HUMANOID AND WHEELED-LEGGED CONTROLLERS IN C++ AND
PYTHON: BALANCING AT DIFFERENT FREQUENCIES

Stéphane Caron
November 28, 2022

MOTION CONTROL SOFTWARE

Figure 1: LIPM walking controller Figure 2: Pink controller

WHAT IS MOTION CONTROL?

Make a robot move (motion) to achieve some tasks (control).
Examples:
- Locomotion: change position w.rt. the world
- Manipulation: change the pose of an object w.rt. the robot
- Folding: change the configuration of a deformable object

- Breaking: add free-flyer joint to another system ;)

Key part of the work: task formulation.

MOTION CONTROL SOFTWARE

Software to implement motion control.

Part of it is specialized:

- Robot descriptions: URDF, MJCF, SDFormat, ...

- Lie algebra: Rotations SO(3), transformations SE(3), twists se(3), ...
- Rigid body dynamics: Forward kinematics, inverse dynamics, ...

- Physics simulators: AlSTsimulator, Bullet, MujoCo, RaiSim, ...

- Optimal control: Model predictive control, reinforcement learning, ...
A lot of it is more general, e.g.:

- Timers and loop frequency regulation

- Logging and analysis of time series data

- Build systems, packaging and continuous integration
- Serial (12C, SPI, ...) and data-comms protocols (CAN-FD, EtherCat, ...)

SCOPE

Today's scope

Motion control software for research projects.

(Not in today’s scope: motion control software for production.)

THE POWER OF COLLABORATION

GitHub Packaging system

git clone this-repo-I-try pip install this-pkg-I-use

INTERLUDE 1: ROBOT DESCRIPTIONS

ROBOT DESCRIPTIONS

Load a robot description:
from robot_descriptions.loaders.pinocchio import load_robot_description

robot = load_robot_description("upkie_description")

Visualize it:

from pinocchio.visualize import MeshcatVisualizer

robot.setVisualizer(MeshcatVisualizer())
robot.initViewer(open=True)

robot.loadViewerModel() h
robot.display(robot.q0)

28

Setup: pip install meshcat pin robot_descriptions

OPEN SOURCE ROBOT DESCRIPTIONS

Choose a description for the rest of the tutorial:
L
2l IS
/Hi N M
3]

R]
L] 1

.‘m A

’K\’ﬁ'
m

A

HA=?
E

List: https://github.com/robot-descriptions/robot_descriptions.py

https://github.com/robot-descriptions/robot_descriptions.py

C++/PYTHON MOTION CONTROL SOFTWARE

TWO PROGRAMMING LANGUAGES

Pros:
- Faster programs
- Type system
Cons:
- Build complexity
- No packaging system

Not covered today: Rust and Julia.

Pros:

- Packaging system(s)

- Thriving ecosystem
Cons:

- Slower interpreted code

- Real-timeness?

C++/PYTHON CODE

A common approach is to use bindings':

- Pro: Performance

- Con: Overhead when API changes
An alternative is interface description languages:

- Pro: Versioning, breaking-change detection
- Con: Overhead when API changes

Can we do better for prototyping?

"For instance nanobind: https://github.com/wjakob/nanobind

https://github.com/wjakob/nanobind

VULP PROTOCOL

observation action
dictionary process 1 dictionary

—» @ Agent § o

"linear acceleration":
5651449203491,

0.6597,

06
"kp_scale"
"kd_scale"
y": [}
0.01 850021 813, 8 t_knee":
0 945160966859975 osition"
32314291377813 05,

@ Spine |[€—— 3,

process 2

eel"
on": null,
ity": -2.6646

"positi

right wheel": {
"position”: null,

“velocity": 2.66464

right_hip":
"position”
"velocity"
"kp_scale"

"kd_sca

}

‘right knee"

"kp_scale

"kd_scale"

simulation real thing

VULP

Vulp is an inter-process communication (IPC) protocol:

- Lightweight: fits in a 6-state, 14-transition state machine
- Based on dictionaries for serialization/logging

- Reference libraries in C++, Python, (Rust?), (Julia?), ...
Vulp is designed to:

- Start prototyping in a high-level language like Python
- Move to C++ as needed for performance

- Provide a simulation/real switch

We will see why this is suited to balancing in particular.

Repository: https://github.com/tasts-robots/vulp

https://github.com/tasts-robots/vulp

UPKIE LOCOMOTION

Vulp comes batteries included:

git clone https://github.com/tasts-robots/upkie_locomotion.git
cd upkie_locomotion
./tools/bazelisk run -c opt //agents/blue_balancer:bullet

Bazel will download and build everything (no installation required).

Battery warning for attendees: the first build is consuming.

o

"

Repository: https://github.com/tasts-robots/upkie_locomotion

https://github.com/tasts-robots/upkie_locomotion

REAL-TIME IN PYTHON?

Definition
Real-time: of a system that responds to events within a predictable time.

Can Python execute control-critical code with predictable timings?
Let's run an experiment:

- Agent (Python) running at 200 Hz:

- Inverse kinematics by quadratic programming
- Wheeled balance control

- Spine (C++) running at 1,000 Hz:
- Joint controller: moteus position/velocity/torque
- State observers: floor contact, wheel odometry
- 1/0: logging, joystick, temperature

Run on a Raspberry Pi Model B (Quad core ARM Cortex-A72 @ 1.5GHz) using
the default Raspberry Pi OS kernel (no PREEMPT_RT patch).

REAL-TIME IN PYTHON

0.00510

0.00505 A

0.00500

0.00495

Python agent cycle (s)

0.00490 T T T T T T T
590 595 600 605 610 615 620 625 630
Time (s) +1.653643e9

0.00110

0.00105 1

0.00100

0.00095

C++ spine cycle (s)

0.00090 + T T T T T 1
590 595 600 605 610 615 620 625 630
Time (s) +1.653643e9

Details: https://github.com/tasts-robots/vulp#performance

https://github.com/tasts-robots/vulp#performance

INTERLUDE 2: INVERSE KINEMATICS

INVERSE KINEMATICS

Define IK tasks:

from pink.tasks import BodyTask
tasks = [

BodyTask(f"{leg}_contact", position_cost=1., orientation_cost=1.)
for leg in ("left", "right") # adapt to the robot you picked

Initialize task targets:

from pink import apply_configuration

configuration = apply_configuration(robot, robot.q0)
for task in tasks:
task.set_target_from_configuration(configuration)

Setup: pip install pin-pink

SCENARIO

Let's display our targets for convenience:

import meshcat_shapes

for task in tasks:
meshcat_shapes.frame(robot.viewer[f"{task.body}_target"])

And define the trajectory of our task targets:

def update_targets(tasks, t, dt): -~
for task in tasks:
u = 0.2 %= np.array([2.0, 0.0, 1.0])
T = task.transform_target_to_world
T.translation += np.sin(2 * t) * u * dt -ti;:i<:ﬁ—_
frame = robot.viewer[f"{task.body} target"] U

frame.set_transform(T.np)

Setup: pip install meshcat_shapes

CLOSED-LOOP INVERSE KINEMATICS

from pink import solve_ik
from pink.utils import RatelLimiter

rate = RatelLimiter(frequency=200)
dt = rate.period
for t in np.arange(0., 5., dt):
update_targets(tasks, t, dt)
velocity = solve_ik(
configuration,
tasks,
dt,
solver="proxqgp",
)
q = configuration.integrate(velocity, dt)
configuration = apply_configuration(robot, q)
robot.display(q)
rate.sleep()

Setup: pip install proxsuite pin-pink

NUMERICAL INVERSE KINEMATICS

Inverse kinematics by numerical optimization:

- Joint limits: position, velocity, acceleration, torque, ...

- Regularization: fully-define behavior by e.g. damping or posture tasks
- Posture task helps define how knees should bend after stretching

- Unfeasible targets: handled when task error is large enough?
- Task morphs into a damping task when unfeasible

Tasks can exit the feasibility workspace and re-enter elsewhere.

Achilles’ heel (as of today): feasible target at task singularity.

“Tomomichi Sugihara. “Solvability-unconcerned inverse kinematics by the Levenberg-Marquardt
method”. In: IEEE transactions on robotics 27.5 (2011), pp. 984-991.

CONTROLLERS USING INVERSE KINEMATICS

Figure 3: LIPM walking controller Figure 4: Pink controller

BALANCE CONTROL

MOTIVATION

Plan(t + At) Simulation(t + At) Real(t + At)

20

MODELING

- Whole-body dynamics:
Mi+N=8"r+J%f

- Centroidal dynamics:

Lc _Z(pl _C) X fl

- Linear inverted pendulum:

é=w(c—2)

with w? = g/h and z the ZMP

21

LINEAR INVERTED PENDULUM MODE

Assumptions:
- Rigid joints, sufficient power
- Conservation of angular momentum
- Constant CoM height

Equation of motion

é=w(c—2z)

- w? = g/his a constant

- z: zero-tilting moment point (ZMP)

3Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi, and Hirohisa Hirukawa. “The 3D
Linear Inverted Pendulum Mode: A simple modeling for a biped walking pattern generation”. In:
IEEE/RS] International Conference on Intelligent Robots and Systems. 2001.

22

DIVERGENT COMPONENT OF MOTION

- Linear inverted pendulum:
¢ =w(c—2)
- Divergent component of motion:
f=c+ <

- Decoupled dynamics:

(€—2)
(kS

- We only need to regulate &

w
w

“Tomomichi Sugihara. “Standing stabilizability and stepping maneuver in planar bipedalism
based on the best COM-ZMP regulator”. In: IEEE International Conference on Robotics and
Automation. 2009.

23

BALANCE CONTROL WITH FEET

- DCM dynamics:
E=w(E—2)
- Regulate the ZMP by force control:
z=2+E—k(E -6
- Closed loop: £ — €4
€= kw(g" ~¢)

- As long as the ZMP target is feasible...

Force control

24

BALANCE CONTROL WITH WHEELS

- DCM dynamics:
E=w(E—2)
- Regulate the ZMP by velocity control:
z=2+E—k(E -6
- Closed loop: £ — €4
€= kw(g" ~¢)

- As long as the ZMP target is feasible...

Velocity control

25

BALANCING IS A LOW FREQUENCY TASK

We can discretize DCM dynamics € = w(& — z) with control period dt:

Property®
The maximum ZMP tracking error is not impacted by ét, as long as:
1 1
0t < Otpmagi= —In |1+ ——
- W (+ k— 1)

For HRP-4 (w ~ 3.5 57 2) with the LIPM walking controller (k = 5), this yields
Otmae = 62.5 Ms, i.e. @ minimum control frequency of 16 Hz.

This shows that balance control is a low-frequency task (® 1)

°Nahuel Alejandro Villa, Johannes Englsberger, and Pierre-Brice Wieber. “Sensitivity of legged
balance control to uncertainties and sampling period”. In: IEEE Robotics and Automation Letters 4.4
(2019), pp. 3665-3670.

26

BALANCING AT LOW FREQUENCIES

0t = 51 ms 0t = 120 ms

Lateral Position [cm]|

3
Time [s]

®Nahuel Alejandro Villa, Johannes Englsberger, and Pierre-Brice Wieber. “Sensitivity of legged
balance control to uncertainties and sampling period”. In: IEEE Robotics and Automation Letters 4.4
(2019), pp. 3665-3670.

27

FORCE CONTROL

WITH INVERSE DYNAMICS

Desired C led
Tasks ﬁ (el Joint Torques
Motion s n
— 5 Inverse Dynamics Control
Planning
Commanded Observed
Wrench State @ Force Measurements
Desired A Observed State Joint Measurements
DCM | Balance | DCM Observation
Control IMU Measurements

NB: C++/Python icons denote frequency, not actual programming language.

"Twan Koolen, Sylvain Bertrand, Gray Thomas, Tomas de Boer, Tingfan Wu, Jesper Smith,
Johannes Englsberger, and Jerry Pratt. “Design of a Momentum-Based Control Framework and
Application to the Humanoid Robot Atlas”. In: International Journal of Humanoid Robotics (2016).

28

INVERSE DYNAMICS

- Whole-body dynamics:
Mi+N=8"r+JTf
- Linear inverted pendulum task:
&= (Mg+ N)jp.g) = w’(c— 2%
Le=(Mg+N)pe =0
- Solution 7* sent to torque controller

- Requires accurate contact estimation

- Always used with some impedance®

8Twan Koolen, Sylvain Bertrand, Gray Thomas, Tomas de Boer, Tingfan Wu, Jesper Smith,
Johannes Englsberger, and Jerry Pratt. “Design of a Momentum-Based Control Framework and
Application to the Humanoid Robot Atlas”. In: International Journal of Humanoid Robotics (2016).

29

WITH INVERSE KINEMATICS

Desired Commanded
. . . Ry Commanded
2 ﬁ Kinematic Kinematic Joint Angles '\
e . Target: e Target: @ :
Motion R Force areets Inverse
Planning Control Kinematics
Commanded Observed
Werench Wrench G Force Measurements
Desired Observed State Joint Measurements
DCM | Balance | DCM Observation
Control IMU Measurements

NB: C++/Python icons denote frequency, not actual programming language.

°Stéphane Caron, Abderrahmane Kheddar, and Olivier Tempier. “Stair Climbing Stabilization of the

HRP-4 Humanoid Robot using Whole-body Admittance Control”. In: IEEE International Conference
on Robotics and Automation. May 2019.

30

CONTACT FLEXIBILITY

- Linear model:
T=K(0—0.)

- Damping control:
6=A(r"—1)

- Closed-loop behavior:

7 =AK. (% — 1)
Figure adapted from [Kaj+01b]
- Closed-loop stability: AK. > 0

1°Shuuji Kajita, Kazuhito Yokoi, Muneharu Saigo, and Kazuo Tanie. “Balancing a Humanoid Robot
Using Backdrive Concerned Torque Control and Direct Angular Momentum Feedback”. In: IEEE
International Conference on Robotics and Automation. 2001.

31

DISCRETIZED CONTACT FLEXIBILITY

- Damping control:
0[k] = A(r? — 7[k])
- Closed-loop behavior for 7¢ = 0:
7k +1] = (1 — AK.5t)7[K]
Closed-loop stability condition

2

A
ot < K.

Figure adapted from [Kaj+01b]
- Lowering K. = larger A or 6t

- Force control can be low frequency

Writeup: https://scaron.info/robot-locomotion/contact-flexibility.html

32

https://scaron.info/robot-locomotion/contact-flexibility.html

FULL PYTHON PIPELINE

Kirz:gzi Commanded
Tasks A Targets A Joint Angles
Motion . . & Velocities
— o Inverse Kinematics
Planning

Commanded
Wheel Velocities ﬁ Torque Measurements
Desired Observed State Encoder Measurements
Base Tilt [Balance | Base Tilt Observation

IMU Measurements

Control

NB: C++/Python icons denote frequency, not actual programming language.

83

WHAT DID WE SEE?

WHAT DID WE SEE?

Software for research projects:

- Collaborate on GitHub, release packages
- C++ when needed, higher-level language otherwise
Combining C++ and Python for motion control:

- Vulp action-observation loop between:

- Agent process running at 1-400 Hz
- Spine process running at 10-1,000 Hz

- Python can perform real-timely at low frequencies
Several motion control sub-tasks are in the “slow” range:

- Balance control is low frequency
- Force control can be low frequency, depending on design/scope

34

THANK YOU FOR PARTICIPATING!

B5

Bibliography

REFERENCES |

[CKT19]

[Kaj+01a]

[Kaj+01b]

[Koo+16]

[Sug09]

Stéphane Caron, Abderrahmane Kheddar, and Olivier Tempier. “Stair Climbing
Stabilization of the HRP-4 Humanoid Robot using Whole-body Admittance Control”.
In: IEEE International Conference on Robotics and Automation. May 2019.

Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi, and Hirohisa Hirukawa.
“The 3D Linear Inverted Pendulum Mode: A simple modeling for a biped walking
pattern generation”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2001.

Shuuji Kajita, Kazuhito Yokoi, Muneharu Saigo, and Kazuo Tanie. “Balancing a
Humanoid Robot Using Backdrive Concerned Torque Control and Direct Angular
Momentum Feedback”. In: IEEE International Conference on Robotics and
Automation. 2001.

Twan Koolen, Sylvain Bertrand, Gray Thomas, Tomas de Boer, Tingfan Wu,

Jesper Smith, Johannes Englsberger, and Jerry Pratt. “Design of a Momentum-Based
Control Framework and Application to the Humanoid Robot Atlas”. In: International
Journal of Humanoid Robotics (2016).

Tomomichi Sugihara. “Standing stabilizability and stepping maneuver in planar
bipedalism based on the best COM-ZMP regulator”. In: IEEE International Conference
on Robotics and Automation. 2009.

36

REFERENCES 11

[Sug11] Tomomichi Sugihara. “Solvability-unconcerned inverse kinematics by the
Levenberg-Marquardt method”. In: IEEE transactions on robotics 27.5 (2011),
pp. 984-991.

[VEW19] Nahuel Alejandro Villa, Johannes Englsberger, and Pierre-Brice Wieber. “Sensitivity of

legged balance control to uncertainties and sampling period”. In: I[EEE Robotics and
Automation Letters 4.4 (2019), pp. 3665-3670.

37

	Motion control software
	Interlude 1: Robot descriptions
	C++/Python motion control software
	Interlude 2: inverse kinematics
	Balance control
	Force control
	What did we see?
	Bibliography

