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Abstract— This paper describes the development of a system
for lifelike gaze in human-robot interactions using a humanoid
Audio-Animatronics® bust. Previous work examining mutual
gaze between robots and humans has focused on technical im-
plementation. We present a general architecture that seeks not
only to create gaze interactions from a technological standpoint,
but also through the lens of character animation where the
fidelity and believability of motion is paramount; that is, we
seek to create an interaction which demonstrates the illusion of
life. A complete system is described that perceives persons in
the environment, identifies persons-of-interest based on salient
actions, selects an appropriate gaze behavior, and executes high
fidelity motions to respond to the stimuli. We use mechanisms
that mimic motor and attention behaviors analogous to those
observed in biological systems including attention habituation,
saccades, and differences in motion bandwidth for actuators.
Additionally, a subsumption architecture allows layering of sim-
ple motor movements to create increasingly complex behaviors
which are able to interactively and realistically react to salient
stimuli in the environment through subsuming lower levels of
behavior. The result of this system is an interactive human-robot
experience capable of human-like gaze behaviors.

I. INTRODUCTION

Animatronic figures, more commonly known as anima-
tronics, combine robotics with audio and visual elements to
create a life-like character. Disney proprietary animatronics –
referred to as Audio-Animatronics® figures – are extensively
used in Disney theme parks to create repeatable shows and
storytelling involving animal or human characters, providing
consistent entertainment for guests. To achieve human-
realistic behaviors on these types of robots, animators must
manually design and refine trajectories to create fluid motions.
Although preventing these behaviors from descending into
the uncanny valley, this limits humanoid animatronics to
performing non-interactive, scripted shows.

As off-the-shelf robotic sensing and actuation capabilities
improve, there are increased opportunities for animatronic
platforms to create more entertainment and engagement.
Such animatronics can directly engage and interact with
people to produce deeper immersion in storytelling. To
advance the state-of-the-art of these robot figures, we aim to
create interactive experiences that are human-like, dynamic,
engaging and responsive.

To produce immersive and authentic shows, animatronic
systems are required to create the illusion of life. In pursuit
of this goal, we focus here on a single social cue: eye gaze.

Fig. 1. Audio-Animatronics® bust used to demonstrate the gaze system.

Gaze has been shown to be a key social signal, shaping
perceptions of interaction partners. For example, people who
make more eye contact with us are perceived to be similar
to us, as well as more intelligent, conscientious, sincere, and
trustworthy [1], [2], [3]. Furthermore, gaze appears to also
convey complex social and emotional states [4], [5].

Given the importance of gaze in social interactions as well
as its ability to communicate states and shape perceptions,
it is apparent that gaze can function as a significant tool for
an interactive robot character. Thus, the aim of this work is
to develop a system to emulate human-like mutual gaze. In
this paper, we present an architecture that can be used to



provide a robotic platform, shown in Fig. 1, with believable
human-like gaze behaviors when interacting with groups of
people.

This work seeks to combine the technical implementation
of robot gaze with aspects of animation and show to create an
illusion of life. We have specifically chosen to design robot
gaze behavior using this approach rather than one grounded
in human psychomotor behavior as we posit that animation
offers a simpler framework for creating robot characters: it
aims to focus on the appearance of behaviors rather than
attempting to mimic the complex underlying mechanisms of
human actions. Additionally, animation is more forgiving in
that it allows for exaggerations of human qualities to create
memorable and enjoyable characters.

As such, much of this work draws upon principles used by
animators to bring cartoon characters to life [6], including the
usage of ‘arcs’ (natural motion following an arched trajectory),
‘overlapping action’ and ‘drag’ (tendency for different body
parts to move at different timings or frequencies), and ‘slow in
and slow out’ (acceleration and deceleration at the beginning
and end of actions, respectively). Such traditional animation
techniques form the foundation for our method of inducing
realism for our robot character.1

II. PRIOR WORK

The introduction outlined the importance of eye gaze for
interactions between humans. These social functions of eye
gaze also transfer to interactions between humans and robots.
It has been established that people accurately perceive where
robots are gazing [7]. Additionally, human-like gaze cues can
be used to improve the perceived quality of interactions, such
as in human-robot handovers [8].

Given the importance of eye gaze for interactions, re-
searchers have focused not only on potential psychological
effects that robot gaze cues might have on humans, but also
on automated methods for generating believable eye gaze.
One early example of such work comes from Breazeal and
Scassellati [9]. Their attention mechanism relied on face,
color, and motion detection, with an additional habituation
input. These inputs were weighted by the motivations and
emotions of their robot, ultimately resulting in a decision
about whether to look at a person or a toy. The work that
we present here shares the bottom-up approach of combining
lower-level percepts to influence higher-level behaviors. More
recently, Zaraki et al. implemented a context-dependent social
gaze-control system implemented as part of a humanoid social
robot [10]. The work presented in this paper also has some
parallels with their research - particularly with relation to the
use of proxemics, habituation and attention modeling.

Other prior work has used visual saliency, modeled after
the way that human vision works [11], [12]. Vijayakumar et
al. developed a system that uses a winner-take-all network to
produce a saliency map from visual features [12]. However

1This work describes a robot system that is intended to create visually
appealing movements. It is recommended to view the video supplementing
this manuscript to gain a better understanding of the contribution of the
work.

this presents challenges in ignoring robot self-motion, as well
as stabilizing camera inputs as the robot moves. We avoid
these issues by having a fixed location for the camera and
utilizing existing knowledge of a visual scene (such as the
presence of people or objects) to generate higher-level and
more intentional behaviors.

Handcrafted animation of robots has previously been used
to create instances of behaviors that can portray aspects of a
character, such as personality [13]. However, the work here
seeks to go into greater detail for a single social cue and
provide more description about how a general architecture
can realize human-like animation. An alternative to using
handcrafted animation is to derive robot behavior from data.
Deep learning approaches are showing promise in extracting
behaviors from human interaction, e.g., [14], [15]. However,
there is either a tendency toward a typically generic mean
when large multi-person datasets are used, or a burden on the
amount of data required from a single person. Issues with the
adaptability of the output when in dynamic environments also
present challenges. For example, data from dyadic interactions
may not apply to triadic interactions. Given these challenges,
we instead utilize handcrafted animation, where an animator
has the control to express a character, supported by an
architecture that enables dynamic adaptation for interactions.

III. PLATFORM AND SHOW

A. Robot Platform

The robot platform used in this work is a custom Walt
Disney Imagineering Audio-Animatronics® bust consisting
of head and upper torso, as shown in Fig. 1. The figure has
19 degrees-of-freedom (DOF). Of these DOFs, we only use
nine: the neck (3), eyes (2), eyelids (2), and eyebrows (2).
The remaining DOFs produce jaw and lip movement and are
not used in the current system. The robot is controlled via
a custom proprietary software stack operating on a 100Hz
real-time loop.

B. Perception

A Mynt Eye D-1000 RGB-D camera2 is used for percep-
tion of people within the robot’s field-of-view (FOV). The
camera has a horizontal and vertical FOV of 105◦ and 58◦,
respectively, and an approximate range of 0.3 to 10 meters.
This is more limiting than the typical human FOV (H: 200◦

V: 135◦) and range. The camera is mounted to the upper
torso of the robot’s figure and is stationary. Skeleton fitting
is performed via a perception engine which uses wrnch3 at
its core. The perception engine fits skeletons in 2D and then
depth-projects to provide 3D joint locations. Each skeleton
is composed of the following points of interest: eyes, nose,
ears, neck, shoulders, elbows, wrist, hips, knees, ankles, big
toes, small toes and heels. Points-of-interest are transformed
from the camera frame to the robot’s frame of reference.

2https://mynteye.com/
3https://wrnch.ai/

https://mynteye.com/
https://wrnch.ai/


C. Show Context

The core purpose of animatronics figures is to deliver a
show, in the same manner that actors perform in a theatre.
Just like actors, animatronics take on personas and characters
and are given scripts and blocking to tell a story and/or enact
a scene. With this in mind, we created a show context and
persona for our robot character to better frame the concepts
we wished to develop in the robot gaze system.

The robot character plays an elderly man reading a book,
perhaps in a library or on a park bench. He has difficulty
hearing and his eyesight is in decline. Even so, he is constantly
distracted from reading by people passing by or coming up to
greet him. Most times, he glances at people moving quickly
in the distance, but as people encroach into his personal space,
he will stare with disapproval for the interruption, or provide
those that are familiar to him with friendly acknowledgment.

With this context and the persona of an elderly man, we
are able to test behaviors such as glancing and mutual gaze
in a realistic scenario while catering to some limitations of
our hardware, i.e., limited FOV of camera and system latency.
For this scenario, we specifically chose not to provide our
robot with audition as we wanted to focus on understanding
eye gaze in a scenario that does not depend on conversational
content.

IV. ARCHITECTURE

The architecture of our robot gaze interaction consists of
three components: the attention engine, behavior selection
engine, and behavior library (Fig. 2). These components
all have bi-directional communication with one another and
ultimately drive animations on the robot character.
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Fig. 2. Overall system architecture.

A. Attention Engine

In a similar fashion to prior work such as [9], the attention
engine identifies lower-level salient stimuli in the environment.
Currently, the system only examines stimuli generated by
persons in the scene based on movements of the fitted
skeletons. The attention engine generates a ‘curiosity score’
assigned to that person indicating their salience/significance
as well as how important it is for the robot character to
respond to them.

For this approach, the attention engine consumes 3D
positions of all people in the visual scene from the camera
data and smooths the incoming data over time. A numerical
value is assigned to each detected skeleton to differentiate
persons in the scene. Using this data, the attention engine
provides estimates for whether people are performing certain
actions, such as waving, as well as calculating how quickly
people are moving over time. The Euclidean distance to the
robot is used as an additional proxemic factor.

For each unique person identified in the scene, the curiosity
score Φ is computed based on features which are chosen to
be of importance. It is meant to be a customizable measure
of salience and is calculated using a function in the form of
Eqn. (1).

Φ = Θ(t) ∗ wdistance ∗ f(dnose)

∗
[
wraised hand(hr hand + hl hand)

+ whand(v̂r hand + v̂l hand)

+ wnosev̂nose + wdistancef(dnose)
]

(1)

where Θ(t) ∈ [0, 1] is a habituation factor at time t (described
in more detail below), wx is a weighting for factor x, v̂x
is the velocity of x normalized over an average maximum
velocity detected of that feature, hr hand, hl hand ∈ B and
represent whether the hands are raised above the shoulder, and
f(d) = e−adnose representing an exponential decay with rate
a over Euclidean distance dnose (where dnose is in meters)
from the person’s nose to the robot.

As seen from Eqn. (1), the way in which curiosity is
calculated in our current system is fairly simplistic, being
based upon locations and velocities of the hands and nose.
This selection of features was loosely informed by the
way people attempt to gain attention from another person
- e.g., moving closer/quickly to the person and waving
their hands. Although this example curiosity function uses
kinematic features of detected people in the scene, it can
be expanded to include other salient environmental features.
Such features could include specific clothing colors, auditory
cues, facial emotions, props, etc. The weights of the function
are customizable and can be tuned to be sensitive to some
features and not others. This design enables character creators
to shape the interactive personality of the character through
modification of weights. As future work, we hope to develop
a method to automatically tune these weights such that they
fit attention behaviors of characters we wish to implement
on the platform.



Another function of the attention engine is to receive
feedback from the behavior selection engine (see Sec. IV-B
on which persons-of-interest have been attended to. Persons
who have been attended to by the system via mutual gaze
actions have their Φ decreased linearly over time. In a
biological system, this is similar to a process known as
habituation to stimuli and has been included in other robotic
gaze systems [9], [16]. Our habituation function limits the
character from repeatedly responding to a single guest and
ignoring others. The function also includes a mechanism to
restore the Φ of persons if they are not being attended to/gazed
upon by the robot. This allows persons who have been gazed
at by the robot character and subjected to habituation to
regain the ability to catch the robot’s attention after a period
of time. This behavior is modeled by Eqn. (2):

Θ(t+ ∆t) = Θ(t) + (Γ ∗mhab + Γ̄ ∗mrest)∆t∪ [0, 1] (2)

where Θ(t + ∆t) ∈ [0, 1] is the habituation value at t + ∆t,
Γ ∈ B is equal to 1 when the robot is looking at the person
and 0 otherwise, mhab is a negative habituation decay rate,
and mrest is a positive restoration rate.

B. Behavior Selection Engine

The behavior selection engine is the component of the
robot character system that represents higher-level reasoning
for the character. This component contains a handcrafted
state machine that directs which behavioral state the robot is
in. The behavior selection engine also maintains information
regarding parameters of the robot (e.g., current state, curiosity
thresholds, state timeout durations) as well as skeletons which
are seen by the camera.

1) States: Given the context of the system, four states were
devised to cover the aspects of behavior required to deliver the
interactive experience. The behavior of each state is described
in the subsequent subsection (Sec. IV-C). Here we present
the states (depicted in Fig. 3) and how their transitions are
determined:

• Read: The Read state can be considered the ‘default’
state of the character. When not executing another state,
the robot character will return to the Read state. Here,
the character will appear to read a book located at torso
level.

• Glance: A transition to the Glance state from the Read or
Engage states occurs when the attention engine indicates
that there is a stimuli with a curiosity score Φ above
a certain threshold, but below the threshold that would
trigger the Engage state. In this state, the character
gazes at the disruptive person (which we refer to as the
person-of-interest) with his eyes and a varying degree
of head motion away from its previous state (reading
or engaging) based on Φ. This state is exited after a
timeout (also a function of Φ) and returns to the Read
state, or when another guest has a high enough Φ to
trigger the Engage state.

• Engage: The Engage state occurs when the attention
engine indicates that there is a stimuli with large enough

Fig. 3. States in the behavior selection engine. N(condition) represents
number of detected people in the scene who meet the condition.

Φ to meet a threshold and can be triggered from both
Read and Glance states. This state causes the robot to
gaze at the person-of-interest with both the eyes and head.
The state is exited after both of the following are true:
the time in the engage state meets a minimum timeout
duration and when Φ of the person-of-interest decreases
below the Engage threshold; the timeout guarantees
a minimum time length for this behavior to ensure
character believability and naturalness.

• Acknowledge: The Acknowledge state is triggered from
either Engage or Glance states when the person-of-
interest is deemed to be familiar to the robot. Currently,
familiarity is a property that is randomly assigned to
detected persons.

2) Guestbase: In addition to a state machine, the behavior
selection engine also contains a database of people in the
scene, called the guestbase, which functions as a form of
short-term memory. Each entry in the guestbase contains the
numerical value associated with each guest’s skeleton, times
that guest was first and last seen, 3D skeleton data, current
curiosity score Φ, whether the guest has previously been a
person-of-interest, and the character’s familiarity with that
guest. Persons are added to the guestbase as they appear in
the scene, and are removed after they leave the scene.

The purpose of the guestbase is threefold: 1) to store 3D
points of persons – in particular the locations of eyes and
nose – such that the robot character can attempt mutual gaze
if the guest becomes a person-of-interest, 2) to keep a record
of those people that have been persons-of-interest for the
purpose of habituation (Sec. IV-A), and 3) to denote special
properties of that guest with relation to the system, e.g.,
whether the guest is familiar to the character (Sec. IV-B.1).



C. Behavior Library

The behavior library consists of show animation definitions
that can be used to drive motor actions and movements on
the Audio-Animatronics® figure.

1) Show Objects: The library is constructed using a
concept of show objects, where each show object consists of
a set of motor commands for the Audio-Animatronics® figure.
Show objects can be grouped (made to run simultaneously),
sequenced (run in order one after another), looped (repeated
for a duration), and randomly selected (pick one show object
randomly from a set). Each operation can produce a new,
singular, show object. Additionally, show objects can be
added together, multiplied by scalars, or subtracted from each
other. Thus, show objects provide a powerful interface for
constructing complex motor behaviors using simpler building
blocks. As an example of this concept in action, the reading
animation pseudocode is shown below as Algorithm 1.

Algorithm 1 Example Reading Show Pseudocode
1: function READ

. Define initial poses
2: head down← move to (

-0.33rad for 1.0s with head ud)
3: eyes down← move to (

-0.40rad for 1.0s with eyes ud)
4: eyes left← move to (

0.20rad for 1.0s with eyes lr)
5: lids down← move to (

70% for 1.0s with eyelids)
. Group poses together

6: read pose← group (
head down, eyes down, eyes left, lids down)

. Create reading actions using keyframes
7: head read← keyframes (

[0.20rad@t=0s,
-0.20rad@t=3.8s,
0.20rad@t=4.6s] with head lr)

8: eyes read A← keyframes (keyframes using eyes lr)
9: eyes read B← keyframes (keyframes using eyes lr)

10: eyes read C← keyframes (keyframes using eyes lr)
. Build up show objects from primitives

11: eyes read← random select (
eyes read A, eyes read B, eyes read C)

12: read loop← loop ( group( head read, eyes read))
13: read show← sequence( read pose, read loop)

return read show

As shown in the reading example, show objects which
contain simple poses and keyframe animations are combined
with other show objects to create increasingly complex
behaviors which eventually form a complete reading show.

2) Behavior Layering: Having fully-formed show ele-
ments, we require a method for organizing behaviors. We do
so by loosely subscribing to a subsumption architecture: a
method of robot behavior and control proposed by Rodney
Brooks which layers behaviors hierarchically [17]. This
layering system is organized by ‘levels of competence’, where
lower levels represent more basic functions of the robot, and

higher levels represent behaviors which require advanced
processing. In this architecture, higher levels are able to
‘subsume’ lower levels – i.e., they are able to integrate,
modify, suppress or even completely override lower levels.
Our implementation uses the following levels of show objects
(in increasing order of complexity):
L0 Zero Show: This level is the most basic level of the

robot’s behavior. It sets the motors to a default ‘zero’
position for the show. For example, the jaw is set to
be closed at this level (as opposed to hanging open).
The jaw remains closed as no higher level of behavior
subsumes its actuators.

L1 Alive Show: This level provides the minimum require-
ments for the robot to be perceived as animate. This
includes behaviors such as breathing, eye blinking,
saccades, etc. Such items would fall under the animation
principle of ‘secondary action’, i.e., secondary behaviors
which add to the show but do not interfere with higher
level behaviors [6].

L2 Read Show: This is the primary behavior of the show
corresponding to the Read state and is always running.
It forms the default fallback behavior once higher levels
of behavior give up control of the system.

L3 Glance Show: The glance show represents a glancing
behavior directed towards salient stimuli as perceived
by the attention engine. A greater curiosity score Φ will
increase the degree in which the head is tilted towards
the stimuli and away from its position in the previous
state.

L4 Engage Show: The engage show represents the char-
acter’s full attention being directed towards a stimuli,
and subsumes both the read and glance show. The head
and eyes are directed towards the stimuli. Normal eye
saccading from the L1 alive show is interrupted to
saccade based on a person’s eye and nose locations
as perceived by the camera. Eyebrows are furrowed to
give the character some contempt for being distracted.

L5 Acknowledge Show: The acknowledge show is run
whenever people are recognized as being familiar and
subsumes the engage show. It randomly selects a nodding
action from a predefined set of keyframe show objects
involving only the neck actuators and plays it as an
overlay on top of the engage show. These nodding
actions are based on actor motion capture data that was
retargeted to this robot using the algorithm presented
in [18].

D. Implementation Lessons
1) Saccades: Although saccades have been implemented

on humanoid robot platforms in prior work [19], [10], [20],
they often do not match the performance and behavior of
human saccades during gaze. This may be in part due to motor
speed limitations, however, many humanoid robot designs
integrate cameras into the eyes or on the head, e.g., SoftBank
Pepper4, EMYS5. This design choice introduces a number of

4https://www.softbankrobotics.com/us/pepper
5https://emys.co/product

https://www.softbankrobotics.com/us/pepper
https://emys.co/product


non-trivial challenges such as motion blur and distortion of
camera images during eye movements. Thus, the eyes require
carefully tuned controllers and/or slow, smooth eye motion
profiles that lack fidelity when compared human eye motions.

Having a static camera system mounted externally avoids
such issues and allows us to design saccades that better
mimic those observed in humans. Our Audio-Animatronics®

figure is able to saccade with a frequency of 20 Hz. For our
mutual gaze actions (glance and engage), the eyes saccade
randomly between three points forming a triangle on a person-
of-interest: the eyes and nose. Timing of saccadic movements
is random with a range of 0.1 to 0.5s.

2) Motion Bandwidth: To increase realism of movements
on the Audio-Animatronics® figure, we leveraged the anima-
tion principle of overlapping action, where some parts of a
character naturally move faster than others during motion [6].
For our bust, this meant ensuring that the servo rate of
each DOF in the head and neck were similar to human
movement. For example, eyelid motion had a frequency of
10 Hz, whereas head/neck motion was limited to 5 Hz or less.
One particularity notable implementation of this principle is
that with any turn-to-glance or turn-to-engage movement, the
head turning is always led with the eyes, i.e., the eyes reach
the gaze position first at a high rate of speed, followed by
the head at a lower rate of speed, giving rise to a realistic
transition into mutual gazing.

V. DISCUSSION

A. Believable Interactions

The architecture and implementation for human-like robot
gaze appears to produce life-like gaze on our robot character.
However, we posit that the believability of this implementation
is a function of time and distance. At further distances, lower
fidelity behaviors can seem believable, and the same is true
for shorter interaction times. At closer distances and for
longer periods of time, more complex behaviors are required
to create believable characters. For example, simple head
motion may be believable from a distance, but as individuals
move closer to a robot, the illusion of life would break, and
eye gaze becomes essential. The scenario we explore in this
work is satisfactory at close distances, but for a relatively
short period of time (one or two minutes).

The implementation described here produces a believable
gaze behavior for this time scale while also providing
behavioral building blocks for longer time scales, but other
challenges emerge at this interaction distance. The physical
appearance of the robot is a key concern as it relates to the
uncanny valley, and is the subject of research [21]. Physical in-
teraction is potentially expected in such proxemically-close in-
teractions too, including such capabilities as handshakes [22]
or handovers [8]. The interdependence of these behaviors
and various social cues adds to the complexity of believable
character animation in such a dynamic environment.

Our character displays some small variance of emotion
when choosing whether to stare at or acknowledge a person.
However, the lack of emotional range is a limitation in the
current work. Previous work has explored how robots might

be able to use social cues to display different emotions whilst
still being perceived as a specified personality [23]. In future
work, we aim to take this further and consider how robot
motion should portray transitions in emotional state.

B. Tuning Attention

The attention engine presented in this work is an attempt
at enabling a robot to identify, sort, rank, and habituate
salient stimuli in its environment, much like others have done
previously in [9], [11], [12] using raw camera data. However,
because our method acts on more concrete observations of
stimuli (e.g., skeletal kinematics) and is customizable, it offers
those programming characters on animatronic platforms –
i.e., animators – transparency and intuitive control over how
saliency is perceived by a character. For example, an animator
may wish to create a nervous character that responds to the
slightest sound or movement, whereas a character falling
asleep may respond only to the most arousing stimuli. Being
able to offer a set of controls to tweak character attention is
valuable.

As future work, however, we would like to explore how at-
tention engine parameters can be tuned more abstractly using
learning-based dimension reduction to generate appropriate
attention profiles for a variety of characters. Such an approach
could reduce dimensionality of the control palette, making it
easier for animators to select desired character attentiveness
and habituation.

C. Subsumption can Easily Create Complexity

Although originally intended for control of mobile robots,
we find that the subsumption architecture, as presented
in [17], lends itself as a framework for organizing animatronic
behaviors. This is due to the analogous use of subsumption
in human behavior: human psychomotor behavior can be
intuitively modeled as as layered behaviors with incoming
sensory inputs, where higher behavioral levels are able to
subsume lower behaviors. At the lowest level, we have
involuntary movements such as heartbeats, breathing and
blinking. However, higher behavioral responses can take over
and control lower level behaviors, e.g., fight-or-flight response
can induce faster heart rate and breathing. As our robot
character is modeled after human morphology, mimicking
biological behaviors through the of use a bottom-up approach
is straightforward.

Additionally, the layering approach allows for the gen-
eration of complex motor animation quickly and easily, as
opposed to having to manually package all required behaviors
within the trajectory for each motor. Changing something like
how fast the robot saccades, blinks or breathes only involves
changing a single behavioral layer, rather than requiring the
regeneration of an entire set of motor trajectories.

D. Saccades Increase Realism

One notable observation from the development of our
gaze system is that saccades appear to significantly improve
character realism. Vergence of gaze is the ability for eyes
to focus on objects both near and far. For this, each eye



is required to move independently, i.e., eyes rotate towards
each other to look at close objects, and away from each
other for distant objects. However, our Audio-Animatronics®

platform is physically incapable of vergence as the eyes are
mechanically linked with the focal plane set at infinity, i.e.,
the eyes have parallel sightlines. Thus, during mutual gaze,
the robot appears to look through you instead of at you.

However, we found that eye saccades provide the illusion
of vergence on our platform with mechanically-linked eye
movement. We hypothesize that this is due to human inability
to focus on both eyes at once during mutual gaze; instead,
we focus on one eye and then the other. The movement
of the robot’s eyes during saccading targets the face of the
person (eyes/nose), thereby making it difficult for people to
determine the robot’s true focal plane and creating the illusion
that both eyes are focused on the person.

VI. CONCLUSION

This research adds to an active domain in non-verbal social
human-robot interaction. Previous research has shown the
importance of gaze for improving legibility and efficiency of
interactions between robots and humans. We extend this in a
complementary way to demonstrate how a gaze system can be
constructed to interactively engage people such that the robot
may feel alive and responsive. We have developed a system
in which a human-like Audio-Animatronics® figure can use
gaze in a manner that appears consistent with human behavior
using techniques drawn from research on human/robotic gaze
and animation.

Through layering of simple behaviors, it appears that we are
able to generate complex responses to environmental stimuli.
This architecture is highly extensible and can be used to create
increasingly complex animatronic gaze behaviors as well as
other interactive shows. We see this work as an attempt to
ascend from the uncanny valley through layering of interactive
kinematic behaviors and sensorimotor responsiveness.
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