Data Structures and Algorithms
with Object-Oriented Design Patterns in C++

Data Structures and Algorithms
with Object-Oriented Design Patterns in C++

Bruno R. Preiss
B.A.Sc.,, M.A.Sc., Ph.D., P.Eng.

Associate Professor
Department of Electrical and Computer Engineering
University of Waterloo, Waterloo, Canada

MMI

Copyright (©) 2001 by Bruno R. Preiss.

All rights reserved. No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
author.

This book was prepared with IXITEX and reproduced from camera-ready copy sup-
plied by the author. The book is typeset using the Computer Modern fonts designed
by Donald E. Knuth with various additional glyphs designed by the author and im-
plemented using METAFONT.

METAFONT is a trademark of Addison Wesley Publishing Company.
SPARCstation, Solaris, and Java are registered trademarks of Sun Microsystems.
TgX is a trademark of the American Mathematical Society.

UNIX is a registered trademark of AT&T Bell Laboratories.

To my children,
Anna Kristina,
Katherine Lila

and
Alexander Edgar

Contents

Preface xi
1 Introduction 1
1.1 What This Book Is About 1
1.2 Object-Oriented Design 1
1.3 Object Hierarchies and Design Patterns 2
1.4 The Features of C++ You Need to Know 3
1.5 How This Book Is Organized 4
2 Algorithm Analysis 7
2.1 A Detailed Model of the Computer 8
2.2 A Simplified Model of the Computer 21
Exercises 30
Programming Projects L o 32
3 Asymptotic Notation 33
3.1 An Asymptotic Upper Bound—Big Oh 33
3.2 An Asymptotic Lower Bound—Omega 43
3.3 More Notation—Theta and Little Oh 46
3.4 Asymptotic Analysis of Algorithms 46
Exercises 58
Programming Projects 00000 60
4 Foundational Data Structures 63
4.1 Dynamic Arrays 63
4.2 Singly-Linked Lists L oo 70
4.3 Multi-Dimensional Arrays 80
Exercises 88
Programming Projects Lo 0oL 89
5 Data Types and Abstraction 91
5.1 Abstract Data Types 91
5.2 Design Patterns Lo oo 92
Exercises 115
Programming Projects Lo oL 117

vii

viii

Contents

Stacks, Queues and Deques

6.1 Stacks
6.2 Queues.
6.3 Deques.
Exercises
Programming Projects

Ordered Lists and Sorted Lists

7.1 Ordered Lists
7.2 Sorted Lists
Exercises
Programming Projects

Hashing, Hash Tables and Scatter Tables

8.1 Hashing—The Basic Idea
8.2 Hashing Methods
8.3 Hash Function Implementations
84 Hash Tables
8.5 Scatter Tables
8.6 Scatter Table using Open Addressing
8.7 Applications L oo
Exercises L
Programming Projects
Trees

9.1 Basics
9.2 N-ary Trees
9.3 Binary Trees
9.4 Tree Traversals
9.5 Expression Trees
9.6 Implementing Trees
Exercises
Programming Projects

10 Search Trees
10.1 Basics
10.2 Searching a Search Tree
10.3 Average Case Analysis
10.4 Implementing Search Trees
10.5 AVL Search Trees.
10.6 M-Way Search Trees
10.7 B-Trees
10.8 Applications L
Exercises o
Programming Projects

Contents

ix

11

12

13

14

15

Heaps and Priority Queues

11.1 Basics o o o e
11.2 Binary Heaps e
11.3 Leftist Heaps
11.4 Binomial Queues
11.5 Applications
Exercises
Programming Projectso oL

Sets, Multisets and Partitions

12.1 Basicso
12.2 Array and Bit-Vector Sets L L.
12.3 Multisets L
12.4 Partitions
12.5 Applications
Exercises
Programming Projects Lo 0oL

Dynamic Storage Allocation

13.1 Basicso
13.2 Singly Linked Free Storage
13.3 Doubly Linked Free Storage
13.4 Buddy System for Storage Management
13.5 Applications
Exercises
Programming Projects o oo

Algorithmic Patterns and Problem Solvers

14.1 Brute-Force and Greedy Algorithms
14.2 Backtracking Algorithms o000,
14.3 Top-Down Algorithms: Divide-and-Conquer
14.4 Bottom-Up Algorithms: Dynamic Programming
14.5 Randomized Algorithms
Exercises
Programming Projectso

Sorting Algorithms and Sorters

15.1 Basics
15.2 Sorting and Sorters Lo
15.3 Insertion Sorting
15.4 Exchange Sorting o
15.5 Selection Sorting
15.6 Merge Sorting
15.7 A Lower Bound on Sorting
15.8 Distribution Sorting L oL L
15.9 Performance Data
Exercises
Programming Projects Lo

331
331
333
342
349
362
366
367

369
370
371
378
384
395
397
399

401
401
407
413
421
429
432
433

435
435
438
447
456
464
472
475

Contents

16 Graphs and Graph Algorithms

16.1 Basics
16.2 Implementing Graphs
16.3 Graph Traversals
16.4 Shortest-Path Algorithms
16.5 Minimum-Cost Spanning Trees
16.6 Application: Critical Path Analysis
Exercises
Programming Projects L.

A C++ and Object-Oriented Programming

A.1 Variables, Pointers and References
A.2 Parameter Passing
A.3 Objects and Classes
A4 Inheritance and Polymorphism
A5 Templates
A6 Exceptions

B Class Hierarchy Diagrams
C Character Codes

Index

581

........ 581
........ 584
........ 586
........ 592
........ 600
........ 602

605

607

612

Preface

This book was motivated by my experience in teaching the course E&CE 250: Algo-
rithms and Data Structures in the Computer Engineering program at the University
of Waterloo. I have observed that the advent of object-oriented methods and the
emergence of object-oriented design patterns has lead to a profound change in the
pedagogy of data structures and algorithms. The successful application of these
techniques gives rise to a kind of cognitive unification: Ideas that are disparate and
apparently unrelated seem to come together when the appropriate design patterns
and abstractions are used.

This paradigm shift is both evolutionary and revolutionary. On the one hand,
the knowledge base grows incrementally as programmers and researchers invent
new algorithms and data structures. On the other hand, the proper use of object-
oriented techniques requires a fundamental change in the way the programs are
designed and implemented. Programmers who are well schooled in the procedural
ways often find the leap to objects to be a difficult one.

Goals

The primary goal of this book is to promote object-oriented design using C++ and
to illustrate the use of the emerging object-oriented design patterns. Experienced
object-oriented programmers find that certain ways of doing things work best and
that these ways occur over and over again. The book shows how these patterns are
used to create good software designs. In particular, the following design patterns
are used throughout the text: singleton, container, iterator, adapter and wvisitor.

Virtually all of the data structures are presented in the context of a single,
unified, polymorphic class hierarchy. This framework clearly shows the relationships
between data structures and it illustrates how polymorphism and inheritance can
be used effectively. In addition, algorithmic abstraction is used extensively when
presenting classes of algorithms. By using algorithmic abstraction, it is possible
to describe a generic algorithm without having to worry about the details of a
particular concrete realization of that algorithm.

A secondary goal of the book is to present mathematical tools just in time.
Analysis techniques and proofs are presented as needed and in the proper context.
In the past when the topics in this book were taught at the graduate level, an author
could rely on students having the needed background in mathematics. However,
because the book is targeted for second- and third-year students, it is necessary
to fill in the background as needed. To the extent possible without compromising
correctness, the presentation fosters intuitive understanding of the concepts rather
than mathematical rigor.

xi

xii

Preface

Approach

One cannot learn to program just by reading a book. It is a skill that must be
developed by practice. Nevertheless, the best practitioners study the works of others
and incorporate their observations into their own practice. I firmly believe that after
learning the rudiments of program writing, students should be exposed to examples
of complex, yet well-designed program artifacts so that they can learn about the
designing good software.

Consequently, this book presents the various data structures and algorithms as
complete C++ program fragments. All the program fragments presented in this
book have been extracted automatically from the source code files of working and
tested programs.

The full functionality of the proposed draft ANSI standard C++ language is used
in the examples—including templates, exceptions and run-time type information|[3].
It has been my experience that by developing the proper abstractions, it is possible
to present the concepts as fully functional programs without resorting to pseudo-
code or to hand-waving.

Outline

This book presents material identified in the Computing Curricula 1991 report of
the ACM/IEEE-CS Joint Curriculum Task Force[38]. The book specifically ad-
dresses the following knowledge units: AL1: Basic Data structures, AL2: Abstract
Data Types, AL3: Recursive Algorithms, AL4: Complexity Analysis, AL6: Sorting
and Searching, and AL8: Problem-Solving Strategies. The breadth and depth of
coverage is typical of what should appear in the second or third year of an under-
graduate program in computer science/computer engineering.

In order to analyze a program, it is necessary to develop a model of the computer.
Chapter 2 develops several models and illustrates with examples how these models
predict performance. Both average-case and worst-case analyses of running time
are considered. Recursive algorithms are discussed and it is shown how to solve a
recurrence using repeated substitution. This chapter also reviews arithmetic and
geometric series summations, Horner’s rule and the properties of harmonic numbers.

Chapter 3 introduces asymptotic (big-oh) notation and shows by comparing
with Chapter 2 that the results of asymptotic analysis are consistent with models
of higher fidelity. In addition to O(-), this chapter also covers other asymptotic no-
tations (Q(-), ©(-) and o(+)) and develops the asymptotic properties of polynomials
and logarithms.

Chapter 4 introduces the foundational data structures—the array and the linked
list. Virtually all the data structures in the rest of the book can be implemented
using either one of these foundational structures. This chapter also covers multi-
dimensional arrays and matrices.

Chapter 5 deals with abstraction and data types. It presents the recurring
design patterns used throughout the text as well a unifying framework for the
data structures presented in the subsequent chapters. In particular, all of the data
structures are viewed as abstract containers.

Chapter 6 discusses stacks, queues and deques. This chapter presents imple-
mentations based on both foundational data structures (arrays and linked lists).
Applications for stacks and queues and queues are presented.

Preface

xiii

Chapter 7 covers ordered lists, but sorted and unsorted. In this chapter, a list is
viewed as a searchable container. Again several applications of lists are presented.

Chapter 8 introduces hashing and the notion of a hash table. This chapter
addresses the design of hashing functions for the various basic data types as well as
for the abstract data types described in Chapter 5. Both scatter tables and hash
tables are covered in depth and analytical performance results are derived.

Chapter 9 introduces trees and describes their many forms. Both depth-first and
breadth-first tree traversals are presented. Completely generic traversal algorithms
based on the use of the visitor design pattern are presented, thereby illustrating the
power of algorithmic abstraction. This chapter also shows how trees are used to rep-
resent mathematical expressions and illustrates the relationships between traversals
and the various expression notations (prefix, infix and postfix).

Chapter 10 addresses trees as searchable containers. Again, the power of algo-
rithmic abstraction is demonstrated by showing the relationships between simple
algorithms and balancing algorithms. This chapter also presents average case per-
formance analyses and illustrates the solution of recurrences by telescoping.

Chapter 11 presents several priority queue implementations, including binary
heaps, leftist heaps and binomial queues. In particular this chapter illustrates how
a more complicated data structure (leftist heap) extends an existing one (tree).
Discrete-event simulation is presented as an application of priority queues.

Chapter 12 covers sets and multisets. Also covered are partitions and disjoint
set algorithms. The latter topic illustrates again the use of algorithmic abstraction.

Techniques for dynamic storage management are presented in Chapter 13. This
is a topic that is not found often in texts of this sort. However, the features of
C++ which allow the user to redefine the new and delete operators make this topic
approachable.

Chapter 14 surveys a number of algorithm design techniques. Included are
brute-force and greedy algorithms, backtracking algorithms (including branch-and-
bound), divide-and-conquer algorithms and dynamic programming. An object-
oriented approach based on the notion of an abstract solution space and an ab-
stract solver unifies much of the discussion. This chapter also covers briefly random
number generators, Monte Carlo methods, and simulated annealing.

Chapter 15 covers the major sorting algorithms in an object-oriented style based
on the notion of an abstract sorter. Using the abstract sorter illustrates the rela-
tionships between the various classes of sorting algorithm and demonstrates the use
of algorithmic abstractions.

Finally, Chapter 16 presents an overview of graphs and graph algorithms. Both
depth-first and breadth-first graph traversals are presented. Topological sort is
viewed as yet another special kind of traversal. Generic traversal algorithms based
on the wvisitor design pattern are presented, once more illustrating algorithmic ab-
straction. This chapter also covers various shortest path algorithms and minimum-
spanning-tree algorithms.

At the end of each chapter is a set of exercises and a set of programming projects.
The exercises are designed to consolidate the concepts presented in the text. The
programming projects generally require the student to extend the implementation
given in the text.

xiv

Preface

Suggested Course Outline

This text may be used in either a one semester or a two semester course. The course
which I teach at Waterloo is a one-semester course that comprises 36 lecture hours
on the following topics:

1. Review of the fundamentals of programming in C++ and an overview of object-
oriented programming with C++. (Appendix A). [4 lecture hours].

2. Models of the computer, algorithm analysis and asymptotic notation (Chap-
ters 2 and 3). [4 lecture hours].

3. Foundational data structures, abstraction and abstract data types (Chapters 4
and 5). [4 lecture hours].

4. Stacks, queues, ordered lists and sorted lists (Chapters 6 and 7). [3 lecture
hours].

5. Hashing, hash tables and scatter tables (Chapter 8). [3 lecture hours].
Trees and search trees (Chapters 9 and 10). [6 lecture hours].
Heaps and priority queues (Chapter 11). [3 lecture hours].

Algorithm design techniques (Chapter 14). [3 lecture hours].

© »® e

Sorting algorithms and sorters (Chapter 15). [3 lecture hours].

10. Graphs and graph algorithms (Chapter 16). [3 lecture hours].

Depending on the background of students, a course instructor may find it nec-
essary to review features of the C++ language. For example, an understanding of
templates is required for the foundational data structures discussed in Chapter 4.
Similarly, students need to understand the workings of classes and inheritance in
order to understand the unifying class hierarchy discussed in Chapter 5.

Online Course Materials

Additional material supporting this book can be found on the world-wide web at
the URL:

http://www.pads.uwaterloo.ca/Bruno.Preiss/books/opuséd

In particular, you will find there the source code for all the program fragments in
this book as well as an errata list.

o

Waterloo, Canada
May 22, 1998

