm to the equipment, other equipment, to the environment and to

people. The library and processes implementing the library should consider the following

questions:

1. How critical is the component/process?

2. How likely is the component/process to fail?

3. How can the component/process be made fault tolerant?

4. How can the component/process be designed to reduce impact and damage to the rest

of the system in the event of failure?

More design goals to be added here

TOP SEKRET Version 1.0 6

“ Relying on complex tools to manage and build your system is going to

hurt the end users. [...] "If you try to hide the complexity of the system,

you'll end up with a more complex system". Layers of abstraction that

serve to hide internals are never a good thing. Instead, the internals

should be designed in a way such that they NEED no hiding.

— Aaron Griffin ”

IPCNet Design Document

Project Requirements

Data Transfer

All forms of data should be transmittable over the network with low-latency and high-

throughput. Some forms of data that need to be carefully considered:

1. Variables of various data types passed to subroutines and returned

2. Data structures

3. AI tensor data (different libraries need to be able to exchange tensor data)

4. Streaming video, raw and encoded

5. Streaming audio, raw and encoded

6. Other sensor data, such as haptic sensors and LIDAR

7. Files

Beyond subroutine parameters, data types will need to be properly annotated with

further metadata, describing the encoding of the data so it can be properly decoded and read

by other processes.

All data transmitted over the network needs to be checked for integrity, both of

malicious intent and errors caused by possible interference. Data should be traceable to its

source and correctly marked indicating which processes modified it and in which order, so

data pipelines can be quickly inspected and debugged. Historical changes to the data should

be available in debug mode.

Modularity

Processes connected together through IPCNet should be easily separated and

recombined, with the benefit of flexibility and a variety of choice in data and service providers.

However, in the spirit of simple design these processes should not hide their complexity

behind the interface beyond what is reasonable for security and safety to ensure the re-

usability and versatility of these programs.

TOP SEKRET Version 1.0 7

IPCNet Design Document

Fault Tolerance

1. No single point of failure – If a system experiences a failure, it must continue to

operate without interruption during the repair process.

2. Fault isolation to the failing component – When a failure occurs, the system must

be able to isolate the failure to the offending component.

3. Fault containment to prevent propagation of the failure – Some failure

mechanisms can cause a system to fail by propagating the failure to the rest of the

system. Mechanisms that can isolate a rogue component or failing component when it

is unable to contain a fault are required to protect the system.

4. Availability of reversion modes – the abandonment of one or more recent changes

in favor of a return to a previous version. If a component update breaks the system, it

should revert back to the last working version.

TOP SEKRET Version 1.0 8

IPCNet Design Document

Security

If someone wants to intercept data of an IPC socket, they're effectively tampering with

a low-level mechanism part of the core operating system. If an attacker is able to do this, then

the device has already been compromised.

Some processes may have access to the internet and potentially be exploited to create

malicious requests within the IPC network or become fully compromised by arbitrary code

execution. Additionally, any process could connect to the IPCNet and send malicious requests

not created through the IPCNet library. Potentially rogue processes need to be identified,

mitigated and isolated. Inputs from requests need to be sanitized and bad requests refused.

Permissions

Process routines registered on the network should have explicitly defined read, write

and execution permissions for processes and process groups.

Process Groups

Processes can register processes into groups and give them their own permissions.

Denial of Service mitigation

1. Identify normal conditions for network traffic

2. Filter malicious traffic (connection tracking, component reputation lists,
black/whitelisting, or rate limiting)

Compromised Systems

If a system is compromised by an attacker there is no way to verify the trustworthiness

of processes. Data may be modified or processes abruptly shutdown by an attacker with intent

to cause damage or harm. Checks should be in place to detect compromised states and

shutdown safely.

TOP SEKRET Version 1.0 9

IPCNet Design Document

Feature Set

General Features

P2P networking for processes – connected processes form a mesh network and can

communicate with each other even if they’re not directly connected.

Announce data – processes can announce to the network their data and data services.

Find data and data services – processes can search the network for data and other

processes providing data services.

Query data – processes can query data that other processes already have in memory or on

disk and have made available.

Subscribe to data and data services – processes can subscribe to data and receive new

updates whenever it is changed, or subscribe to services that provide a stream of data,

continuously or at regular or irregular intervals.

Offer service – processes can provide data services to other processes to execute and

produce new data on request. These services may be public or private.

Request service – processes can request data providers to execute subroutines that produce

new data.

TOP SEKRET Version 1.0 10

IPCNet Design Document

Implementation

To be written at a later date.

Booting

To be written at a later date.

Event-driven Interface

1. How can we guarantee low-latency and high-throughput?

2. How can we minimize metadata, network chatter and bandwidth?

Subroutine identifier

Subroutine return type

Arguments

Argument type

Metadata

To be written at a later date.

Networking

IPC Sockets

Essential.

Network Sockets

Non-essential. To be implemented at a later date.

Security

To be written at a later date.

Status Codes

Incomplete list, to be written at a later date.

TOP SEKRET Version 1.0 11

IPCNet Design Document

Success

100 OK

101 Created

102 Accepted

103 No Data

104 Partial Data

TOP SEKRET Version 1.0 12

IPCNet Design Document

Client Errors

200 Bad Request

201 Unauthorized

202 Forbidden

203 Not Found

204 Method Not Allowed

205 Too Many Requests

206 Upgrade Required

Service Errors

300 Internal Process Error

301 Not Implemented

302 Bad Gateway

303 Service Unavailable

304 Gateway Timeout

305 IPCNet Version Not Supported

306 Insufficient Storage

307 Insufficient Memory

308 Loop Detected

309 Network Authentication Required

Custom Status Codes

To be written at a later date.

System Shutdown

1. How can we gracefully shutdown the system? A robot may need to move to a safe

location and shutdown in a way that does not cause damage to the components, other

equipment near it, the environment or nearby people.

2. How can we gracefully shutdown a compromised system? An attacker who has

compromised a device in the network may modify data or shut it down with intent to

cause damage or harm.

TOP SEKRET Version 1.0 13

IPCNet Design Document

Memory Management

To be written at a later date.

Language Bindings

1. C/C++

2. Python

i. Pytorch

ii. Tensorflow

TOP SEKRET Version 1.0 14

IPCNet Design Document

Discussion

A summary of questions asked in the design document.

Fail-safety

1. How critical is the component/process?

2. How likely is the component/process to fail?

3. How can the component/process be made fault tolerant?

4. How can the component/process be designed to reduce impact and damage to the rest

of the system in the event of failure?

5. How can we gracefully shutdown the system?

6. How can we gracefully shutdown a compromised system?

TOP SEKRET Version 1.0 15

IPCNet Design Document

Quick-run-down Appendix

In case anything was missed in the design document.

Modularity

Things must be swappable and interface with each other

Modularity will be really important.

We need a library and protocol or at least a guideline for networking components

together, both hardware and software.

That way people can work on building different parts they find interesting and can

afford to make, while others can quickly drop these components into their own

robowaifu project.

Good modularity will help ensure different components work well together.

Messaging I

Components need to communicate together properly

Low latency, high throughput systems are needed.

Will need to be able to pass large amounts of data around, such as AI tensor data and

video data.

Communications needs to be seamless across hardware and software boundaries.

Similar to an IoT, but not on the Internet.

Local data is stored within components, and shared with the rest of the internal

robowaifu ’cloud’ in a standardized way.

Discoverable interfaces, so other components can easily find, query, subscribe to, and

request what they need from each other.

Messaging II

Communications channels need to ensure integrity

TOP SEKRET Version 1.0 16

IPCNet Design Document

Where messages came from.

Who modified messages.

Where messages are going.

Workaround communications bottlenecks, like the Internet does.

Workaround rogue/misbehaving components that have been haxxored/damaged in

some way.

Workaround RF or other forms of interference.

Component libraries

Uniform software interfaces between components

C extern ABIs for consistency and provision of bindings to other languages.

This will enable loosely-coupled collaboration to proceed more smoothly.

For example;

1. One anon could develop a chatbot.

2. Another could develop their own in another language.

3. They could quickly interface the two programs to each other in a few lines of code

and have them banter for fun.

4. Another dev could focus on making a visual waifu program.

5. Then another anon could combine everything together through the component

libraries to create two visual waifus bantering with each other. All without the devs

having to directly collaborate with each other on each other’s project development.

Adaptability and Collaboration

The system must adapt to changing conditions and share workloads

Components will need to be able to collaborate with other components.

For example, a left-hand component will need a way to communicate with the right-

hand component and coordinate their efforts.

TOP SEKRET Version 1.0 17

IPCNet Design Document

If a component becomes damaged or otherwise inhibited, the other components–and

the system overall–should contain enough intelligence to adapt to this loss of

component functionality.

Even if all the pertinent data isn’t immediately available, a component will still have to

collaborate with other components. This means a component must be able to accept

queries by remote components.

Not need to be a one-man army

Anons being able to specialize in their areas of interest will be the key to progress and

success.

Having a reliable, modular system will open up ways for anons to collaborate with each

other’s work and allow each to contribute from their own interests.

Let’s have some fun with this!

TOP SEKRET Version 1.0 18

	Design History
	Version 1.0

	Project Overview
	Common Questions
	What is the project?
	Why create this project?
	What do processes control?
	What is it intended for?
	What is the main focus?
	What’s different?

	Development Philosophy
	Simple design
	Robust and fail-safe
	More design goals to be added here

	Project Requirements
	Data Transfer
	Modularity
	Fault Tolerance
	Security
	Permissions
	Process Groups
	Denial of Service mitigation
	Compromised Systems

	Feature Set
	General Features

	Implementation
	Booting
	Event-driven Interface
	Subroutine identifier
	Subroutine return type
	Arguments
	Argument type

	Metadata
	Networking
	IPC Sockets
	Network Sockets

	Security
	Status Codes
	Success
	Client Errors
	Service Errors
	Custom Status Codes

	System Shutdown
	Memory Management
	Language Bindings

	Discussion
	Fail-safety

	Quick-run-down Appendix
	Modularity
	Messaging I
	Messaging II
	Component libraries
	Adaptability and Collaboration
	Not need to be a one-man army

