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ABSTRACT

Recent progress in self-training, self-supervised pretraining
and unsupervised learning enabled well performing speech
recognition systems without any labeled data. However, in
many cases there is labeled data available for related lan-
guages which is not utilized by these methods. This paper ex-
tends previous work on zero-shot cross-lingual transfer learn-
ing by fine-tuning a multilingually pretrained wav2vec 2.0
model to transcribe unseen languages. This is done by map-
ping phonemes of the training languages to the target lan-
guage using articulatory features. Experiments show that this
simple method significantly outperforms prior work which in-
troduced task-specific architectures and used only part of a
monolingually pretrained model.

Index Terms— zero-shot transfer learning, cross-lingual,
phoneme recognition, multilingual ASR

1. INTRODUCTION

There is a large number of languages spoken around the world
of which only a small fraction is served by speech technol-
ogy. A large barrier to making speech technology more ac-
cessible is the requirement for large amounts of transcribed
speech audio by current models which is simply not available
for the vast majority of languages. Speech recognition accu-
racy has been steadily improving by recent advances in su-
pervised multilingual modeling [1, 2], self-supervised learn-
ing [3, 4, 5, 6, 7], and semi-supervised learning [8, 9, 10, 11,
12], particularly for low-resource languages. This recently
led to good speech recognition performance in settings where
no labeled data exists at all [13, 14, 15]. One downside of
these approaches is that they require training a separate unsu-
pervised model for each language while ignoring the presence
of labeled data in related languages.

Zero-shot transfer learning addresses this by training
a single multilingual model on the labeled data of several
languages to enable zero-shot transcription of unseen lan-
guages [16, 17, 18, 19, 17, 20]. Models usually have a com-
mon encoder that extracts acoustic information from speech
audio and then predict either a shared phoneme vocabu-
lary [17, 16] or language-specific phonemes [1, 20, 21]. The
former requires either phonological units that are agnostic to
any particular language such as articulatory features [20] or

global phones [22, 17].
In this paper, we study a simple zero-shot transfer learn-

ing approach which builds a global phoneme recognizer by
simply considering all possible phonemes of the training lan-
guages and then decodes the model with a language model
to generate the final phoneme sequence. The lexicon is built
from articulatory features to map the phonemes between the
training and target vocabulary. Our method makes no assump-
tion about the relation of training and testing languages, in-
cluding attributes like phoneme distribution or coverage. We
extend prior work by using unsupervised cross-lingually pre-
trained representations estimated on 53 languages [23] in-
stead of monolingually trained representations [16] and our
approach also uses the full pretrained model instead of only
the feature-extractor [16].

We conduct experiments on 42 languages of Common-
Voice [24], 19 languages of BABEL [25] and six languages
of MLS [26]. Results show significant improvements on un-
seen languages over the approach of [16] and cross-lingual
pretrained representations are more effective. Finally, zero-
shot transfer learning performs comparably to unsupervised
approaches with the benefit of being able to transcribe multi-
ple unseen languages using a single model.

2. APPROACH

Our approach entails the use of self-supervised representa-
tions trained on data in many languages ([23], §2.1). Next
we simultaneously fine-tune the model to perform phoneme
recognition on data in multiple training languages. At infer-
ence time, we test the fine-tuned model on all unseen lan-
guages using a mapping of the phonemes from the training
vocabulary to the ones in the target languages (§2.2).

2.1. Self-supervised Model Training

We use XLSR-53, a wav2vec 2.0 model pretrained on data
in 53 languages ([23, 6]). This model contains a convolu-
tional feature encoder f : X 7→ Z to map raw audio X to
latent speech representations z1, . . . , zT which are input to
a Transformer g : Z 7→ C to output context representations
c1, . . . , cT [27, 28]. Each zt represents about 25ms of au-
dio strided by 20ms and the Transformer architecture follows
BERT [29, 27]. During training, feature encoder representa-
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tions are discretized to q1, . . . ,qT with a quantization mod-
ule Z 7→ Q to represent the targets in the objective. The
quantization module uses a Gumbel softmax to choose entries
form the codebooks and the chosen entries are concatenated
to obtain q [30, 31, 28]. The model is trained by solving
a contrastive task over masked feature encoder outputs. At
training time, spans of ten time steps with random starting
indices are masked. The objective requires identifying the
true quantized latent qt for a masked time-step within a set
of K = 100 distractors Qt sampled from other masked time
steps.

2.2. Phoneme Mapping

We use phonemes as modeling units and in particular, the
symbols of the standard International Phonetic Alphabet
(IPA). However, the vocabulary estimated from the training
languages may not cover the full vocabulary of the target lan-
guages which results in out-of-vocabulary (OOV) phonemes
at test time. We address this by mapping between the training
and target vocabularies based on articulatory/phonological
features [32]. Articulatory feature is a set of global attributes
to describe any sound or phone. There are four groups
of attributes: major class (syllabic, vocalic, approximant,
sonorant), manner (continuant, lateral, nasal, strident), place
(labial, coronal, dorsal, pharyngeal), and laryngeal (voiced,
aspirated, glottalized). Each attribute can be either positive or
negative.

We compute the distance between each pair of phonemes
using the hamming edit distance between the articulatory fea-
ture vectors1, and then generate two types of simple many-to-
one mapping lexicons:

• tr2tgt lexicon maps each phoneme in the training vo-
cabulary to its closest one in the target vocabulary.
Then for the remaining uncovered phonemes in the tar-
get vocabulary, it maps the closest ones in the training
vocabulary to them.

• tgt2tr lexicon that maps for each phoneme in the tar-
get vocabulary, the phonemes in the training vocabulary
that have 0 distance to it.

We compare both below (§4.3.2) and use tr2tgt unless other-
wise mentioned.

3. EXPERIMENTAL SETUP

3.1. Datasets

We consider three multilingual corpora and a variety of lan-
guages to evaluate our approach. All the audios are up-/down-
sampled to 16kHz.

1https://github.com/dmort27/panphon. In this repository, each feature ar-
ticulatory vector contains 21 attributes

Table 1. Splits of CommonVoice (CV) and BABEL (BB).
The 6 BABEL languages of [16] are bolded.

Split Languages

CommonVoice (CV)

train

Esperanto(eo), Lithuanian(lt), Welsh(cy), Tamil(ta),
Swedish(sv-SE), German(de), English(en), Oriya(or),
Hindi(hi), Persian(fa), Japanese(ja), Assamese(as),
Indonesian(id), Catalan(ca), Spanish(es), French(fr),
Portuguese(pt), Arabic(ar), Chinese(zh-CN),
Chinese(zh-TW), Turkish(tr), Estonian(et),
Hungarian(hu), Russian(ru), Czech(cs)

dev Italian(it)

test

Basque(eu), Interlingua(ia), Latvian(lv), Georgian(ka),
Irish(ga-IE), Dutch(nl), Greek(el), Punjabi(pa-IN),
Romanian(ro), Maltese(mt), Chinese(zh-HK), Tatar(tt),
Finnish(fi), Slovenian(sl), Polish(pl), Kirghiz(ky)

BABEL (BB)

train

Amharic(am), Bengali(bn), Cebuano(ceb), Igbo(ig),
Haitian(ht), Javanese(jv), Mongolian(mn), Swahili(sw),
Tamil(ta), Vietnamese(vi), Assamese(as), Dholuo(luo),
Guarani(gn), Kazakh(kk), Pashto(ps), Georgian(ka),
Tagalog(tl), Telugu(te), Turkish(tr), Zulu(zu)

dev CV-Italian(it)

test Cantonese(yue), Lao(lo)

Multilingual LibriSpeech (MLS) is a large corpus of
read audiobooks from Librivox and we experiment with the
same six languages as [15]: Dutch (du), French (fr), German
(de), Italian (it), Portuguese (pt), Spanish (es). We use the
same split as [15] for validation and test.

CommonVoice (CV) is a multilingual corpus of read
speech comprising more than two thousand hours of speech
data in 76 languages [24]. We use the December 2020 re-
lease (v6.1) for training and fine-tuning models. We select
42 languages in total that are supported by our phonemizer
(see §3.2) as well as their official train, dev and test splits.
Italian (it) serves as validation language for development, for
training we use a total of 26 languages and the remaining 13
languages are for testing (Table 1). For each language in the
test set, we also make sure that there is at least one language
that belongs to the same language family as in the training
set. Compared to other datasets such as BABEL or MLS,
CommonVoice is well suited for zero-shot transfer learning,
since it covers a larger number of languages.

BABEL is a multilingual corpus of conversational tele-
phone speech from IARPA, which includes Asian and African
language [25]. We include 21 languages from it (Table 1).
We include Cantonese and Lao in the test set to compare with
[16] and the remaining 19 languages in the training set. Italian
serves for validation.



3.2. Pre-processing and Phonemization

We first normalize all transcriptions for CommonVoice and
BABEL by removing punctuation and rare characters. Rare
characters are usually numbers or characters from other lan-
guages. We then obtain the phonemic annotations from the
word transcriptions using ESpeak2, as well as [33] based on
Phonetisaurus3 to compare with [16]. Specifically, we use Es-
peak on MLS, Phonetisaurus on BABEL.

3.3. Model Training

Models are implemented in fairseq [34] and we use the pre-
trained XLSR-53 model [23] which has 24 Transformer
blocks, model dimension 1024, inner dimension 4096 and 16
attention heads. It is pretrained on the joint training set of
MLS, CommonVoice and BABEL, which consists of about
56K hours of speech data.

To fine-tune the model we add a classifier representing the
joint vocabulary of the training languages on top of the model
and train on the labeled data with a Connectionist Temporal
Classification (CTC) loss [35]. Weights of the feature encoder
are not updated at fine-tuning time, while the Transformer
weights are finetuned after 10k updates. We determine the
best transformer final dropout in [0, 0.3], learning rates setting
in [5e-6, 5e-4]. The learning rate schedule has three phases:
warm up for the first 10% of updates, keep constant for 40%
and then linearly decay for the remainder. The models were
finetuned for 25k updates on 4 GPUs. The best checkpoints
are selected by the validation error on the validations set for
BABEL and CommonVoice; while for MLS, it is selected us-
ing the unsupervised cross validation metric of [15] to enable
a direct comparison.

3.4. Decoding

The wav2letter beam-search decoder [36] is used to gener-
ate the final transcriptions with the lexicon and an external
6-gram language model trained on the phoneme annotations
of the labeled training data. Beam size is set to 50 in all the
inference experiments. The lexicons mentioned above limits
the search space to only the valid phones in the training vo-
cabulary and ensures the decoder predicts only phones in the
target dictionary.

4. RESULTS

4.1. Comparison with unsupervised method

In our first experiment, we compare zero-shot transfer learn-
ing to wav2vec-U [15], both of which use the same pretrained
representations (XLSR-53). We use 10 hours of labeled data
for each MLS language as prepared in [23] and measure the

2https://github.com/espeak-ng/espeak-ng
3https://github.com/AdolfVonKleist/Phonetisaurus

Table 2. Unsupervised ASR (w2v-U) vs. zero-shot ASR
(This work). Results are in terms of phoneme error rate (PER)
on MLS.

de nl fr es it pt Avg

w2v-U [15] 21.6 25.0 27.7 20.2 31.2 36.0 27.0
+ n-gram LM 16.2 17.8 26.5 18.1 28.6 30.6 23.0

This work 23.8 38.0 31.0 28.7 33.5 45.0 33.3
+ n-gram LM 14.8 26.0 26.4 12.3 21.7 36.5 22.9

Table 3. Comparison to prior zero-shot work [16] in terms of
phonetic token error rate (PTER) on the test sets of a subset
of BABEL languages. Cantonese and Lao are the unseen lan-
guages. Models are trained on 6 or 19 languages of BABEL
(BB-6/19), 21 languages of CommonVoice (CV-21), Global-
phone (GP) and the Spoken Dutch Corpus (CGN).

Gao et al. [16] This work

BB Data BB-6 BB-6 BB-19
Other Data CGN+GP - CV-21

# hours / lang all all 10
# hours total 1,492 317 298

Supervised

Bengali 38.2 36.1 40.7
Vietnamese 32.0 40.7 63.3

Zulu 35.2 34.6 44.1
Amharic 38.0 35.5 42.8
Javanese 44.2 40.2 49.1
Georgian 38.6 27.6 43.2

Zero-shot Cantonese 73.1 73.6 63.6
Lao 69.3 70.3 63.7

performance when fine-tuning XLSR-53 on five of the six lan-
guages and then evaluate on the held-out language. Table 2
shows that the performance of zero-shot transfer learning is
on par to wav2vec-U [15] while using a simpler training and
inference pipeline.

4.2. Comparison to other zero-shot work

Next, we compare performance to the zero-shot transfer
learning approach of [16] which used only the feature extrac-
tor of a wav2vec 2.0 model trained on English. The training
data on CommonVoice and BABEL is prepared in the same
way as [16] and we report the same phonetic token error rate
(PTER) metric, in which each IPA token is treated as separate
suprasegmentals (such as long vowels, and primary stress
symbol), tones, diphthongs and affricates.

Table 3 shows that finetuning on only 6 languages of BA-



Table 4. Effect of no pretraining, monolingual pre-training
(w2v LV-60K) and multilingual pretraining (XLSR-53) in
terms of PER on the test languages of CommonVoice.

No pretrain w2v LV-60K XLSR-53
# hours / lang 10 200 10 10
# hours total 149 1156 149 149

it 47.5 41.8 16.9 13.9
eu 45.6 32.1 16.3 13.7
ia 27.8 23.0 6.7 6.1
lv 59.8 56.5 33.5 32.3
ka 56.1 48.9 24.0 23.8
nl 56.8 56.1 30.5 19.8
el 40.6 33.7 10.7 10.4
ro 34.7 36.9 15.0 14.8
mt 60.2 56.0 36.1 35.9
tt 63.9 60.8 34.7 37.4
fi 55.6 48.3 29.9 29.0
sl 56.0 54.6 29.0 26.1
pl 59.3 56.0 27.3 25.7

Avg 51.1 46.5 23.9 22.2

BEL (BB-6) with our method can outperform [16] on the
supervised languages while using 317 hours of labeled data
compared to nearly 1.5K hours. This shows that using the
full pretraining model is beneficial. Our approach can out-
perform [16] on the zero-shot directions when we add Com-
monVoice data while restricting the amount of labeled data to
10 hours for each language. This results in fewer than 300
hours of labeled data since some languages do not even have
10 hours.

4.3. Ablations

In this section, we analyze the importance of pretraining,
cross-lingual pretraining, lexicon construction strategies as
well as the impact of different phonemizers. We use the
CommonVoice benchmark for these experiments (Table 1).

4.3.1. Effect of multilingual pretraining

Multilingual pretraining plays an important role for the model
to perform well on unseen languages. Table 4 shows that
accuracy without pretraining performs vastly less well than
pretraining-based approaches, even when the amount of la-
beled data is increased by up to a factor of 20. This is inline
with prior work on automatic speech recognition [6]. Fur-
thermore, multilingual pre-training (XLSR-53) performs bet-
ter than monolingual pretraining on English data (w2v LV-
60K) on every single language.

Table 5. Effect of lexicon construction strategies (§2.2) and
different phonemizers (§3.2) on CommonVoice in terms of
PER: tr2tgt denotes a lexicon constructed by mapping training
language phonemes to target language phonemes and tgt2tr
denotes the reverse strategy. Average PER excludes ”eu” and
”ia” since they are not supported by Phonetisaurus.

Phonemizer Espeak Phonetisaurus

Lexicon tr2tgt tgt2tr tr2tgt tgt2tr

Avg 24.5 24.6 31.7 32.4

4.3.2. Comparison of lexicon and phonemizers

Next, we compare the decoding performance with different
lexicons. Table 5 shows that tr2tgt is slightly better than tgt2tr
on average for different phonemizers. Different phonemiz-
ers can generate fairly different phoneme sequences given the
same word transcriptions which may impact the final perfor-
mance of our models. To better understand the impact of this,
we use both Espeak and Phonetisaurus (§3.2) and evaluate
them on both types of lexicon construction techniques. Ta-
ble 5 indicates that both phonemizers show the same trend in
performance for tr2tgt/tgt2tr.

5. CONCULUSION

In this work, we investigate zero-shot transfer learning on
cross-lingual phoneme recognition using a cross-lingually
pretrained self-supervised model. Pretraining vastly im-
proves accuracy over no pretraining, even when a moderate
amount of labeled data is used, and cross-lingual pretraining
performs better than monolingual pretraining. Our simple
approach of fine-tuning a large pretrained model performs
better than prior work which only used the feature extractor
of a monolingually pre-trained wav2vec 2.0 model and which
relied on task-specific architectures such as language embed-
dings. We also show that our approach performs on par to the
recently introduced unsupervised speech recognition work
of [15] which does not use labeled data from related lan-
guages and requires training separate models for each target
language.
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Appendices

Table 6. Statistics of languages from CommonVoice and the ones that are supported in Espeak and Phonetisaurus phonemizers.
The languages denoted with ∗ are potentially not well supported by Espeak phonemizer, so we manually removed them in either
train or test set.

Dataset Code Lang Family Split Hours Phonemizer
train valid test Espeak Phonetisaurus

CV

eo esperanto Constructed train 34.0 13.3 14.3 eo
lt lithuanian Baltic train 1.2 0.4 0.7 lt lithuanian 4 2 2.fst
cy welsh Celtic train 9.1 6.8 7.0 cy
ta tamil Dravidian train 2.4 2.2 2.3 ta tamil 2 3 3.fst

sv-SE swedish North Germanic train 2.1 1.7 1.8 sv-SE swedish 4 4 4.fst
de german West Germanic train 392.7 25.0 25.5 de german download.fst
en english West Germanic train 893.5 27.2 26.0 en english 4 2 2.fst
as assamese Indic train 0.4 0.2 0.2 as assamese 4 2 3.fst
hi hindi Indic train 0.2 0.2 0.2 hi hindi 4 2 2.fst
or oriya Indic train 0.6 0.2 0.2 or
fa persian Iranian train 7.7 6.5 7.2 fa persian 2 2 2.fst
ja∗ japanese Japonic train 0.9 0.8 0.9 ja japanese 4 4 4.fst
id indonesian Austronesian train 2.1 1.9 2.0 id indonesian 2 4 4.fst
ca catalan Romance train 441.5 24.0 24.9 ca
es spanish Romance train 235.1 25.0 25.7 es spanish 4 3 2.fst
fr french Romance train 424.5 24.0 25.1 fr french 8 4 3.fst
pt portuguese Romance train 7.8 5.6 6.1 pt portuguese download.fst
ar arabic Semitic train 16.0 8.8 9.1 ar arabic download.fst

zh-CN chinese Sino-Tibetan train 26.6 13.3 14.1 cmn mandarin 2 4 4.fst
zh-TW chinese Sino-Tibetan train 3.0 2.4 2.6 cmn mandarin 2 4 4.fst

tr turkish Turkic train 2.0 1.9 2.1 tr turkish download.fst
ky kirghiz Turkic train 2.6 2.1 1.9 ky kirghiz 8 2 2.fst
et estonian Uralic train 5.5 4.7 4.6 et estonian 2 4 4.fst
hu hungarian Uralic train 4.3 1.7 1.9 hu hungarian 2 4 2.fst
ru russian East Slavic train 23.5 12.3 13.2 ru russian download.fst
cs czech West Slavic train 7.3 5.0 5.0 cs czech 4 4 4.fst
it italian Romance dev 86.2 21.0 22.1 it italian 8 2 3.fst
eu basque Language isolate test 10.9 7.8 8.2 eu
ia interlingua Constructed test 2.2 1.5 0.8 ia
lv latvian Baltic test 1.9 1.6 1.6 lv latvian 2 4 4.fst
ka georgian South Caucasian test 1.6 0.9 1.0 ka georgian 4 2 3.fst
nl dutch West Germanic test 11.5 6.4 7.0 nl dutch download.fst
el greek Hellenic test 2.8 1.5 1.8 el greek 2 2 2.fst
ro romanian Romance test 3.6 1.0 2.0 ro romanian 2 3 3.fst
mt maltese Semitic test 2.3 1.8 2.1 mt maltese 2 4 4.fst
tt tatar Turkic test 11.5 2.0 4.4 tt tatar 2 2 2.fst
fi finnish Uralic test 0.5 0.5 0.6 fi finnish 2 4 4.fst
sl slovenian South Slavic test 1.9 0.5 0.7 sl slovenian 2 4 4.fst
pl polish West Slavic test 9.3 6.6 7.0 pl polish 2 2 2.fst

ga-IE∗ irish Celtic test 0.5 0.4 0.5 ga
zh-HK∗ chinese Sino-Tibetan test 3.9 3.1 3.6 yue yue 2 2 4.fst
pa-IN∗ punjabi Indic test 0.2 0.1 0.1 pa panjabi 4 4 4.fst



Table 7. Statistics of languages from Babel and the ones that are supported in Espeak and Phonetisaurus phonemizers.

Dataset Code Lang Family Hours Phonemizer
train valid test Espeak Phonetisaurus

Babel

307 Amharic Semitic 39.4 4.4 11.7 am amharic 8 2 4.fst
103 Bengali Indic 56.4 6.3 10.0 bn bengali 4 3 2.fst
301 Cebuano 37.4 4.2 10.4 cebuano 4 3 2.fst
201 Haitian Creole 61.0 6.7 10.8 ht haitian 8 3 3.fst
402 Javanese Austronesian 41.1 4.6 11.4 javanese 4 2 2.fst
202 Swahili Bantu 40.1 4.5 10.7 sw swahili 4 2 2.fst
204 Tamil Dravidian 62.6 7.0 11.6 ta tamil 2 3 3.fst
107 Vietnamese Austroasiatic 78.8 8.8 11.0 vi vietnamese 2 2 2.fst
102 Assamese Indic 54.8 6.1 10.0 as assamese 4 2 3.fst
403 Dholuo 37.6 4.1 10.1 luo 4 2 2.fst
305 Guarani South American Indian 38.9 4.3 10.6 gn guarani 4 2 2.fst
306 Igbo Niger–Congo 39.7 4.4 10.9 igbo 2 3 4.fst
302 Kazakh Turkic 36.1 4.0 9.8 kk kazakh 2 3 2.fst
104 Pashto Indo-European 70.7 7.8 10.0 pushto 8 3 2.fst
106 Tagalog Austronesian 76.2 8.6 10.7 tagalog 4 2 3.fst
303 Telugu Dravidian 38.1 4.3 9.9 te telugu 4 4 4.fst
105 Turkish Turkic 70.0 7.8 9.9 tr turkish download.fst
206 Zulu Niger–Congo 56.4 6.2 10.5 zulu 4 4 3.fst
404 Georgian South Caucasian 45.5 5.1 12.4 ka georgian 4 2 3.fst
101 Cantonese Sino-Tibetan 120.3 13.5 17.0 yue yue 2 2 4.fst
203 Lao Tai–Kadai 59.2 6.5 10.6 lao 2 2 2.fst

Table 8. Comparison of PER on the test set of a subset of Common Voice languages. tr2tgt lexicon is used in beam-search
decoding by default, while tgt2tr lexicon is used only for the columns denoted with ∗. The numbers in the parenthesis next to
each pre-trained model is the maximum number of hours per language in the training set.

Pretrain - (10) - (200) EN - LV (10) XLSR - 53 (10) XLSR - 53 (10)
Phonemizer Espeak Espeak Espeak Espeak Phonetisaurus

viterbi n-gram viterbi n-gram viterbi n-gram viterbi n-gram n-gram* viterbi n-gram n-gram*

it 56.6 47.5 50.1 41.8 31.8 16.9 26.0 13.9 14.3 26.6 18.1 17.8
eu 51.2 45.6 39.7 32.1 24.8 16.3 20.8 13.7 12.2 - - -
ia 38.9 27.8 30.9 23.0 12.7 6.7 10.7 6.1 6.0 - - -
lv 65.2 59.8 62.7 56.5 41.9 33.5 39.9 32.3 34.0 50.0 40.5 62.4
ka 61.8 56.1 54.6 48.9 29.1 24.0 30.5 23.8 24.3 34.7 26.6 25.5
nl 66.3 56.8 63.0 56.1 46.8 30.5 37.1 19.8 22.7 37.3 24.4 27.8
el 49.5 40.6 42.1 33.7 18.9 10.7 17.3 10.4 9.9 36.2 32.2 22.9
ro 45.7 34.7 46.7 36.9 21.3 15.0 20.1 14.8 12.6 28.5 16.2 17.5
mt 66.3 60.2 62.0 56.0 47.4 36.1 46.6 35.9 36.1 43.3 34.7 37.5
tt 68.2 63.9 65.1 60.8 46.2 34.7 48.4 37.4 35.5 49.1 45.6 35.3
fi 58.8 55.6 53.8 48.3 36.8 29.9 36.8 29.0 27.1 43.1 34.0 37.2
sl 62.9 56.0 60.5 54.6 43.5 29.0 40.6 26.1 27.4 33.4 26.1 23.9
pl 62.3 59.3 60.2 56.0 36.1 27.3 32.8 25.7 27.1 51.8 49.9 48.1

Avg 58.0 51.1 53.2 46.5 33.6 23.9 31.4 22.2 22.3 39.5 31.7 32.4
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Fig. 1. Correlation between each pair of languages in Com-
monVoice dataset.

A. DATASET DETAILS

In this section, we summarize the details of CommonVoice
and BABEL datsets. Specifically we list the code and name
of each language together with the family they belong to. We
also show the duration in hours of each split of each language.
The amount of training data varies a lot in CommonVoice
dataset. We subsample the training data for high resource lan-
guages to avoid bias. Additionally, for each language, we also
provide the specific language identifier we used in Espeak
and the specific finite state transducers4 in Phonetisaurus. We
can see that Espeak covers more languages in CommonVoice,
while Phonetisaurus covers more languages in BABEL.

The languages in Table 6 are ordered first by splits (train-
ing, validation and test) and then they are grouped by families.

B. LANGUAGE CORRELATION

We simply denote the correlation between each pair of lan-
guages by cor(l1, l2) = |vocab(l1) ∪ vocab(l2)|

|vocab(l1) ∪ vocab(l2)| , where l1 and
l2 are two languages and vocab(·) denotes the phoneme vo-
cabulary of a given language. Figure 1 shows the correlations
between pairs of CommonVoice languages. Since languages
are ordered purely by family, it is reasonable to see high cor-
relations on the diagonal blocks. However, this high corre-

4https://github.com/uiuc-sst/g2ps

Table 9. Comparison to prior zero-shot work [16] in terms of
phonetic token error rate (PTER) on the test sets of a subset
of BABEL languages. Cantonese and Lao are the unseen lan-
guages. BB and CV represents BABEL and CommonVoice
dataset and the following numbers are the number of the lan-
guages included in the training set.

BB Data BB-6[16] BB-6 BB-19 - BB-19
Other Data CGN+GP - - CV-21 CV-21

# hours / lang all all all 10 10
# hours total 1,492 317 935 118 298

Bengali 38.2 36.1 35.4 53.2 40.7
Vietnamese 32.0 40.7 42.1 71.0 63.3

Zulu 35.2 34.6 34.8 61.0 44.1
Amharic 38.0 35.5 35.5 63.2 42.8
Javanese 44.2 40.2 40.8 57.4 49.1
Georgian 38.6 27.6 43.8 51.6 43.2

Cantonese 73.1 73.6 72.6 70.9 63.6
Lao 69.3 70.3 70.2 72.1 63.7

lation also scatter around the whole plot, meaning that IPA
phoneme symbols are commonly shared across different lan-
guages and it is good for zero-shot transfer learning. Besides,
Vietnamese (vi) and Chinese faimily (zh-CN, zh-TW, zh-HK)
seems isolated to others, as their phoneme symbols include
tones. Specifically, vowels like ’ou’ can be denoted as one
of the following: ’ou1’, ’ou2’, ’ou3’, ’ou4’, ou5’ and ’ou6’.
They are intrinsically both hard to learn and hard to predict.

C. FULL COMPARISON ON COMMONVOICE

We summarize all the results on CommonVoice in Table 8.
Apart from the analysis in the ablation section, we can also
find that beam-search decoding consistently helps to improve
the model performance for all languages in all the settings.
The results in Table 5 shows that the trend of accuracy on
unseen languages is similar across phonemizers.

D. FULL RESULTS ON BABEL

As shown in Table 9, with finetuning on only the BABEL
subset of [16]’s training data, our method performs better on
the supervised languages already, indicating that the wav2vec
Transformer blocks, that are not included in [16], benefit the
model learning a lot. Additionally, models trained with mixed
CommonVoice and BABEL data generalize better than the
ones trained on either one of them on the unseen languages.
It also surpasses [16] with using an extra learned language
encoder.
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