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PREFACE

Classical thermodynamics, which was largely a nineteenth-century development, is

a powerful descriptive treatment of the equilibrium macroscopic properties of mat-

ter. It is powerful because it is general, and it is general because it makes no

assumptions about the fundamental structure of matter. There are no atoms or mole-

cules in classical thermodynamics, so if our ideas about the atomic structure of mat-

ter should prove to be wrong (a very possible outcome to many nineteenth-century

scientists), thermodynamics will stand unaltered. What thermodynamics does is to

start with a few very general experimental observations expressed in mathematical

form, and then develop logical relationships among macroscopic observables such

as temperature, pressure, and volume. These relationships turn out to have great

practical value.

Of course, we now have firm experimental and theoretical reasons to accept the

existence of atoms and molecules, so the behavior of these entities has been

absorbed into the content of thermodynamics, which thereby becomes even more

useful to us. In the following we will encounter the most fundamental ideas of

this important subject, as well as some applications of particular value in pharmacy.

In keeping with our needs, the treatment will in places be less rigorous than that in

many textbooks, and we may omit descriptions of detailed experimental conditions,

subtleties in the arguments, or limits on the conclusions when such omissions do

not concern our practical applications. But despite such shortcuts, the thermody-

namics is sound, so if you later study thermodynamics at a deeper level you will

not have to ‘‘unlearn’’ anything. Thermodynamics is a subject that benefits from,

or may require, repeated study, and the treatment here is intended to be the intro-

ductory exposition.

Here are a few more specific matters that may interest readers. Throughout the

text there will be citations to the Bibliography at the end of the book and the Notes

sections that appear at the end of most chapters. Students will probably not find it

necessary to consult the cited entries in the Bibliography, but I encourage you to

glance at the Notes, which you may find to be interesting and helpful. Two of

my practices in the text may be regarded by modern readers as somewhat old-

fashioned, and perhaps they are, but here are my reasons. I make considerable

use of certain units, such as the kilocalorie and the dyne, that are formally obsolete;

not only is the older literature expressed in terms of these units, but they remain in

xi



active use, so the student must learn to use them. Appendix B treats the conversion

of units. My second peculiar practice, which may seem quaint to students who have

never used a table of logarithms, is often to express logarithmic relationships in

terms of Briggsian (base 10) logarithms rather than natural logarithms. There are

two reasons for the continued use of base 10 logarithms; one is that certain func-

tions, such as pH and pK, are defined by base 10 logs, and these definitions can be

taken as invariant components of chemical description; and the second reason,

related to the first, is that order-of-magnitude comparisons are simple with base

10 logarithms, since we commonly operate with a base 10 arithmetic.

Obviously there is no new thermodynamics here, and I have drawn freely from

several of the standard references, which are cited. Perhaps the only unusual feature

of the text is my treatment of entropy. The usual development of the entropy con-

cept follows historical lines, invoking heat engines and Carnot cycles. I agree with

Guggenheim (1957, p. 7), however, that the idea of a Carnot cycle is at least as

difficult as is that of entropy. Guggenheim then adopts a postulational attitude

toward entropy [a method of approach given very systematic form in a well-known

book by Callen (1960)], whereas I have developed a treatment aimed at establishing

a stronger intuitive sense in my student readers [Nash (1974, p. 35) uses a similar

strategy]. My approach consists of these three stages: (1) the basic postulates of

statistical mechanics are introduced, along with Boltzmann’s definition of entropy,

and the concept is developed that spontaneous processes take place in the direction

of greater probability and therefore of increased entropy; (2) with the statistical

definition in hand, the entropy change is calculated for the isothermal expansion

of an ideal gas; and (3) finally, we apply classical thermodynamic arguments to ana-

lyze the isothermal expansion of an ideal gas. By comparing the results of the sta-

tistical and the classical treatments of the same process, we find the classical

definition of entropy, dS ¼ dq=T , that will provide consistency between the two

treatments.

Lectures based on this text might reasonably omit certain passages, only inciden-

tally to save time; more importantly, the flow of ideas may be better served by mak-

ing use of analogy or chemical intuition, rather than rigorous mathematics, to

establish a result. For a good example of this practice, see Eq. (4.1) and the subse-

quent discussion; it seems to me to be more fruitful educationally to pass from Eq.

(4.1), which says that, for a pure substance, the molar free energies in two phases at

equilibrium are equal, to the conclusion for mixtures, by analogy, that the chemical

potentials are equal, without indulging in the proof, embodied in Eqs. (4.2)–(4.6).

But different instructors will doubtless have different views on this matter.

I thank my colleague George Zografi for providing the initial stimulus that led to

the writing of this book. The manuscript was accurately typed by Tina Rundle. Any

errors (there are always errors) are my responsibility.

KENNETH A. CONNORS

Madison, Wisconsin
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1

ENERGY AND THE FIRST
LAW OF THERMODYNAMICS

1.1. FUNDAMENTAL CONCEPTS

Temperature and the Zeroth Law. The concept of temperature is so familiar

to us that we may not comprehend why scientists two centuries ago tended to con-

fuse temperature with heat. We will start with the notion that temperature corre-

sponds to ‘‘degree of hotness’’ experienced as a sensation. Next we assign a

number to the temperature based on the observation that material objects (gases

and liquids in particular) respond to ‘‘degree of hotness’’ through variations in their

volumes. Thus we should be able to associate a number (its temperature) with the

volume of a specified amount of material. We call the instrument designed for this

purpose a thermometer.

The first requirement in setting up a scale of temperatures is to choose a zero

point. In the common Celsius or centigrade scale we set the freezing point of water

(which is also the melting point of ice) at 0�C [more precisely, 0�C corresponds to

the freezing point of water (called the ‘‘ice point’’) in the presence of air at a

pressure of 1 atmosphere (atm)]. The second requirement is that we must define

the size of the degree, which is done for this scale by setting the boiling point of

water (the ‘‘steam point’’) at 100�C. The intervening portion of the scale is then

divided linearly into 100 segments. We will let t signify temperature on the Celsius

scale.

Experience shows that different substances may give different temperature read-

ings under identical conditions even though they agree perfectly at 0 and 100�C.

For example, a mercury thermometer and an alcohol thermometer will not give pre-

cisely the same readings at (say) room temperature. In very careful work it would

be advantageous to have available an ‘‘absolute’’ temperature scale that does not

depend on the identity of the thermometer substance. Again we appeal to laboratory
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experience, which has shown that the dependence of the volume of a fixed amount

of a gas on temperature, at very low pressures of the gas, is independent of the che-

mical nature of the gas. Later we will study the behavior of gases at low pressures in

more detail; for the present we can call such gases ‘‘ideal gases’’ and use them to

define an absolute ideal-gas temperature scale. We define the absolute temperature

as directly proportional to the volume of a given mass of ideal gas at constant

pressure (i.e., letting T be the absolute temperature and V the gas volume):

T / V

For convenience we define the size of the absolute temperature to be identical to the

Celsius degree. If V0 and V100 are the volumes of the ideal gas at the ice and steam

points of water, respectively, the size of the degree is given by

V100 � V0

100

Then our absolute temperature scale is defined by

T ¼ V

ðV100 � V0Þ=100
ð1:1Þ

Now suppose that we apply our ideal-gas thermometer to water at the ice point. In

this special case Eq. (1.1) becomes

T0 ¼
V0

ðV100 � V0Þ=100

Careful experimental work with numerous gases has revealed that T0 ¼ 273:15 K.

Thus the Celsius and absolute scales are related by

T ¼ t þ 273:15 ð1:2Þ

The absolute temperature scale is also called the thermodynamic scale or the Kelvin

scale, and temperatures on this scale are denoted K (pronounced Kelvin, with no

degree symbol or word).

According to Eq. (1.1), when T ¼ 0 K;V ¼ 0; the volume of the ideal gas goes

to zero at the absolute zero. Modern experimental techniques have achieved tem-

peratures within microdegrees of the absolute zero, but T ¼ 0 K appears to be an

unattainable condition.

The concept and practical use of temperature scales and thermometers is based

on the experimental fact that if two bodies are each in thermal equilibrium with a

third body, they are in thermal equilibrium with each other. This is the zeroth law of

thermodynamics.
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Work and Energy. Let us begin with the mechanical concept of work as the

product of a force and a displacement:

Work ¼ force� displacement ð1:3Þ

The units of work are consequently those of force and length. Now from Newton’s

laws of motion,

Force ¼ mass� acceleration ð1:4Þ

In SI units, force therefore has the units kg m s�2, which is also called a newton, N.

Hence the units of work are either kg m2 s�2 or N m.

Energy is defined as any property that can be produced from or converted into

work (including work itself ). Therefore work and energy have the same dimen-

sions, although different units may be used to describe different manifestations

of energy and work. For example, 1 Nm ¼ 1 J ( joule), and energy is often given

in joules or kilojoules. Here are relationships to earlier energy units:

1 J ¼ 107 erg

4:184 J ¼ 1 calðcalorieÞ

Note from the definition (1.3) that work is a product of an intensive property (force)

and an extensive property (displacement). In general, work or energy can be

expressed as this product:

Work ðenergyÞ ¼ intensity factor� capacity factor ð1:5Þ

Here are several examples of Eq. (1.5):

Mechanical work ¼ mechanical force � distance

Work of expansion ¼ pressure � volume change

Electrical work ¼ electric potential � charge

Surface work ¼ surface tension � area change

All forms of work are, at least in principle, completely interconvertible. For

example, one could use the electrical energy provided by a battery to drive a

(frictionless) piston that converts the electrical work to an equivalent amount of

work of expansion.

Heat and Energy. Heat has been described as energy in transit (Glasstone 1947,

p. 7) or as a mode of energy transfer (Denbigh 1966, p. 18). Heat is that form of

energy that is transferred from one place to another as a consequence of a difference

in temperature between the two places. Numerically heat is expressed in joules (J)

or calories (cal). Heat is not ‘‘degree of hotness,’’ which, as we have seen, is

measured by temperature.1
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Since both work and heat are forms of energy, they are closely connected. Work

can be completely converted into an equivalent amount of heat (e.g., through fric-

tion). The converse is not possible, however; it is found experimentally that heat

cannot be completely converted into an equivalent amount of work (without produ-

cing changes elsewhere in the surroundings). This point will be developed later;

for the present we observe that this finding is the basis for the impossibility of a

‘‘perpetual-motion machine.’’

We find it convenient to divide energy into categories. This is arbitrary, but there

is nothing wrong with it provided we are careful to leave nothing out. Now, we have

seen that thermodynamics is not built on the atomic theory; nevertheless, we can

very usefully invoke the atomic and molecular structure of matter in our interpreta-

tion of energy. In this manner we view heat as thermal energy, equivalent to,

or manifesting itself as, motions of atoms and molecules. The scheme shown in

Table 1.1 clarifies the several ‘‘kinds’’ of energy that a body (the ‘‘system’’) can

possess.2

Chemical thermodynamics is concerned with the energy U. This energy is a con-

sequence of the electronic distribution within the material, and of three types of

atomic or molecular motion: (1) translation, the movement of individual molecules

in space; (2) vibration, the movement of atoms or groups of atoms with respect to

each other within a molecule; and (3) rotation, the revolution of molecules about an

axis. If a material object is subjected to an external source of heat, so that the object

absorbs heat and its temperature rises, the atoms and molecules increase their trans-

lational, vibrational, and rotational modes of motion. Energy is not a ‘‘thing’’; it

is rather one way of describing and measuring these molecular and atomic

distributions and motions, as well as the electronic distribution within atoms and

molecules.

Systems and States. In order to carry out experimental studies and to interpret

the results, we must focus on some part of the universe that interests us. In thermo-

dynamics this portion of the universe is called a system. The system typically con-

sists of a specified amount of chemical substance or substances, such as a given

Table 1.1. The energy of a thermodynamic system

Total energy of a body

Thermodynamic energy ðUÞ Mechanical energy

Kinetic energy Internal energy Kinetic energy Potential energy

(translational (vibrational, as a result of as a result of

energy) rotational, and the body’s the body’s

electronic energy) motion as a position

whole
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mass of a gas, liquid, or solid. Whatever exists outside of the system is called the

surroundings. Certain conditions give rise to several types of systems:

Isolated Systems. These systems are completely uninfluenced by their surround-

ings. This means that neither matter nor energy can flow into or out of the

system.3

Closed Systems. Energy may be exchanged with the surroundings, but there can

be no transfer of matter across the boundaries of the system.

Open Systems. Both energy and matter can enter or leave the system.

We can also speak of a homogeneous system, which is completely uniform in com-

position; or a heterogeneous system, which consists of two or more phases.

The state of a system, experiment has shown, can be completely defined by spe-

cifying four observable thermodynamic variables: the composition, temperature,

pressure, and volume. If the system is homogeneous and consists of a single chem-

ical substance, only three variables suffice. Moreover, it is known that these three

variables are not all independent; if any two are known, the third is thereby fixed.

Thus the thermodynamic state of a pure homogeneous system is completely defined

by specifying any two of the variables pressure (P), volume (V), and temperature

(T). The quantitative relationship, for a given system, among P, V , and T is called

an equation of state. Generally the equation of state of a system must be established

experimentally.

The fact that the state of a system can be completely defined by specifying so

few (two or three) variables constitutes a vast simplification in the program of

describing physicochemical systems, for this means that all the other macroscopic

physical properties (density, viscosity, compressibility, etc.) are fixed. We don’t

know their values, but we know that they depend only on the thermodynamic vari-

ables, and therefore are not themselves independent. With this terminology we can

now say that thermodynamics deals with changes in the energy U of a system as the

system passes from one state to another state.

Thermodynamic Processes and Equilibrium. A system whose observable

properties are not undergoing any changes with time is said to be in thermodynamic

equilibrium. Thermodynamic equilibrium implies that three different kinds of equi-

librium are established: (1) thermal equilibrium (all parts of the system are at the

same temperature), (2) chemical equilibrium (the composition of the system is not

changing), and (3) mechanical equilibrium (there are no macroscopic movements

of material within the system).

Many kinds of processes can be carried out on thermodynamic systems, and

some of these are of special theoretical or practical significance. Isothermal pro-

cesses are those in which the system is maintained at a constant-temperature.

(This is easy to do with a constant-temperature bath or oven.) Since it is conceiva-

ble that heat is given off or taken up by the system during the process, maintaining a

constant temperature requires that the heat loss or gain be offset by heat absorbed

from or given up to the surroundings. Thus an isothermal process requires either a

FUNDAMENTAL CONCEPTS 7



closed or an open system, both of these allowing energy to be exchanged with the

surroundings. An adiabatic process is one in which no heat enters or leaves the sys-

tem. An adiabatic process requires an isolated system. Obviously if the process is

adiabatic, the temperature of the system may change.

A spontaneous process is one that occurs ‘‘naturally’’; it takes place without

intervention. For example, if a filled balloon is punctured, much of the contained

gas spontaneously expands into the surrounding atmosphere. In an equilibrium

chemical reaction, which we may write as

Aþ BÐ Mþ N

it is conventional to consider the reaction as occurring from left to right as written.

Thus if the position of equilibrium favors Mþ N (the products), the reaction is said

to be spontaneous. If the reactants (Aþ B) are favored, the reaction is nonsponta-

neous as written. (Obviously we can change these designations simply by writing

the reaction in the reverse direction.)

It is the business of thermodynamics to tell us whether a given process is spon-

taneous or nonspontaneous. However, thermodynamics, which deals solely with

systems at equilibrium, cannot tell us how fast the process will be. For example,

according to thermodynamic results, a mixture of hydrogen and oxygen gases

will spontaneously react to yield water. This is undoubtedly correct—but it happens

that (in the absence of a suitable catalyst) the process will take millions of years.

There is one more important type of thermodynamic process: the reversible pro-

cess. Suppose we have a thermodynamic system at equilibrium. Now let an infinite-

simal alteration be made in one of the thermodynamic variables (say, T or P). This

will cause an infinitesimal change in the state of the system. If the alteration in the

variable is reversed, the process will reverse itself exactly, and the original equili-

brium will be restored. This situation is called thermodynamic reversibility. Rever-

sibility in this sense requires that the system always be at, or infinitesimally close

to, equilibrium, and that the infinitesimally small alterations in variables be carried

out infinitesimally slowly. Because of this last factor, thermodynamically reversible

processes constitute an idealization of real processes, but the concept is theoreti-

cally valuable. One feature of a reversible process is that it can yield the maximum

amount of work; any other (irreversible) process would generate less work, because

some energy would be irretrievably dissipated (e.g., by friction).

Now suppose that a system undergoes a process that takes it from state A to

state B:

A! B

We define a change in some property Q of the system by

�Q ¼ QB � QA ð1:6Þ

In other words, the incremental change in the property is equal to its value in the

final state minus its value in the initial state.

8 ENERGY AND THE FIRST LAW OF THERMODYNAMICS



Next consider this series of processes, which constitute a thermodynamic cycle:

A !1 B �Q1 ¼ QB � QA

4" # 2 �Q2 ¼ QC � QB

D  
3

C �Q3 ¼ QD � QC

�Q4 ¼ QA � QD
———————
Sum: �Q ¼ 0

In any cycle in which the system is restored exactly to its original state, the total

incremental change is zero.

1.2. THE FIRST LAW OF THERMODYNAMICS

Statement of the First Law. To this point we have been establishing a vocabu-

lary and some basic concepts, and now we are ready for the first powerful thermo-

dynamic result. This result is solidly based on extensive experimentation, which

tells us that although energy can be converted from one form to another, it cannot

be created or destroyed [this statement is completely general in the energy regime

characteristic of chemical processes; relativistic effects (i.e., the famous equation

E ¼ mc2) do not intrude here]. This is the great conservation of energy principle,

which is expressed mathematically as Eq. (1.7), the first law of thermodynamics.

�U ¼ q� w ð1:7Þ

Here �U is the change in thermodynamic energy of the system, q is the amount of

energy gained by the system as heat, and w is the amount of energy lost by the

system by doing work on its surroundings. These are the sign conventions that

we will use:

q is positive if the heat is taken up by the system (i.e., energy is gained by the

system).

w is positive if work is done by the system (i.e., energy is lost by the system).4

Equation (1.7) is the incremental form of the first law. The differential form is

dU ¼ dq� dw ð1:8Þ

But now we must make a very clear distinction between the quantity dU and the

quantities dq and dw. U is a state function and dU is an exact differential. This ter-

minology means that the value of �U, which is obtained by integrating dU over the

limits from the initial state to the final state, is independent of the path (i.e., the

process or mechanism) by which the system gets from the initial state to the final

THE FIRST LAW OF THERMODYNAMICS 9



state. A state function depends only on the values of the quantity in the initial and

final states.

It is otherwise with q and w, for these quantities may be path-dependent. For

example, the amount of work done depends on the path taken (e.g., whether the

process is reversible or irreversible). Therefore dq and dw are not exact differen-

tials, and some authors use different symbols to indicate this. Nevertheless,

although q and w individually may be path-dependent, the combination q–w is

independent of path, for it is equal to �U.5

The Ideal Gas. Experimental measurements on gases have shown that, as the

pressure is decreased, the volume of a definite amount of gas is proportional to

the reciprocal of the pressure:

V / 1

P

As P is decreased toward zero, all gases (at constant temperature) tend to behave in

the same way, such that Eq. (1.9) is satisfied:

PV ¼ constant ð1:9Þ

This result can be generalized as Eq. (1.10), which is called the ideal-gas equation

(or the ideal-gas law):

PV ¼ nRT ð1:10Þ

where P, V , and T have their usual meanings; n is the number of moles of gas; and

R is a proportionality constant called the gas constant. Equation (1.10) is the equa-

tion of state for an ideal gas (sometimes called the ‘‘perfect gas’’), and it constitutes

a description of real-gas behavior in the limit of vanishingly low pressure.

Example 1.1. Experiment has shown that 1 mol of an ideal gas occupies a volume

of 22.414 L at 1 atm pressure when T ¼ 273:15 K. Calculate R:

R ¼ PV

nT
¼ ð1 atmÞð22:414 LÞ
ð1 molÞð273:15 KÞ

¼ 0:082057 L atm mol�1 K�1

We can use a dimensional analysis treatment to convert to other energy units, as

described in Appendix B:

R ¼ 0:082057 L atm

mol K

� �
101325 Pa

1 atm

� �
1 N m�2

1 Pa

� �
103 cm3

1 L

� �
1 J

1 N m

� �
1 m

102 cm

� �3

¼ 8:3144 J mol�1 K�1

10 ENERGY AND THE FIRST LAW OF THERMODYNAMICS



and since 1 cal ¼ 4:184 J, R ¼ 1:987 cal mol�1 K�1. Notice that, in this calculation

of R, its units are energy per mol per K. That is, since R ¼ PV=nT , the units of the

product PV are energy, which we expressed in the particular units L atm, J, or cal.

These several values of R are widely tabulated, and they can serve as readily acces-

sible conversion factors among these energy units.

We earlier mentioned a type of work called work of expansion. This is the work

done by a gas when it expands against a resisting pressure, as happens when a pis-

ton moves in a cylinder. We can obtain a simple expression for work of expansion.

Suppose a piston of cross-sectional area A moves against a constant pressure P. We

know that mechanical work is the product of force (F) and distance, or

w ¼ FðL2 � L1Þ

where L1 is the initial position of the piston and L2 is its final position. Pressure is

force per unit area (A), so F ¼ PA, giving

w ¼ PAðL2 � L1Þ

But AðL2 � L1Þ ¼ V2 � V1, where V1 and V2 are volumes, so

w ¼ PðV2 � V1Þ ¼ P�V ð1:11Þ

where �V is the volume displaced. Thus work of expansion is the product of

the (constant) pressure and the volume change; in fact, we often refer to work of

expansion as P�V work.

Now, if the process is carried out reversibly, so that the pressure differs only infi-

nitesimally from the equilibrium pressure, the volume change will be infinitesimal,

and Eq. (1.11) can be written

dw ¼ P dV ð1:12Þ

We can integrate this between limits:

w ¼
ðV2

V1

P dV ð1:13Þ

(In the case of an isothermal, reversible expansion, w does not depend upon the path,

but this is a special case.) Now suppose that the gas is ideal and that the process is

carried out isothermally. From the ideal gas law, P ¼ nRT=V , so

w ¼ nRT

ðV2

V1

dV

V
ð1:14Þ

w ¼ nRT ln
V2

V1

ð1:15Þ

THE FIRST LAW OF THERMODYNAMICS 11



If V2 > V1, the system does work on the surroundings, and w is positive. If V1 > V2,

the surroundings do work on the system, and w is negative.

In developing Eq. (1.15) we saw an example of thermodynamic reasoning, and

we obtained a usable equation from very sparse premises. Here is another example,

again based on the ideal gas. Suppose that such a gas expands into a vacuum. Since

the resisting pressure is zero, Eq. (1.11) shows that w ¼ 0; that is, no work is done.

Careful experimental measurements by Joule and Kelvin in the nineteenth century

showed that there is no heat exchange in this process, so q ¼ 0. The first law there-

fore tells us that �U ¼ 0. Since the energy depends on just two variables, say,

volume and temperature, we can express the result as

qU

qV

� �
T

¼ 0 ð1:16Þ

which says that the energy of an ideal gas is independent of its volume at constant

temperature. We can interpret this thermodynamic result in molecular terms as fol-

lows. A gas behaves ideally when the intermolecular forces of attraction and repul-

sion are negligible. (This is why real gases approach ideality at very low pressures,

for then the molecules are so far apart that they do not experience each others’ force

fields.) If there are no forces between the molecules, no energy is required to

change the intermolecular distances, and so expansion (or compression) results in

no energy change.

1.3. THE ENTHALPY

Definition of Enthalpy. In most chemical studies we work at constant pressure.

(The reaction vessel is open to the atmosphere, and P ¼ 1 atm, approximately.)

Consequently the system is capable of doing work of expansion on the surround-

ings. From the first law we can write q ¼ �U þ w, and since w ¼ P�V ,

q ¼ �U þ P�V

at constant P. Writing out the increments, we obtain

q ¼ ðU2 � U1Þ þ PðV2 � V1Þ

and rearranging, we have

q ¼ ðU2 þ PV2Þ � ðU1 þ PV1Þ ð1:17Þ

where U, P, and V are all state functions. We define a new state function H, the

enthalpy, by

H ¼ U þ PV ð1:18Þ

12 ENERGY AND THE FIRST LAW OF THERMODYNAMICS



giving, from Eq. (1.17), the following:

q ¼ �H ð1:19Þ

Although Eq. (1.18) defines the enthalpy, it is usually interpreted according to

Eq. (1.19), because we can only measure changes in enthalpy (as with all energy

quantities). The enthalpy change is equal to the heat gained or lost in the process, at

constant pressure (there is another restriction, viz., that work of expansion is the

only work involved in the process). Since enthalpy is an energy, it is measured

in the usual energy units.

From Eq. (1.18) we can write

�H ¼ �U þ P�V ð1:20Þ

For chemical processes involving only solids and liquids, �V is usually quite small,

so �H � �U, but for gases, where �V may be substantial, �H and �U are dif-

ferent. We can obtain an estimate of the difference by supposing that 1 mol of an

ideal-gas is evolved in the process. From the ideal gas law we write

P�V ¼ ð�nÞRT

For 1 mol, �n ¼ 1, so from Eq. (1.20), we have

�H ¼ �U þ RT

At 25�C, this gives

�H ¼ �U þ ð1:987 cal mol�1 K�1Þð298:15 KÞ

¼ �U þ 592 cal mol�1

which is a very appreciable difference.

When a chemical process is carried out at constant pressure, the heat evolved or

absorbed, per mole, can be identified as �H. Specific symbols and names have been

devised to identify �H with particular processes. For example, the heat absorbed

by a solid on melting is called the heat of fusion and is labeled �Hm or �Hf. The

heat of solution is the enthalpy change per mole when a solute dissolves in a sol-

vent. For a chemical reaction �H is called a heat of reaction. The heat of reaction

may be positive (heat is absorbed) or negative (heat is evolved). By writing a reac-

tion on paper in reverse direction its �H changes sign. For example, this reaction

absorbs heat:

6C ðsÞ þ 3H2 ðgÞ ! C6H6 ðlÞ �H ¼ þ11:7 kcal mol�1

This reaction, its reverse, therefore evolves heat:

C6H6 ðlÞ ! 6C ðsÞ þ 3H2 ðgÞ �H ¼ �11:7 kcal mol�1

We will later see how enthalpy changes for chemical processes can be measured.
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Heat Capacity. A quantity C, called the heat capacity, is defined as

C ¼ dq

dT
ð1:21Þ

where C is a measure of the temperature change in a body produced by an incre-

ment of heat. The concept of the heat capacity is essential in appreciating the

distinction between heat and temperature.

Chemical processes can be carried out at either constant volume or constant

pressure. First consider constant volume. If only work of expansion is possible,

at constant volume �V ¼ 0, so w ¼ 0, and from the first law dq ¼ dU. We there-

fore define the heat capacity at constant volume by

CV ¼
qU

qT

� �
V

ð1:22Þ

At constant pressure, on the other hand, we have, from Eq. (1.19), dq ¼ dH, and we

define the heat capacity at constant pressure by

CP ¼
qH

qT

� �
P

ð1:23Þ

In the preceding section we had obtained, for one mole of an ideal gas, Eq. (1.24).

�H ¼ �U þ RT ð1:24Þ

Let us differentiate this with respect to temperature. Using Eqs. (1.22) and (1.23),

we get

CP ¼ CV þ R ð1:25Þ

For argon, at room temperature, CP ¼ 20:8 J K�1 mol�1 and CV ¼ 12:5 J K�1 mol�1;

hence CP � CV ¼ 8:3 J K�1 mol�1, which is R.

For most compounds only CP has been measured. Values of CP for typical organic

compounds lie in the range 15–50 cal K�1 mol�1. As seen here, heat capacity is ex-

pressed on a per mole basis, and is sometimes called the molar heat capacity. When

the heat capacity is expressed on a per gram basis it is called the specific heat.

Taking the constant-pressure condition of Eq. (1.23) as understood, we can write

CP ¼ dH=dT , or dH ¼ CP dT. If we suppose that CP is essentially constant over the

temperature range T1 to T2, integration gives

�H ¼ CP �T ð1:26Þ

Example 1.2. The mean specific heat of water is 1:00 cal g�1 K�1. Calculate the

heat required to increase the temperature of 1.5 L of water from 25�C to the boiling

point.6

As a close approximation we may take the density of water as 1:00 g mL�1 and

the boiling point as 100�C, so, from Eq. (1.26), we obtain

�H ¼ 1:00 cal

g K

� �
ð1500 gÞð75 KÞ ¼ 112,500 cal

or 112.5 kcal.
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PROBLEMS

1.1. A piston 3.0 in. in diameter expands into a cylinder for a distance of 5.0 in.

against a constant pressure of 1 atm. Calculate the work done in joules.

1.2. What is the work of expansion when the pressure on 0.5 mol of ideal gas is

changed reversibly from 1 atm to 4 atm at 25�C? (Hint: For an ideal gas

P1V1 ¼ P2V2.)

1.3. Derive an equation giving the heat change in the isothermal reversible

expansion of an ideal gas against an appreciable pressure. [Hint: Make use

of Eq. (1.16) and the first law.]

1.4. What is the molar heat capacity of water? (See Example 1.2 for the specific

heat.)

1.5. The molar heat capacity of liquid benzene is 136:1 J mol�1 K�1. What is its

specific heat?

1.6. The specific heat of solid aluminum is 0:215 cal g�1 K�1. If a 100-g block of

aluminum, initially at 25�C, absorbs 1:72 kcal of heat, what will be its final

temperature?

1.7. A 500-g piece of iron, initially at 25�C, is plunged into 0.5 L of water at 75�C
in a Dewar flask. When thermal equilibrium has been reached, what will the

temperature be? The specific heat of iron is 0:106 cal g�1 K�1.

1.8. In the following thermodynamic cycle, �Hf ;�Hv, and �Hs are, respectively,

molar heats of fusion, vaporization, and sublimation for a pure substance.

Obtain an equation connecting these three quantities. (Hint: Pay careful

attention to the directions of the arrows.)

Solid

∆Hv

∆Hf∆Hs

LiquidGas

NOTES

1. Note that temperature is an intensive property, whereas heat is an extensive property. Two hot

potatoes differing in size may have the same temperature,but the larger potato possesses

more heat than the smaller one.

2. This scheme is consistent with the usage of most authors, but some variation is found in the

literature. The thermodynamic energy U may also be symbolized E, and some authors label

the thermodynamic energy the internal energy. The internal energy shown Table 1.1 may be

identified with the potential energy of the molecules (to be distinguished from the potential

energy of the body as a whole).
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3. A truly isolated system is an idealization, but a very close approximation can be achieved

inside a closed thermos (derived from the original trade name Thermos in 1907) bottle. (The

laboratory version is called a Dewar flask.)

4. This is the sign convention used by most authors, but the International Union of Pure and

Applied Chemistry (IUPAC) reverses the convention for w, giving as the first law

�U ¼ qþ w.

5. This analogy will clarify the difference between path-dependent and path-independent

quantities. Suppose we wish to drive from Madison (WI) to Green Bay. Obviously there are

numerous routes we might take. We could drive via Milwaukee, or via Oshkosh, or via

Stevens Point, and so on. Graphically the possibilities can be represented on a map, as shown

in the accompanying figure. Now, no matter which path we take, the changes in latitude,

�Lat, and in longitude, �Lon, will be exactly the same for each route; for example,

�Lat ¼ LatðGBÞ � LatðMADÞ, and this quantity is independent of the route. Thus latitude

and longitude are state functions. But the amount of gasoline consumed, the time spent

driving, and the number of miles driven all depend on the path taken; these are not state

functions. This analogy is taken from Smith (1977).

Madison

Oshkosh

Stevens Green Bay

Milwaukee

 Longitude

La
tti

tu
de

6. It is not a coincidence that the specific heat of water is 1:00 cal g�1 K�1, for this is how the

calorie was originally defined: one calorie was the amount of heat required to raise the

temperature of one gram of water by 1�C. Actually the specific heat of water varies slightly

with the temperature.
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2

THE ENTROPY CONCEPT

2.1. THE ENTROPY DEFINED

Why Energy Alone Is Not a Sufficient Criterion for Equilibrium. Let us

try to develop an analogy, based on what we know from classical mechanics,

between a mechanical system and a chemical (thermodynamic) system. The posi-

tion of equilibrium in a mechanical system is controlled by potential energy. Con-

sider a rock poised near the top of a hill. It possesses potential (gravitational)

energy as a consequence of its position. If it is released, its potential energy will

be converted to heat (through friction) and to kinetic energy as it rolls down the

hill. It will come to rest, having zero potential energy, at the foot of the hill (since

we can measure only changes in energy, we mean that the potential energy is zero

relative to some arbitrary reference value, which we are free to take as the value at

the foot of the hill). It is now at mechanical equilibrium. Thus the criterion for a

spontaneous mechanical process is that the change in potential energy be negative

(it gets smaller), and the criterion for mechanical equilibrium is that the change in

potential energy be zero.

Why don’t we simply apply an analogous criterion to chemical systems? We

might argue that �U (for a system at constant volume) or �H (for a system at con-

stant pressure) play the role of potential energy in the mechanical system. But we

find experimentally that this suggestion is inadequate to account for the observa-

tions. Consider first the following experiment (Smith 1977, p. 6):

1. Dissolve some solid NaOH in water. The solution becomes warm; that is, heat

is liberated in the process. This means that �H is negative in the spontaneous

process of NaOH dissolving in water. (The reaction is said to be exothermic.)

This is entirely in accord with the proposal we are examining.
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2. Dissolve some solid NaNO3 in water. The solution becomes cool; that is, heat

is absorbed as the dissolution occurs, and this cools the solution. Therefore

�H is positive in this spontaneous process. (It is an endothermic reaction.)

This behavior is in conflict with the proposal.

Here is another pertinent experiment. Suppose that we have two identical cham-

bers connected by a stopcock. With the stopcock closed, we let one chamber con-

tain a gas and the other chamber be evacuated (i.e., it ‘‘contains’’ a vacuum). Now

we open the stopcock. We know what will happen—the gas will spontaneously dis-

tribute itself uniformly throughout the two chambers. If the gas is ideal (and most

gases behave nearly ideally at low pressures), we know [see Eq. (1.16)] that

�U ¼ 0 for this spontaneous process. Thus, with no energy change at all the sys-

tem spontaneously underwent a change to an equilibrium position.

This inability to predict the direction of chemical change based on energy

considerations alone was one of the great nineteenth-century scientific problems.

Since energy minimization alone is not an adequate criterion for chemical equili-

brium, something else must be involved. This is our next concern, and we are going

to use an approach somewhat different from that taken in many textbooks, which

adopt an argument based on the historical development of the ideas. We are going

to sidestep classical thermodynamic history by turning to a description based on the

particulate (i.e., atomic) nature of matter.

The Statistical Mechanical Entropy. We have seen that classical thermody-

namics is based on macroscopic observations and makes no assumptions about

the ultimate structure of matter. An alternative viewpoint, called statistical

mechanics (or statistical thermodynamics when applied to thermodynamic

problems), adopts the assumption that matter is composed of vast numbers of

very small particles (which we now identify as electrons, atoms, molecules, etc.).

In many circumstances this point of view provides physical insight not available

from classical thermodynamics, and we will turn to it to illuminate our present

problem.

Let us reconsider the example of the apparatus with two chambers, in one of

which a gas was initially confined. Suppose that only a single molecule of gas

had been present. After the stopcock is opened (and presuming that both chambers

have equal volumes), evidently the probability that the molecule will be in one spe-

cified chamber (say, the left chamber) is 1
2
. Next suppose we were to start with two

molecules, say, a and b, and ask for the probability that both will be found, at equi-

librium, in the left chamber. These are the only possible distributions:

Left Right

a b

b a

a,b —

— a,b
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Thus of four possible distributions only one places both a and b in the left chamber,

so the probability1 of this distribution is 1
4
¼ ð1

2
Þ2. Generalizing to N molecules

we get ð1
2
ÞN for the probability that at equilibrium all N molecules will be found

in the left chamber. Since for chemical systems N, the number of atoms or mole-

cules, can be very large indeed, we see that the probability is extremely small that

all of the molecules will end up in one chamber. On the other hand, the probability

is extremely high that the molecules will be distributed equally between the two

chambers.

This simple example (Glasstone 1947, p. 184) suggests a general statement,

which in fact constitutes a basic premise of statistical mechanics, namely, that all

spontaneous processes represent changes from a less probable to a more probable

state. This postulate leads us to the next stage of our inquiry, which consists essen-

tially of counting all possible distributions that are accessible to a system, for this is

how the probability of a state is to be established.

In this next example the system is more complicated, although still artificially

simple. We imagine that two crystals of different elements, A and B, are placed in

contact, so that atoms of A may diffuse into the B crystal and vice versa [this

example is given by Denbigh (1966, p. 49)]. In this simple example we suppose

that crystal A contains four A atoms (4A), and likewise crystal B contains four

B atoms (4B). We can distinguish between A and B atoms, but all A atoms are

indistinguishable among themselves, and similarly for B. The sites that the atoms

occupy in the crystals are distinguishable. Initially let all A atoms be in the left-

hand crystal and all B atoms in the right-hand crystal.

We are going to count all possible configurations (called microstates) of our sys-

tem. There are 4A and 4B to be distributed among eight sites. (We assume that the

energies of interaction are identical no matter which type of atom is on which site.)

Clearly there is only one microstate having 4A in the left crystal and 4B in the right

crystal:

A A

A A

B B

B B

Similarly, there is only one microstate with 4B in the left and 4A in the right crystal.

But now consider the number of ways we can have 3Aþ 1B on the left and

3Bþ 1A on the right. We could argue in this way—the A atom on the right has

any one of 4 right-hand sites available to it, and likewise the B atom on the left

has 4 sites available, making 4� 4 ¼ 16 configurations. These 16 microstates are

explicitly shown in Fig. 2.1 Obviously the symmetrical arrangement of 1Aþ 3B on

the left and 3Aþ 1B on the right will also have 16 microstates.

The remaining arrangement of 2Aþ 2B (left) and 2Aþ 2B (right) is slightly

more difficult. First consider the left crystal. The first B atom has 4 sites available,

whereas the second B atom has only 3 accessible sites. Hence there appear to be

4� 3 possible configurations. However, the two B atoms are indistinguishable, so

we have double-counted, and must compensate, giving ð4� 3Þ=2 as the number of
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microstates. But an equal number is contributed by the right-hand side, making in

all ð4� 3Þ=2� ð4� 3Þ=2 ¼ 36 microstates. Here are the results summarized.2

Atoms to Left Atoms to Right Number of Microstates

4A 4B 1

3Aþ 1B 1Aþ 3B 16

2Aþ 2B 2Aþ 2B 36

1Aþ 3B 3Aþ 1B 16

4B 4A 1

——

70

In modern terminology, the microstates are called quantum states.

Now, another key premise of statistical mechanics is that the system is as likely

to be in any one microstate as in another. That is, all microstates are equally prob-

able. In our example above, there is a probability of 1
35

that all of the A atoms will

be found in a single crystal (either left or right); but there is a probability of 36
70

that

the atoms will be uniformly distributed. All the microstates are accessible, and the

system is simply more likely to be found (at equilibrium) in the state possessing the

largest number of microstates. (It can also be stated that the system spends an equal

amount of time in each microstate, so it spends the most time in the system with the

most microstates.)

For chemical systems the number of particles is extremely large (recall that

Avogadro’s number is about 6� 1023), so the number of microstates is vast, and

the consequence is that the most probable state of the system is so probable that

A B

A A

B A

B B

B A

A A

B A

B B

A B

A A

A B

B B

B A

A A

A B

B B

A A

B A

B A

B B

A A

B A

A B

B B

A A

A B

B A

B B

A A

A B

A B

B B

A B

A A

B B

A B

B A

A A

B B

A B

A B

A A

B B

B A

B A

A A

B B

B A

A A

B A

B B

A B

A A

B A

B B

B A

A A

A B

B B

A B

A A

A B

B B

B A

Figure 2.1. The 16 microstates possessing 3Aþ1B on the left and 3Bþ 1A on the right.
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all other states (although possible in principle) may be disregarded in practice. The

total number of microstates accessible to a system (which, we have just noted, is

essentially equal to the number of microstates in the most probable state) we label

W . (Some authors use �.) We now define a quantity S, called entropy, by Eq. (2.1),

which is due to Boltzmann:

S ¼ k ln W ð2:1Þ

This is a definition. We will later establish the significance of the proportionality

constant k. The equation says that the entropy S of a system increases logarithmi-

cally as W , the number of accessible microstates, increases.

We have noticed in our crystal diffusion example how W is composed of con-

tributions from various configurations, and within each configuration the contribu-

tions are multiplicative; for example, for the 3Aþ 1B (left) and 1Aþ BB (right)

state we had 4� 4 ¼ 16 microstates. Supposing, more generally, that we write

W ¼ WL �WR, Eq. (2.1) gives us

S ¼ k ln WLWR ¼ k ln WL þ k ln WR ¼ SL þ SR

Thus, entropy is additive. (This is one reason why Boltzmann used a logarithmic

function in his definition.)

Another point is to be made here. Our crystal diffusion example involved micro-

states all having the same energy, and we calculated all possible configurations. The

resulting entropy is known as the configurational entropy. More generally, in chem-

ical systems we must also consider a very large number of quantum states, most of

which occupy different energy levels. The total entropy receives contributions from

both sources: the microstates counting all configurations and those counting all

energies.

Summarizing to this point, we conclude that spontaneous processes occur in a

direction of increasing probability, and that entropy as calculated by the statistical

mechanical definition is a quantitative measure of this probability. Therefore spon-

taneous processes occur with an increase in entropy.3

Before leaving the statistical mechanical treatment, let us apply our results to the

calculation of the entropy change accompanying the isothermal expansion of an

ideal gas from volume V1 to volume V2 (Glasstone 1947, p. 186; Denbigh 1966,

p. 55; Rossini 1950, p. 73). (We will shortly see the point of this particular calcula-

tion.) Recall that �U ¼ 0 in this process, so the only driving force for the expan-

sion is the increase in probability of the system.

If W1 and W2 are the numbers of microstates associated with volumes V1 and V2,

then S1 ¼ k ln W1 and S2 ¼ k ln W2, so

�S ¼ S2 � S1 ¼ k ln
W2

W1

ð2:2Þ

The probability that a single molecule will be found in any volume V is propor-

tional to that volume, and the number of microstates accessible to a molecule is

THE ENTROPY DEFINED 21



proportional to V (Hill 1960, Chapter 4). We therefore can write, for a single mole-

cule, W2=W1 ¼ V2=V1, and for NA (one mole of ) molecules

W2

W1

¼ V2

V1

� �NA

ð2:3Þ

Combining Eqs. (2.2) and (2.3) gives as the statistical mechanical result

�S ¼ kNA ln
V2

V1

ð2:4Þ

Entropy in Classical Thermodynamics. Now we are going to treat the iso-

thermal reversible expansion of an ideal gas classically. Our goal is to establish

the classical thermodynamic equivalent of the statistical mechanical entropy. We

begin with the first law:

dU ¼ dq� dw ð2:5Þ

On expanding from volume V1 to volume V2 against pressure P, the gas is capable

of doing work of expansion dw ¼ P dV . Moreover, we know from our earlier dis-

cussion that dU ¼ 0 for this process, so we have dq ¼ P dV . For one mole of an

ideal gas P ¼ RT=V , giving dq ¼ RTðdV=VÞ, or

dq

T
¼ R

dV

V
ð2:6Þ

We will integrate Eq. (2.6) between our expansion limits of V1 and V2, giving

ðstate 2

state 1

dq

T
¼ R ln

V2

V1

ð2:7Þ

Now let us compare Eq. (2.7), derived classically, with Eq. (2.4), derived statisti-

cally. These equations describe the same process, and they reveal that consistency

between the classical and statistical treatments can be achieved by writing the iden-

tities

kNA ¼ R ð2:8Þ
ðstate 2

state 1

dq

T
¼ �S ð2:9Þ

and Eq. (2.9) implies

dq

T
¼ dS ð2:10Þ
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These are powerful results. From Eq. (2.8) we achieve a physical interpretation of

the proportionality constant k in Eq. (2.1), Boltzmann’s definition of entropy, as

k ¼ R

NA

ð2:11Þ

where k is the gas constant per molecule; this quantity is known as the Boltzmann

constant. It has the value k ¼ 1:38� 10�23 J K�1. Any equation containing R is on

a per mole basis; replace the R with k and the equation is on a per molecule basis.

According to Eq. (2.10), the differential entropy change is equal to the differen-

tial heat change divided by the absolute temperature. Moreover, from Eq. (2.7),

since V is a state function, the entropy S is a state function. With a combination

of statistical and classical arguments we can make some general statements about

entropy changes. From statistical mechanics we had seen that �S increases during a

spontaneous process, so we infer that �S ¼ 0 at equilibrium. Reverting to a differ-

ential symbolism, these results give us

dS > 0, for a spontaneous (irreversible) process

dS ¼ 0, for a system at equilibrium

Recall that in a reversible process the system is always virtually at equilibrium, and

the system is then capable of performing the maximum work (because irreversible

losses, such as to friction, are minimized). In a spontaneous (irreversible) process,

the amount of work that can be done is less than the maximum. From the first law,

since dU is a state function and is the same no matter what path is taken, we have

dU ¼ dqrev � dwrev ¼ dqirr � dwirr

so

dqrev � dqirr ¼ dwrev � dwirr

Since dwrev > dwirr, it follows that dqrev > dqirr. We therefore can write

dqrev

T
>

dqirr

T

The entropy is a state function, independent of path, so the differential dS has a

definite value for a given process regardless of whether that process is carried

out reversibly. Equation (2.10) for the classical definition of entropy can be more

explicitly written

dS ¼ dqrev

T
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Classically, then, the entropy increase is equal to the heat change in an isothermal

reversible process divided by the absolute temperature at which the heat change

occurs. All spontaneous (i.e., natural) processes occur with a gain of entropy by

the system and the surroundings. Note that it is conceivable for the system to

experience an entropy decrease (dS < 0), but this will inevitably be accompanied

by a more-than-compensating entropy increase in the surroundings.

2.2. THE SECOND LAW OF THERMODYNAMICS

Statement of the Second Law. Entropy plays a critical role in thermodynamic

analysis, because it is the missing factor that we were seeking to allow us to predict

the direction of change in atomic or molecular systems. The essential result consti-

tutes the second law of thermodynamics, which can be stated in several ways, not

all of them obviously equivalent, but in fact all of them providing the same mes-

sage. Here are some of them:

1. Heat does not spontaneously flow from a cold body to a hot body.

2. Spontaneous processes are not thermodynamically reversible.

3. The complete conversion of heat into work is impossible without leaving

some effect elsewhere.

4. It is impossible to convert heat into work by means of a constant temperature

cycle.

5. All natural processes are accompanied by a net gain in entropy of the system

and its surroundings.

This last statement is most useful to us. Let us write

dSnet ¼ dSsystem þ dSsurroundings

Then the second law says

dSnet > 0 (spontaneous processes)

dSnet ¼ 0 (reversible processes)

Interpretations of Entropy. Entropy is an abstract concept of thermodynamics

and statistical mechanics that plays a practical role in providing a criterion for equi-

librium. Despite its technical and abstract nature, it has passed into popular culture

and language, where its use is sometimes casual and inexact. Let us consider some

interpretations that have been given to entropy. The statistical mechanical picture is

clearest. We found that the entropy increases logarithmically with the number of

microstates accessible to the system, and concluded that entropy is correlated

with the increase in ‘‘mixed- up- ness’’ of the system [Denbigh (1966, p. 55) attri-

butes this term to Gibbs]. Entropy is widely interpreted as a measure of randomness
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or of disorder, an increase in entropy being associated with an increase in these

properties. This is because spontaneous processes occur with an increase in entropy

and lead to more extensive mixing of the units in a system. This interpretation

directly concerns the configurational entropy, which measures the spatial disposi-

tion of units; in addition there is the thermal entropy, which measures the distri-

bution of quantum states having different energies. (But note that an increase in

configurational entropy might conceivably be accompanied by a decrease in ther-

mal entropy; it is the net entropy change that is decisive.) E. A. Guggenheim [cited

by Denbigh (1966, p. 56)] refers to entropy as a measure of spread, that is, disper-

sion over a larger number of quantum states, either configurational or thermal.

A fundamental basis of the second law is closely connected to these interpretive

notions. As we have seen, it is possible to convert work completely into heat, but we

cannot completely convert heat into work. The reason for this dissymmetry lies in

the atomic structure of matter. Doing work means making use of the directed

motion of an assemblage of particles (as by rubbing a metal block on a surface,

or drilling a hole in a solid with a drill bit). This work is converted (through friction)

to heat, which raises the temperature of the contacting bodies. The temperature

increase reflects the increased kinetic energy of the atoms in the bodies, and (this

is the essential point) the motions of these atoms are undirected, as they are largely

chaotic. There is no possible way to transform completely this undirected motion

(heat) back into work, without adding energy from the surroundings. The basis of

this irreversibility is the increased randomness on the atomic scale. A modern ver-

sion describes this phenomenon (increased spread or randomness, therefore

increased entropy) as reflecting a loss of information about the system.

It is often said that the entropy of the universe is constantly increasing. This is

correct to the extent that we understand the universe, but the statement, if taken as

an analogy with chemical systems, implies that the universe is approaching an equi-

librium state, when dS will be zero; and this we do not know.

Summary of Fundamental Thermodynamics. Our development of the first

and second laws of thermodynamics has provided the entire basis of this subject.

Everything else (and there is a great deal more) follows from this by introducing

definitions of new quantities or functions and manipulating them mathematically.

Before we proceed, we summarize our results4 in Table 2.1.

Table 2.1. The laws of thermodynamics

Law State Function Characteristic

0 T Determines thermal equilibrium

1 U Conservation of energy

(The energy of the universe is constant)

(You can’t get something for nothing)

2 S Determines direction of spontaneous change

(The entropy of the universe is increasing)

(You can’t break even)
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2.3. APPLICATIONS OF THE ENTROPY CONCEPT

Entropy Relationships. A few simple manipulations will demonstrate the in-

volvement of entropy in thermodynamic relationships. The first law is dU ¼
dq� dw. If the only work done in a process is work of expansion, then dw ¼ P dV .

Moreover, we have seen that dS ¼ dq=T , so dq ¼ T dS, and we get

dU ¼ T dS� P dV ð2:12Þ

as another statement of the first law. The product T dS (or T �S) is pervasive in

thermodynamics, and this is its source; observe that this product is an energy.

Now rearrange Eq. (2.12) to

dS ¼ dU þ P dV

T
ð2:13Þ

and consider processes at constant pressure. From the definition of enthalpy applied

to Eq. (2.12) we find

dS ¼ dH

T
ð2:14Þ

We recall that the heat capacity at constant pressure is defined CP ¼ dH=dT , so

dH ¼ CP dT . Using this in Eq. (2.14) gives

dS ¼ CP

dT

T
ð2:15Þ

where the constant pressure condition is understood and is not explicitly indicated.

We can integrate Eq. (2.15) between the limits T1 and T2:

�S ¼ S2 � S1 ¼
ðT2

T1

CP

dT

T
¼
ðT2

T1

CP d ln T ð2:16Þ

If CP is substantially independent of temperature over the integration range,

Eq. (2.16) becomes

�S ¼ CP ln
T2

T1

ð2:17Þ

at constant pressure [a corresponding equation, �S ¼ Cv ln ðT2=T1Þ, applies at con-

stant volume].

An interesting case of Eq. (2.16) arises when we set T1 ¼ 0 K, giving

S ¼ S0 þ
ðT

0

CP d ln T ð2:18Þ
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The quantity S0 is to be interpreted as the value of the entropy at the absolute zero.

Planck in 1912 proposed that S0 may assume the value zero at 0 K for a perfect

crystal, which possesses no disorder. This proposal is known as the third law of

thermodynamics. By means of the third law combined with Eq. (2.18), it is possible

to evaluate the entropy S of substances from measurements of CP as a function of

temperature. The procedure is to plot experimental values of CP against ln T for the

entire range of experimental temperatures. Since T ¼ 0 K is unattainable, the curve

thus generated is extrapolated to 0 K with the aid of a theoretical function. The area

under the curve, from 0 K up to any specified temperature, is then equal to the

entropy of the substance at that temperature.

Entropy Changes. Despite the possibility afforded by the third law to evaluate

absolute entropies of substances, in nearly all practical applications of the entropy

concept we evaluate changes in entropy. Here we will see some examples of such

determinations. Later in the book we will consider the estimation of entropy

changes for additional types of processes.

From the definition dS ¼ dq=T it is evident that the units of entropy are energy

per degree kelvin, and it is expressed either in J K�1 or cal K�1. Since entropy is an

extensive property we convert it to an intensive property by expressing it on a per

mole basis. Consequently �S values will always be encountered in the units

J K�1 mol�1 or cal K�1 mol�1 (the combination cal K�1 mol�1 is sometimes

referred to as the entropy unit, abbreviated e.u.).

We will calculate the entropy changes accompanying phase changes, as when a

solid melts (fusion) or a liquid evaporates (vaporization). These processes can be

carried out reversibly at constant temperature (the temperature being called the

melting point, Tm, for fusion, or the boiling point, Tb, for vaporization.5 The system

is not isolated, because heat must be supplied in order that the process take place.

The heat supplied in the fusion process is �Hf , the heat of fusion; whereas �Hv,

the heat of vaporization, is furnished in the vaporization process. These enthalpy

changes are expressed on a per mole basis. Many experimental �Hf and �Hv

values are available in the common reference handbooks.

From Eq. (2.14) applied to our present concern we can write

�Sf ¼
�Hf

Tm

ð2:19Þ

�Sv ¼
�Hv

Tb

ð2:20Þ

Table 2.2 shows enthalpy data for a few phase changes.

Example 2.1. Calculate the entropy of fusion of benzoic acid.

�Sf ¼
�Hf

Tm

¼ 4320 cal mol�1

395:25 K
¼ þ10:93 cal K�1 mol�1

Table 2.3 gives �Sf and �Sv results for the processes described in Table 2.2.
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It has been known since 1884 that for very many nonassociated liquids (i.e.,

liquids whose molecules do not interact strongly with each other), �Sv �
21 cal K�1 mol�1. This empirical observation is known as Trouton’s rule, and it

provides a simple though approximate estimate of �Hv by means of Eq. (2.20),

since the boiling point is easily measured. Such a convenient generalization cannot

be made for �Sf values, although some definite patterns have been observed [see

Yalkowski and Valvani (1980); in Chapter 10 we make use of these observations].

Notice that all �Sf and �Sv values are positive, because the system in each case

is proceeding from a state of relative order to a state of relative disorder. Molecules

in the liquid state possess a larger number of accessible quantum states (both con-

figurational and thermal) than in the more restricted solid state, and similarly for the

vaporization process.

We will subsequently learn how to calculate �S for chemical reactions, where

we will find that �S can be either positive or negative, just as with �H values,

depending on the direction in which the reaction is written. Very generally we

anticipate that if the product state (the right-hand side of the equation) possesses

more particles (molecules or ions) than the reactant state, �S will be positive,

reflecting the availability to the system of more microstates.

PROBLEMS

2.1. Predict the sign of �S for these processes.

(a) Crystallization of benzoic acid from its melt.

(b) Evaporation of spilled gasoline.

Table 2.3. Entropies of fusion and vaporization

Substance �Sf ðcal K�1 mol�1Þ �Sv ðcal K�1 mol�1Þ

Benzoic acid þ10.93 —

Phenol þ8.76 —

Acetone — þ21.11

Water þ5.26 þ26.04

Table 2.2. Heats of fusion and vaporization for some solids and liquids

mpa �Hf bpb �HV

Substance (�C) ðkcal mol�1Þ (�C) ðkcal mol�1Þ

Benzoic acid 122.1 4.32 — —

Phenol 40.9 2.75 — —

Acetone — — 56.2 6.95

Water 0.0 1.436 100.0 9.717

aMelting point.
bBoiling point.
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(c) This chemical reaction:

Me2C����CH2 þ Cl2 ! Me2CClCH2Cl

2.2. Look up the boiling point of benzene, and estimate its molar heat of

vaporization.

2.3. The heat of fusion of 4-nitroaniline is 5.04 kcal mol�1. Look up its melting

point, and calculate its entropy of fusion.

2.4. Sublimation is the process in which a solid is transformed directly to the vapor

state. The heat of sublimation of naphthalene is 17.6 kcal mol�1 at 25�C.

Calculate its entropy of sublimation.

2.5. Calculate the entropy change during the isothermal expansion of 0.5 mol of an

ideal gas from 100 ml to 1 L.

2.6. The heat capacity of chloroform in the vicinity of 600 K is 20.4 cal K�1 mol�1.

Calculate the entropy change per mole when chloroform is brought from 550

to 625 K.

2.7. Derive an equation for the molar entropy change when the pressure on an ideal

gas is isothermally changed from P1 to P2 atm. [Hint: Start with Eq. (2.4).]

NOTES

1. We are making the unstated assumption that the molecules behave independently, so that

each has a probability of 1
2

of being in the left chamber. The probability that both will be in the

left chamber is the product of the individual probabilities.

2. Probability theory gives a simple expression for calculating the number of ways N objects can

be distributed into n1 of type 1, n2 of type 2, and so on; this is the expression:

N!

n1!n2! . . .

where N! is read N factorial, and is the product 1 
 2 
 3 
 4 
 
 
 (N � 1) 
 N. For our system

this gives 8!=4!4! ¼ 70.

3. In making this statement we are neglecting concurrent energy changes; specifically, we are

assuming�U ¼ 0 (for the present). Note also that we measure changes in entropy,�S, so the

statement says that if �S is positive, the process is spontaneous.

4. The concept of entropy was introduced by Clausius in 1854, and he introduced the word

entropy in 1865. This is how Clausius expressed the first and second laws:

Die Energie der Welt ist constant.

Die Entropie der Welt strebt einem Maximum zu.

5. The boiling point is commonly considered to be the temperature at which the liquid and vapor

are in equilibrium at atmospheric pressure. However, Eq. (2.20) can also be applied to data at

other pressures, with the appropriate temperature inserted.
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3

THE FREE ENERGY

3.1. PROPERTIES OF THE FREE ENERGY

The Gibbs Free Energy. We have seen that for a mechanical system (which

consists of relatively few bodies or ‘‘particles’’) the condition for a spontaneous

process is that the potential energy change be negative, whereas for a chemical sys-

tem (which consists of an almost unimaginably large number of particles) we

learned that, even when no energy change occurs, spontaneous processes can

take place, and we concluded that spontaneous processes occur with an increase

in entropy. Now we are going to bring this together, recognizing that there are

two factors involved in determining the direction of chemical change: the system

seeks to minimize its energy and to maximize its entropy, and the position of equi-

librium depends upon a combination of (and perhaps a compromise between) these

factors. Several thermodynamic functions have been proposed to describe the situa-

tion, but we will make use of only one of these, which is particularly useful for our

purposes because it invokes the commonly controlled experimental conditions of

temperature and pressure. This function, termed Gibbs free energy G,1 is defined

as follows:

G ¼ H � TS ð3:1Þ

This equation is actually a definition. Since H, T , and S are state functions, G is also

a state function. As seen from its definition, the Gibbs free energy (which is often

referred to simply as the ‘‘free energy’’ for convenience) is an energy quantity. We

are, for the present, restricting attention to a closed system, which is one across

whose boundaries no matter is exchanged with the surroundings.
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Since by definition H ¼ U þ PV , Eq. (3.1) can be written

G ¼ U þ PV � TS ð3:2Þ

and its complete differential is

dG ¼ dU þ P dV þ V dP� T dS� S dT ð3:3Þ

We saw earlier [Eq. (2.12)] that if the only work done in a reversible process is

work of expansion, the first law can be written

dU ¼ T dS� P dV ð3:4Þ

which, combined with Eq. (3.3), gives

dG ¼ V dP� S dT ð3:5Þ

Equation (3.5) shows how the free-energy change depends on changes in the

pressure and the temperature for a reversible process in a closed system.2 If the

temperature is constant, dT ¼ 0, and from Eq. (3.5)

qG

qP

� �
T

¼ V ð3:6Þ

If the pressure is constant, dP ¼ 0, and from Eq. (3.5), we obtain

qG

qT

� �
P

¼ �S ð3:7Þ

From the definition Eq. (3.1), if the temperature is constant, we obtain

dG ¼ dH � T dS ð3:8Þ

or, in incremental form

�G ¼ �H � T �S ð3:9Þ

This last equation is an especially useful relationship because experimentally we

measure these incremental quantities. Observe in this equation how �G, the change

in free energy, is composed of an energy component, �H, and an entropic term,

�T �S.

We can obtain some insight into the meaning of free energy from the following

development. We can write the work done by or on the system as

dw ¼ dwexpansion þ dwadditional
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where dwexpansion ¼ P dV and dwadditional represents work other than P dV work

(such as electrical work). The first law is dU ¼ dq� dw, and for a reversible pro-

cess dq ¼ T dS. Combining these relationships gives

�dwadditional ¼ dU þ P dV � T dS

But dU þ P dV ¼ dH, so finally, by comparison with Eq. (3.8), we have �dG ¼
dwadditional:

It is for this reason that the free energy change is said to be a measure of the

maximum work available from a process (exclusive of work of expansion). That

is, �dG ¼ dw� P dV . When the system can do no useful work, dG ¼ 0; a sponta-

neous process has a negative value of dG (or of �G). In a chemical reaction the

approach to the position of equilibrium may be from either direction, depending

on the initial conditions (i.e., the concentration of the reacting species). Figure 3.1

shows this schematically.

The essential characteristic of the Gibbs free-energy function is its combination

of both the energy and entropy components in a form that reveals how these two

thermodynamic concepts compete to generate a compromise that determines the

position of equilibrium in a chemical process.3 A more negative �H favors spon-

taneous reaction, and a more positive �S favors spontaneous reaction, in both

instances by making �G more negative.

We are now in a position to better understand our earlier calculations of entro-

pies of fusion and vaporization. These systems were at equilibrium, so �G ¼ 0,

and, from Eq. (3.9), �S ¼ �H=T .

Position of equilibrium

G

Extent of reaction

Figure 3.1. Free energy of a reacting chemical system, showing how the direction of the reaction
depends on the initial state of the system.
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Pressure Dependence of the Free Energy. From either Eq. (3.5) or Eq. (3.6),

at constant temperature,

dG ¼ V dP ð3:10Þ

Now let us consider the special case of one mole of an ideal gas, so PV ¼ RT and

V ¼ RT=P, giving

dG ¼ RT
dP

P
¼ RT d ln P ð3:11Þ

Integrating between the limits of P1 and P2, we obtain

�G ¼ RT ln
P2

P1

ð3:12Þ

which could alternatively have been integrated to the form

G ¼ G� þ RT ln P ð3:13Þ

where G� is the constant of integration.

Although Eqs. (3.12) and (3.13) apply only to ideal gases, the mathematical

form of these equations turns out to be ubiquitous, and we will subsequently

encounter the form of Eq. (3.13) in several contexts.

Temperature Dependence of the Free Energy. If the definition G ¼ H � TS

is combined with Eq. (3.7), we obtain

G ¼ H þ T
qG

qT

� �
P

ð3:14Þ

Next divide through by T 2 and rearrange to the form of Eq. (3.15):

� G

T 2
þ 1

T

qG

qT

� �
P

¼ � H

T 2
ð3:15Þ

Now we call attention to the nonobvious fact that the left-hand side of Eq. (3.15) is

equal to the derivative dðG=T Þ=dT :

dðG=TÞ
dT

¼ � G

T 2
þ 1

T

dG

dT
ð3:16Þ

Combining Eqs. (3.15) and (3.16) therefore yields

qðG=TÞ
qT

� �
P

¼ � H

T 2
ð3:17Þ
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The incremental form of Eq. (3.17) is

qð�G=TÞ
qT

� �
P

¼ ��H

T 2
ð3:18Þ

Equations (3.14), (3.17), and (3.18) are equivalent forms of the Gibbs–Helmholtz

equation. We will later make use of Eq. (3.18).

3.2. THE CHEMICAL POTENTIAL

Definition of the Chemical Potential. All of the relationships that we have

seen to this point deal with closed systems (no matter can enter or leave the system)

in complete internal equilibrium (no chemical reactions are occurring in the sys-

tem). But of course we are very interested in chemical reactions, and we would

also like to be able to describe open systems, in which matter may be exchanged

between the system and its surroundings. In order to do this we expand our concept

of the free energy to include the amounts (numbers of moles) of the chemical con-

stituents of the system, writing

G ¼ f ðT ;P; n1; n2; . . .Þ ð3:19Þ

where n1 is the number of moles of chemical substance 1, and so on. From Eq.

(3.19) we write out the total differential

dG ¼ qG

qT

� �
P;n1;n2;...

dT þ qG

qP

� �
T ;n1;n2;...

dPþ qG

qn1

� �
T ;P;n2;...

dn1

þ qG

qn2

� �
T ;P;n1;...

dn2 þ � � � ð3:20Þ

where the subscripts indicate the quantities that are held constant during the evalua-

tion of the partial derivatives. We have already dealt with the partial derivatives

(qG=qT) and (qG=qP), and now we turn our attention to the new quantities appear-

ing in Eq. (3.20). These partial derivatives are called partial molar free energies.

They have this significance: they represent the change in the total free energy of

the system when one mole of constituent iði ¼ 1; 2; . . .Þ is added while T , P, and

all other constituent amounts are held constant. This quantity is so important that it

has been given the special name chemical potential and its own symbol m. Thus we

define4

qG

qni

� �
T ;P;nj 6¼ni

¼ mi ð3:21Þ
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Now let us rewrite eq. (3.20), making use of eqs. (3.6), (3.7), and (3.21):

dG ¼ �S dT þ V dPþ m1 dn1 þ m2 dn2 þ � � � ð3:22Þ

which can be written more succinctly as

dG ¼ �S dT þ V dPþ
X

mi dni ð3:23Þ

The chemical potential m is an intensive property, its units being energy per mole, as

can be seen from its definition, Eq. (3.21).

Now let us consider Eq. (3.22) at constant temperature and pressure:

dGT ;P ¼ m1 dn1 þ m2 dn2 þ � � � ð3:24Þ

On integration this gives

GT ;P ¼ n1 m1 þ n2 m2 þ � � � ð3:25Þ

which can be generally differentiated to give

dGT ;P ¼ ðn1 dm1 þ m1 dn1Þ þ ðn2 dm2 þ m2 dn2Þ þ � � � ð3:26Þ

which is rearranged to

dGT ;P ¼ ðn1 dm1 þ n2 dm2 þ � � �Þ þ ðm1 dn1 þ m2 dn2 þ � � �Þ ð3:27Þ

Comparison of Eqs. (3.24) and (3.27) leads to

n1 dm1 þ n2 dm2 þ � � � ¼ 0 ð3:28Þ

This last equation is called the Gibbs–Duhem equation.

Dependence of Chemical Potential on Pressure. We had earlier applied

Eq. (3.6), reproduced here, to establish the dependence of the free energy of a

closed system on pressure [Eq. (3.13)]:

qG

qP

� �
T

¼ V ð3:29Þ

We are now interested in mixtures, that is, systems of more than one substance,

so we must make use of chemical potentials (partial molar free energies). We state
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without derivation the analog to Eq. (3.29), which is intuitively evident4

qmi

qP

� �
T

¼ �Vi ð3:30Þ

where �Vi is the partial molar volume of substance i. The physical interpretation of

this quantity is that it is the volume per mole of i at the composition specified. (In

general, �Vi is not equal to Vi, the molar volume of pure i, because of intermolecular

interactions in the mixture.)

Now let us consider a mixture of ideal gases. From Eq. (3.30), the variation in

chemical potential for constituent i can be written dmi ¼ �Vi dP, where P is the total

pressure. Since the total number of moles n in the ideal-gas equation PV ¼ nRT is

just the sum ðn1 þ n2 þ � � �Þ, we obtain

V ¼ ðn1 þ n2 þ � � �Þ
RT

P

so the partial molar volume of i is

�Vi ¼
qV

qni

� �
T ;P;nj 6¼ni

¼ RT

P
ð3:31Þ

which is nicely simple (because we are dealing with ideal gases). Therefore we can

write

dmi ¼ �Vi dP ¼ RT
dP

P
¼ RT d ln P ð3:32Þ

For a mixture of ideal gases, we have

pi ¼ xi P ð3:33Þ

where pi is the partial pressure of gas i and xi is its mole fraction. At constant xi,

therefore, d ln pi ¼ d ln P, giving, from Eq. (3.32)

dmi ¼ RT d ln pi ð3:34Þ

which is integrated to

mi ¼ m�i þ RT ln pi ð3:35Þ

where m�i is the constant of integration. According to Eq. (3.35), the chemical

potential of i is logarithmically related to its partial pressure. The value of m�i
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can be evaluated by setting pi ¼ 1 atm; then we see that m�i is the chemical potential

of gas i when pi ¼ 1 atm.

Although these ideas seem rather remote from our main interests, they are lead-

ing to an important result. In particular, Eq. (3.35), and its predecessor Eq. (3.13),

possess the general form

mi ¼ constantþ RT ln ðcomposition variableÞ

which will recur in important contexts. We will also have to pay some attention to

the constant term.

The Fugacity. In the development leading to Eq. (3.35), we supposed that we

were dealing with a mixture of ideal gases, and the resulting expression for the chem-

ical potential was very simple. In real circumstances gases are not ideal (although at

low pressures their behavior may closely approach ideality). We therefore must

accept that Eq. (3.35) will not be an exact description for real-gas mixtures. The

simplicity of the equation is so attractive, however, that standard practice is to

preserve the form of the equation by replacing the partial pressure pi with a quantity

symbolized fi and called the fugacity. Thus Eq. (3.35) applied to real gases becomes

mi ¼ m�i þ RT ln fi ð3:36Þ

The fugacity may be thought of as a measure of the ‘‘escaping tendency’’ of the

gaseous constituent (consider Latin fugio, to flee; Italian fuggire, to flee; French

fugace, fleeting; English fugitive). Again m�i is the value of mi when the logarithmic

term vanishes, that is, when fi ¼ 1. Of course, when fi ¼ 1; pi probably does not

equal 1 for a real gas, but as the pressure becomes smaller, pi and fi approach each

other, and ultimately as pi ! 0; fi=pi ! 1. Thus the ratio fi=pi is a measure of the

extent of nonideal behavior of gas i in the mixture.

Experimental methods are available for the measurement of fugacities. We will

not pursue this aspect of the problem, except to note that fugacity has the units of

pressure.

Activity and Activity Coefficient. We now turn to liquid mixtures, which are of

great importance in pharmaceutical, chemical, and biological systems. Equation

(3.36) applies to each constituent in a liquid solution because (as we will prove

in Chapter 4) at equilibrium the chemical potential of each constituent is equal

in the liquid phase and in the vapor phase in contact with it; therefore the fugacity

fi of component i is the same in the liquid and the vapor phases. But it is more con-

venient to express the chemical potential in a liquid solution in terms of a quantity

having units more familiar than those of pressure. We therefore build on the fore-

going developments, anticipating that the form of Eq. (3.36) is applicable, to write,

for constituent i in a liquid mixture,

mi ¼ m
i þ RT ln ai ð3:37Þ
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This equation is of great importance to us. The quantity ai is called the activity of

constituent i; mi is its chemical potential, and m
i is the standard chemical potential

of i. Evidently m
i ¼ mi when ai ¼ 1. Of course, the activity ai and the chemical

potential mi depend on the conditions of temperature, pressure, and composition

of the system.

At this stage in our treatment the activity is still a concept without a context. Let

us relate this concept to an experimental observable by focusing attention on a solu-

tion of solute i in a liquid solvent. Let ci be the concentration (in mol L�1) of the

solute. Then we write the activity of i as

ai ¼ gici ð3:38Þ

where gi, a proportionality constant, is called the activity coefficient. Combining

Eqs. (3.37) and (3.38), we obtain

mi ¼ m
i þ RT ln gici ð3:39Þ

Why do we need the activity and the activity coefficient at all? Why not just write

mi ¼ m
i þ RT ln ci ð3:40Þ

The answer to these questions is that real solutions do not behave ideally (just as

real gases do not behave ideally). When treating gases we replaced the pressure pi

with the fugacity fi, and saw that the ratio fi=pi is a measure of nonideal behavior.

Now in treating liquids we replace the concentration ci with the activity ai, and use

the ratio ai=ci ¼ gi as a measure of nonideal behavior. The source of the nonideal

behavior is the noncovalent forces of interaction between molecules and ions.

These interactions perturb the chemical and physical properties of the molecules

characteristic of their isolated states, when they are sufficiently far apart that

they are not sensibly affected by other particles. We therefore expect that deviations

from ideal behavior will become greater as the molecules are forced closer together,

which will happen as the pressure increases (for gases) or as the concentration

increases (for liquids).

Let us now return to our consideration of Eqs. (3.37) and (3.39). At the moment

we cannot use these equations, because the only quantity that we presumably know

is the concentration ci. It is necessary to introduce some definitions and to adopt

some conventions. First, here are the definitions:

The standard state (with respect to constituent i) is that state of the system in

which ai ¼ 1; then mi ¼ m
i .

The reference state (with respect to constituent i) is that state of the system in

which gi ¼ 1; then ai ¼ ci.

From this point on, the rigor with which applications are made depends on the

level of accuracy required in the results. Here are conventions that provide realistic
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approximations for practical calculations that do not require the highest accuracy.

1. The fugacity of a gas may be taken equal to its pressure (or partial pressure)

in atm, at low to moderate pressures.

2. The activity of a liquid solvent in a solution is equal to its mole fraction. It

follows that the activity of a pure liquid is 1.00.

3. The activity of a pure solid is 1.00. (This is consistent with convention 2.)

4. The activity of a solute in an infinitely dilute liquid solution (concentrations

of ��10�4 M may be considered infinitely dilute for this purpose) may be

taken equal to its molar concentration. Thus, gi ¼ 1:00; the solute is in its

reference state.

5. The activity coefficient of an uncharged solute may be taken as 1.00 at any

concentration (because uncharged molecules experience much weaker forces

of interaction than do ions).

The reference state of a solute is usually taken to be the infinitely dilute solution,

so that gi ! 1 as ci ! 0. (Activity coefficients of ions are more complex than has

been implied by our treatment, as a consequence of the impossibility of experimen-

tally studying an ionic solution of either a cation or an anion by itself.) Table 3.1

(Harned and Owen 1958, pp. 484, 488) lists some experimental values of activity

coefficients to give a sense of the extent to which solution behavior may depart

from ideality. It is also possible to calculate theoretically the activity coefficients

of ions by means of the Debye–Hückel theory. Chapter 8 treats ionic activity coef-

ficients in more detail.

Table 3.1. Activity coefficients of hydrochloric acid and
sodium chloride in aqueous solutions at 25
C

g
—————————————

ma HCl NaCl

0.001 0.965 —

0.002 0.952 —

0.005 0.928 0.928

0.007 — 0.917

0.01 0.905 0.903

0.02 0.875 0.873

0.03 — 0.851

0.04 — 0.835

0.05 0.831 0.822

0.06 — 0.812

0.08 — 0.794

0.10 0.797 0.780

a Molality.

Source: Harned and Owen (1958, pp. 484, 488).
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In most of the practical situations of interest to us we deal with mixtures, so the

proper notation and terminology consists of m, the chemical potential, and �m, the

change in chemical potential. For pure substances, there is no difference between m
and G, the molar free energy, or between �m and �G. In common practice we tend

to be careless and to use G and �G where we really should be using m and �m, but

this should cause no confusion. Note, however, that when we are talking about the

free energy or free-energy change of the system, G or �G is appropriate even for

mixtures. The chemical potential rightly applies to specific constituents of the

mixture.

It may be helpful to collect the several equations having the form characteristic

of (e.g.) Eq. (3.37). Table 3.2 lists these equations.

PROBLEMS

3.1. Calculate the activity of 0.02 m HCl at 25
C.

3.2. Calculate the free-energy change accompanying the process

NaClð0:005 mÞ ! NaClð0:05 mÞ

3.3. Estimate the free-energy difference �m ¼ m� m
 for a solution 0.25 M in

sucrose.

3.4. On the basis of the results of Problems 3.2 and 3.3, comment on the

spontaneity or nonspontaneity of making a solution more concentrated.

NOTES

1. After J. Willard Gibbs, a physicist at Yale University, who provided much of the theoretical

development of thermodynamics and statistical mechanics in the second half of the nine-

teenth century. The Helmholtz free energy A, defined A ¼ U � TS, is more useful than G

under conditions of constant volume. We will not make use of A (but see also note 2).

Table 3.2. Equations relating chemical potentials to composition variables

System Equation Equation Number

Pure ideal gas G ¼ G�þ RT ln P (3.13)

Mixture of ideal gases mi ¼ m�i þ RT ln pi (3.35)

Mixture of real gases mi ¼ m�i þ RT ln fi (3.36)

Ideal liquid mixture mi ¼ m
i þ RT ln ci (3.40)

Real liquid mixture mi ¼ m
i þ RT ln ai (3.37)

Real liquid mixture mi ¼ m
i þ RT ln gici (3.39)
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2. Each of the functions U;H;G, and A can be written in parallel form as a function of two

variables, namely (for closed systems)

dU ¼ T dS� P dV

dH ¼ T dSþ V dP

dA ¼ �S dT � P dV

dG ¼ V dP� S dT

These all contain the same information, but it is because G is expressible as a function of the

variables P and T that we find it especially useful. If a system is at equilibrium, any

infinitesimal change is reversible. The preceding four relationships, which are called

characteristic functions, provide equivalent criteria for equilibrium. From the first one, at

constant entropy and volume (i.e., dS ¼ 0; dV ¼ 0), the condition for equilibrium is dU ¼ 0.

From the second, at constant entropy and pressure, dH ¼ 0 defines equilibrium; from the

third, at constant temperature and volume, dA ¼ 0 at equilibrium; finally, at constant pressure

and temperature, the condition for equilibrium is dG ¼ 0.

3. It is not too fanciful to draw an analogy with a political science setting, in which each society

must choose its own compromise position between the extremes of maximum security (the

energy component) and maximum liberty (the entropy component).

4. Partial molar quantities are sometimes indicated with the conventional letter symbol and a

bar above it, so the chemical potential mi may also be written �Gi.
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4

EQUILIBRIUM

4.1. CONDITIONS FOR EQUILIBRIUM

We have concluded that a spontaneous process, at constant temperature and

pressure, possesses a negative value of dG (or of �G), and that the condition for

equilibrium is that dG ¼ 0 (or �G ¼ 0). We are now going to examine some

specific systems to uncover an important consequence of the preceding statements.

First, suppose that the system consists of a single pure substance at constant tem-

perature and pressure, the substance existing (at this temperature and pressure) in

two phases at equilibrium. A solid and its melt at the melting point, or a liquid and

its vapor at the boiling point, are the most common examples of such a system. We

will use the solid (s)–liquid (l) equilibrium in what follows. Since the system is at

equilibrium, we know that �G ¼ 0, where �G is the free energy change per mole

associated with the process. Writing the process as

SolidÐ liquid

we have, from our general definition of incremental change in a process,

�G ¼ Gl � Gs

where Gl and Gs are the molar free energies of the substance in the liquid and solid

phases, respectively. But since �G ¼ 0, we conclude

Gs ¼ Gl ð4:1Þ

at equilibrium. Thus, for a pure substance, whenever two (or three) phases are

in equilibrium, at fixed temperature and pressure, the molar free energy of the

substance has the same value in each phase.
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Now we will extend this argument to a closed system at constant temperature

and pressure, where the system is at equilibrium and contains P phases

(P ¼ a; b; c; . . .) and C components (C ¼ 1; 2; 3; . . .).1 Since this is a mixture, we

use chemical potentials (partial molar free energies) rather than molar free energies.

Imagine infinitesimally small amounts dn of components being transferred from

one phase to another. Since the system remains at equilibrium during this reversible

process, dG ¼ 0, and we write out Eq. (3.24) for the system, obtaining (Glasstone

1947, p. 238)

m1ðaÞdn1ðaÞ þ m1ðbÞdn1ðbÞ þ � � � þ m1ðPÞdn1ðPÞ

þ m2ðaÞdn2ðaÞ þ m2ðbÞdn2ðbÞ þ � � � þ m2ðPÞdn2ðPÞ

..

.

þ mCðaÞdnCðaÞ þ mCðbÞdnCðbÞ þ � � � þ mCðPÞdnCðPÞ ¼ 0

ð4:2Þ

which is succinctly written

X
mCðPÞdnCðPÞ ¼ 0 ð4:3Þ

Since the system is closed, the total amount of each component is constant, giving

dn1ðaÞ þ dn1ðbÞ þ � � � þ dn1ðPÞ ¼ 0

dn2ðaÞ þ dn2ðbÞ þ � � � þ dn2ðPÞ ¼ 0

..

.

dnCðaÞ þ dnCðbÞ þ � � � þ dnCðPÞ ¼ 0

ð4:4Þ

or

X
dnCðPÞ ¼ 0 ð4:5Þ

The only way in which Eqs. (4.2) and (4.4) [or Eqs. (4.3) and (4.5)] can simulta-

neously be satisfied is if

m1ðaÞ ¼ m1ðbÞ ¼ � � � m1ðPÞ

m2ðaÞ ¼ m2ðbÞ ¼ � � � m2ðPÞ

..

.

mCðaÞ ¼ mCðbÞ ¼ � � � mCðPÞ

ð4:6Þ

Thus, under these conditions (consisting of P phases, C components, where the

closed system is at equilibrium at fixed temperature and pressure), the chemical
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potential of each individual component has the same value in all phases. This is an

obvious generalization of our earlier result for a pure substance. Since, from

Eq. (4.6), we have for component i, miðaÞ ¼ miðbÞ ¼ � � � miðPÞ, it follows that, at equi-

librium, dmi ¼ 0 for the transfer of an infinitesimal amount of component i from

one phase to another.2

4.2. PHYSICAL PROCESSES

Phase Transitions (Single Component ). We now return to a system consist-

ing of a single component in a closed system at fixed temperature and pressure. This

substance is capable of existing in three states of matter, the solid, the liquid, and

the gas (vapor). The manner in which these states are controlled by the values of

temperature and pressure is readily displayed on a pressure–temperature phase dia-

gram. Figure 4.1 shows a schematic phase diagram. For each chemical substance

the phase diagram must be experimentally determined.

Any selected pair of coordinates P; T determine the state of the system. Of spe-

cial interest are those coordinates describing the lines in the phase diagram, for

along these lines two phases coexist in equilibrium. Thus line OC describes the

melting transition; at any point on this line the solid and liquid phases are in

equilibrium, and the value of T corresponding to any given value of P is the melting

point at that pressure. The line is very steep because the melting point is not very

sensitive to pressure changes (i.e., the melting point does not change much when

the pressure is changed).

A

BC

O

 Solid

Liquid

Vapor

Temperature

P
re

ss
ur

e

Figure 4.1. Pressure–temperature phase diagram of a pure substance.
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Along the line OB the liquid and its vapor are in equilibrium, so the value of T

on this line is the boiling point corresponding to the selected P value. Observe that

the boiling point is quite sensitive to pressure.3 Along the line OA the solid and the

vapor are in equilibrium. The direct conversion of solid to vapor is called sublima-

tion.4 At point O all three phases coexist in equilibrium. This is obviously a unique

set of circumstances; it is called the triple point. The triple point of water is

273.16 K (i.e., 0.01�C) and 4.58 mm Hg pressure.

Now we treat phase transitions thermodynamically. Consider a pure substance at

temperature and pressure such that two phases, 1 and 2 (which may be gas, liquid,

or solid), are in equilibrium. Thus G1 ¼ G2, and so dG1 ¼ dG2, which means that if

the temperature or pressure is changed infinitesimally, the changes in free energy of

the two phases will be identical and the phases will remain in equilibrium. From

Eq. (3.5) we write dG ¼ V dP� S dT , or

V1 dP� S1 dT ¼ V2 dP� S2 dT

Rearranging, we obtain

�S dT ¼ �V dP

where �S ¼ S2 � S1 and �V ¼ V2 � V1. Therefore

dP

dT
¼ �S

�V
ð4:7Þ

But the system is at equilibrium, so �G ¼ �H � T �S ¼ 0, giving �S ¼ �H=T ,

or, from Eq. (4.7)

dP

dT
¼ �H

T �V
ð4:8Þ

This is the Clapeyron equation. It describes the slope of the line in the phase dia-

gram for a pure substance.

The Clapeyron equation is especially useful when applied to the liquid–vapor

transition (boiling), and in this application we usually can employ an approximate

version. Writing Eq. (4.8) specifically for this transition, we obtain

dP

dT
¼ �Hvap

T �Vvap

ð4:9Þ

where T is the boiling temperature and �Vvap ¼ Vvapor � Vliquid. We neglect the

molar volume of the liquid as being very small relative to the molar volume of the

vapor. We also will assume that the vapor phase behaves ideally, so Vvap ¼ RT=P.

Combining these approximations with Eq. (4.9) yields

1

P

dP

dT
¼ �Hvap

RT 2
ð4:10Þ
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or

d ln P

d T
¼ �Hvap

RT 2
ð4:11Þ

These two equations are versions of the Clausius-Clapeyron equation, which relates

the boiling point T to the vapor pressure P.

If �Hvap should happen to be essentially constant (independent of temperature),

we can integrate the Clausius–Clapeyron equation. First integrating generally gives

ln P ¼ ��Hvap

RT
þ constant ð4:12Þ

or

log P ¼ ��Hvap

2:3 RT
þ C ð4:13Þ

where C is a constant. Equations (4.12) or (4.13) provide a means for evaluating the

molar heat of vaporization �Hvap from vapor pressure-temperature data.

Example 4.1. Table 4.1 gives vapor pressure–temperature data for n-octane.

Calculate �Hvap.

Figure 4.2 is a plot of the data according to Eq. (4.13). From the plot we evaluate

the slope as �2091 K. Equation (4.13) shows this identity:

Slope ¼ ��Hvap

2:3R

Thus we calculate

�Hvap ¼ �2:3ð1:987 cal mol�1 K�1Þð�2091 KÞ
¼ 9568 cal mol�1

¼ 9:57 kcal mol�1

¼ 40:0 kJ mol�1

Table 4.1 Vapor pressure–temperature data for n-octane

t (�C) T (K) 1/T P (mm Hg) log [P (mm Hg)]

�14.0 259.15 0.00386 1 0.000

þ19.2 292.35 0.00342 10 1.000

45.1 318.25 0.00314 40 1.602

65.7 338.85 0.00295 100 2.000

104.0 377.15 0.00265 400 2.602

125.6 398.75 0.00251 760 2.881
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The heat of vaporization is positive because heat is absorbed by the system during

the vaporization process.

We can also integrate the Clausius–Clapeyron equation between the limits T1

and T2, presuming that �Hvap is essentially constant in this temperature range.

From Eq. (4.11), we obtain

ðP2

P1

d ln P ¼ �Hvap

R

ðT2

T1

dT

T2

which gives

ln
P2

P1

¼ ��Hvap

R

1

T2

� 1

T1

� �
¼ �Hvap

R

T2 � T1

T1T2

� �
ð4:14Þ

or

log
P2

P1

¼ �Hvap

2:3R

T2 � T1

T1T2

� �
ð4:15Þ

Example 4.2. The vapor pressure of water is 17.535 mm Hg at 20.0�C and

31.824 mm Hg at 30.0�C. Calculate the heat of vaporization of water in this

temperature interval.

2.4 2.8 3.2 3.6 4.0

0

1

2

3

103 T-1K

lo
g(

ρ /
m

m
H

g)

Figure 4.2. Plot of Eq. (4.13) for n-octane. Data from Table 4.1.

PHYSICAL PROCESSES 47



Using Eq. (4.15), we have

log
31:824

17:535
¼ �Hvap

ð2:3Þð1:987Þ
10

293:15	 303:15

� �

�Hvap ¼ 10; 530 cal mol�1

¼ 10:53 kcal mol�1

In Examples 4.1 and 4.2 we see how heats of transition are determined. With

such �H values at hand, we can calculate entropies of transition as shown in

Example 2.1.

The Phase Rule (Multiple Components). We have already developed the

condition for equilibrium in a system at equilibrium containing multiple phases

and components; the condition is that the chemical potential of each component

be the same in all phases [Eq. (4.6)]. This will lead us to a general rule connecting

the number of phases, the number of components, and the number of variables (this

last variable is called the degrees of freedom) that must be specified in order to

define the system completely (in a thermodynamic sense). Let P be the number

of phases and C the number of components (see note 1). Here are the steps in

the reasoning:

1. The composition of a phase containing C components can be specified by

giving C � 1 concentrations. This is because the final concentration can be

obtained by difference.

2. If there are P phases, in order to completely define the compositions of all

phases, PðC � 1Þ concentrations must be specified. This is the total number

of concentration variables in the system.

3. To the PðC � 1Þ concentration variables must be added the temperature and

pressure variables. This gives us

Total number of variables ¼ PðC � 1Þ þ 2

4. Since for component 1 we know that m1ðphase aÞ ¼ m1ðphase bÞ ¼ . . . ; and

similarly for all C components, this condition gives CðP� 1Þ independent

equations, which fix CðP� 1Þ variables.5

5. The number of variables left undetermined (i.e., the number of degrees of

freedom) is equal to the total number of variables minus the number of

variables that are determined by the equilibrium condition. Thus

Number of degrees of freedom ¼ PðC � 1Þ þ 2� CðP� 1Þ

or

F ¼ C � Pþ 2 ð4:16Þ

This last equation is the phase rule of Gibbs.
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We will apply the phase rule to the phase diagram of Fig. 4.1 in order to learn

how it works. First consider the liquid–gas equilibrium. There are two phases and

one component, so F ¼ 1� 2þ 2 ¼ 1. This means that specifying one degree of

freedom suffices to completely define the system. If we choose to specify the tem-

perature (as our one degree of freedom), the condition of equilibrium uniquely

guarantees that the pressure will be fixed at the value given by the line OB corre-

sponding to the specified temperature. Alternatively, we might have specified the

pressure; then the temperature would be defined by the system. In this system as

described we cannot independently choose both the temperature and the pressure.

Next consider the triple point O. Here P ¼ 3 and C ¼ 1, so F ¼ 0. There is no

freedom to alter the system variables while maintaining the system at the triple

point.

A very practical kind of system is that of a pure solid substance placed in contact

with a pure liquid, which we call the solvent. To be specific, let us add solid benzoic

acid to water. Presuming that sufficient benzoic acid has been added so that at equi-

librium some solid is present, how many degrees of freedom does the system pos-

sess?

The process that occurs is dissolution of benzoic acid in water. Evidently P ¼ 2,

for two phases, solid benzoic acid and liquid solution, are present. Moreover,

C ¼ 2, for the system can be prepared from benzoic acid and water. The phase

rule gives us F ¼ 2� 2þ 2 ¼ 2 degrees of freedom. These are the temperature

and the pressure, both of which must be fixed in order to completely define the posi-

tion of equilibrium of the system. (In practice this system is not very sensitive to

pressure, which is commonly the ambient atmospheric pressure, but it is very sen-

sitive to the temperature.) An equivalent description of this system is that at fixed

temperature and pressure, the concentration of dissolved benzoic acid is invariant;

no further degrees of freedom remain. We call this invariant dissolved concentration

the equilibrium solubility of benzoic acid at the experimental temperature.

4.3. CHEMICAL EQUILIBRIUM

The Equilibrium Constant. We now turn to a treatment of chemical reactions,

namely, processes in which chemical bonds (covalent bonds) or noncovalent inter-

actions are formed or broken, or both. Because liquid systems are of special interest

to us, suppose that the process occurs in a homogeneous (single phase) liquid sys-

tem. Let the generalized balanced chemical reaction be written

aAþ bBÐ mM þ nN ð4:17Þ

where A and B represent the reactant chemical species; M and N are the product

chemical species; and a, b, m, n are stoichiometric coefficients in the balanced reac-

tion.6 For the moment we do not require that the system be at equilibrium, but the

temperature and pressure are fixed.
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As is our usual practice, the incremental change in free energy is defined (on a

per mole basis) as the difference between the final state and the initial state:

�G ¼
X

Gproducts �
X

Greactants ð4:18Þ

Recognizing that our reaction system is a mixture, we know that we should express

the free energies of reactants and products in terms of chemical potentials; thus Eq.

(4.18) becomes

�G ¼ mmM þ nmN � amA � bmB ð4:19Þ

Notice that each term on the right is the product of an intensity factor (e.g., mM ,

chemical potential per mole) and a capacity factor (m, number of moles).

Next we call on our fundamental relationship for the chemical potential in terms

of activity [Eq. (3.37)]:

mi ¼ m�i þ RT ln ai ð4:20Þ

We simply substitute from Eq. (4.20) into Eq. (4.19):

�G ¼ mm�M þ m RT ln aM þ nm�N þ n RT ln aN

� am�A � a RT ln aA � bm�B � b RT ln aB

Collecting terms and making use of one of the properties of logarithms gives

�G ¼ ðmm�M þ nm�N � am�A � bm�BÞ
þ RT ln am

M þ RT ln an
N

� RT ln aa
A � RT ln ab

B

which can be written

�G ¼ �G� þ RT ln
am

Man
N

aa
Aab

B

ð4:21Þ

where �G� ¼ mm�M þ nm�N � am�A � bm�B.7 Equation (4.21) is called the reaction

isotherm (the term isotherm merely signifies that the equation or phenomenon takes

place at, or applies to a constant temperature).

Recall that we have not yet required that the system be at equilibrium. Equation

(4.21) gives the free energy change as a function of the activities of reactants and

products of the reaction. But it is the equilibrium condition that specifically inter-

ests us. Let the activities now be the activities at equilibrium, and define

K ¼ am
Man

N

aa
Aab

B

ð4:22Þ
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Moreover, we recall that the condition for equilibrium is that �G ¼ 0. Putting this

condition and the definition of Eq. (4.22) into Eq. (4.21) gives the simple but very

important result

�G� ¼ �RT ln K ð4:23Þ

The quantity K is called the equilibrium constant for the reaction; its general form

can be inferred from Eq. (4.22). It is conventional to write the products in the

numerator and the reactants in the denominator. Notice, therefore, that the recipro-

cal of K as thus defined is the equilibrium constant for the reaction when written in

the reverse direction.

Equilibrium constants can be measured experimentally; in effect, one needs to

determine each activity in the definition, and then to calculate K according to Eq.

(4.22). Then, with Eq. (4.23), the quantity �G� (which is pronounced ‘‘delta G

naught’’) is calculated. �G� is called the standard free-energy change for the reac-

tion, and it is interpreted as the change in free energy, per mole, when the reactants

in their standard states are transformed into the products in their standard states.

This concept is difficult to visualize in physical terms, and it may be better to

note the obvious, namely, that [see Eq. (4.23)] �G� and K contain the same infor-

mation about the system. The logarithmic relationship between �G� and K, as well

as the form of the equilibrium constant definition, is a direct consequence of the

form of Eq. (4.20) for the chemical potential.

In the chemical literature many equilibrium constants are described by adjectives

that provide information on the chemical process and on the definition of the

constant. For example, a weak acid HA dissociates according to

HAÐ
Ka

Hþ þ A�

Placing the equilibrium constant symbol over the arrows tells the reader how the

constant is to be defined; in this case

Ka ¼
aHþaA�

aHA

ð4:24Þ

This particular equilibrium constant is called an acid dissociation constant (or

acid ionization constant). For a reaction, especially a reaction involving noncova-

lent interactions, having the form

Aþ BÐ
K

M

the equilibrium constant

K ¼ aM

aAaB
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may be called an association constant, formation constant, stability constant, or

binding constant. Turn the reaction around, and its equilibrium constant (which

will be the reciprocal of K) becomes a dissociation constant or instability constant.

Example 4.3. For the acid dissociation of acetic acid in water at 25�C, the experi-

mental value of Ka is 1:75	 10�5. Calculate �G� for this process.

We can use Eq. (4.23) directly or in the form

�G� ¼ �2:303 RT log Ka

¼ �ð2:303Þð1:987 cal mol�1K�1Þð298:15 KÞð�4:757Þ
¼ þ6490 cal mol�1

¼ þ6:49 kcal mol�1

ð4:25Þ

From either Eq. (4.23) or (4.25) we obtain these correspondences:

If K < 1, �G� > 0.

If K ¼ 1, �G� ¼ 0.

If K > 1, �G� < 0.

In Example 4.3, �G� has a positive sign because K is smaller than unity. This tells

us that, at equilibrium, the reactant state is ‘‘favored’’ in this process.

The units of the equilibrium constant require comment. From its definition in

terms of activities, it is clear that we need to know the units of activities. Our earlier

conventions concerning standard states and reference states provide guidance. Evi-

dently the activities of solvents and solids, which are taken equal to their mole

fractions in practical work, are dimensionless, because the mole fraction is dimen-

sionless. The activities of uncharged molecules are taken equal to the concentra-

tions (usually in mol L�1) of these molecules, so the activities are reasonably

given the same units. To maintain consistency, it is advisable to assign the units

of concentration to the activities of other solution species.

According to these recommendations, the unit of the acid dissociation constant

Ka is [from Eq. (4.24)] M (i.e., mol L�1). However, units are conventionally not

stated for Ka values.8 The standard free-energy change �G� can be related to a stan-

dard enthalpy change �H� and a standard entropy change �S� by the usual form:

�G� ¼ �H� � T �S� ð4:26Þ

�H� and �S� are interpreted analogously to �G�, that is, in terms of the process in

which reactants are transformed into products, and all species are in their standard

states.

Temperature Dependence of the Equilibrium Constant. The Gibbs–

Helmholtz equation [Eq. (3.18), repeated here as Eq. (4.27)] has a useful form

for our present purpose:

dð�G=TÞ
dT

¼ ��H

T 2
ð4:27Þ
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From Eq. (4.23), �G� ¼ �RT ln K, rearrangement gives

�G�

T
¼ �R ln K ð4:28Þ

Combination of Eqs. (4.27) and (4.28) yields

d ln K

dT
¼ �H�

RT 2
ð4:29Þ

Equation (4.29), the van’t Hoff equation, describes how the equilibrium constant

varies with the temperature. The quantity �H� is the standard enthalpy change,

sometimes called the heat of reaction. If �H� is essentially independent of tem-

perature, general integration of Eq. (4.29) gives

ln K ¼ ��H�

RT
þ constant ð4:30Þ

or

log K ¼ � �H�

2:3RT
þ C ð4:31Þ

Alternatively, integration between the temperature limits T1 and T2 gives

ln
K2

K1
¼ �H�

R

T2 � T1

T1T2

� �
ð4:32Þ

log
K2

K1

¼ �H�

2:3R

T2 � T1

T1T2

� �
ð4:33Þ

These integrated equations may seem familiar; they have the same form as the

vapor pressure equations (4.12)–(4.15), and they are used similarly.

Free-Energy, Enthalpy, and Entropy Changes in Chemical Reactions.
We now have at hand all the thermodynamic theory needed to calculate (from

the appropriate experimental data) these standard thermodynamic quantities for a

chemical reaction: �G�, �H�, and �S�. These are the steps:

1. From measurement of the equilibrium constant K at a given temperature,

calculate �G� from

�G� ¼ �RT ln K ð4:34Þ

2. From measurements of K at several temperatures, calculate �H� by means of

one of Eqs. (4.30)–(4.33).

3. From �G� ¼ �H� � T �S�; calculate�S�.
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Since K in general varies with temperature, evidently �G� does as well. When inte-

grating the van’t Hoff equation we assumed that �H� is a constant, independent of

temperature, and although this may constitute an acceptable approximation for

many reactions, it is not generally true, and it may lead to poor estimates of

�H� and �S�. The data themselves, if carefully interpreted, will reveal whether

�H� is reasonably constant over the temperature range that was investigated

experimentally.

Example 4.4. These are data (Table 4.2) for the equilibrium constant (a stability

constant) describing the noncovalent association between methyl trans-cinnamate

and 8-chlorotheophyllinate in aqueous solution. Find �G�, �H�, and �S� at 25�C.

1. From Eq. (4.34), or its equivalent, we have

�G� ¼ �ð2:303Þð1:987 cal mol�1 K�1Þð298:15 KÞ log 8:7

¼ �1282 cal mol�1

¼ �1:28 kcal mol�1

2. �H� will be obtained from a plot according to Eq. (4.31); this is called a

van’t Hoff plot:

log K ¼ � �H�

2:3 RT
þ C

Slope ¼ ��H�

2:3 R

Figure 4.3 shows the plot, which is acceptably straight over the temperature

range given in the table; this linearity is consistent with the constancy of �H�

over this temperature range. The slope of the line is 1083 K, giving for �H�

�H� ¼ �ð2:3Þð1:987 cal mol�1 K�1Þð1083 KÞ
¼ �4996 cal mol�1

¼ �5:00 kcal mol�1

Table 4.2 Dependence of equilibrium constant on temperature for the binding of
methyl trans-cinnamate and 8-chlorotheophylline anion in water

T (�C) K (M�1) T (K) 1/T log K

15.5 11.6 288.65 0.00346 1.064

25.0 8.7 298.15 0.00335 0.940

40.0 5.9 313.15 0.00319 0.771
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3.

�S� ¼ �ð�G� ��H�Þ
T

¼ �1:28� ð�5:00Þ kcal mol�1

�298:15 K

¼ �0:0125 kcal mol�1 K�1

¼ �12:5 cal mol�1 K�1

We can interpret these results chemically. The reaction has the form

Aþ BÐ
K

C

where A is methyl cinnamate and B is 8-chlorotheophyllinate; C is the complex

formed from these. Since K > 1;�G� < 0; the product C is favored over the reac-

tants. But this result is seen to be a consequence of a competition between �H� and

�S�. �H� is negative, so the enthalpy change makes a favorable contribution to

�G� (it makes �G� more negative). The negative value of �H� suggests that fairly

strong noncovalent binding is occurring between A and B, because �H� is an

energy value. On the other hand, the negative value of �S� opposes product forma-

tion by making a positive contribution to �G� (because of the negative sign in

�G� ¼ �H� � T �S�). The negative entropy change may arise because two parti-

cles (A and B) are being transformed into a single C particle, with a resultant

3.1 3.2 3.3 3.4 3.5 3.6

0.7

0.8

0.9

1.0

1.1

1.2

103K/T

lo
g(

K
/M

-1
)

Figure 4.3. van’t Hoff plot of the data in Table 4.2.
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decrease in number of configurational and thermal microstates of the system. If we

were to write this reaction as

CÐ
K 0

Aþ B

we would find that K 0 ¼ 1=K, and that �G�, �H�, and �S� each possesses the

same numerical value as found in this example, but with the opposite sign.

A subtlety of such calculations, often overlooked, is that the numerical values of

�G� and �S� (but not of �H�) depend on the concentration scale in which the

equilibrium constant is expressed. In thermodynamic terms this is stated as follows:

The numerical values of �G� and �S� depend on the choice of standard state.

PROBLEMS

4.1. The vapor pressure of heptane, C7H16, is 100 mm Hg at 41.8�C and 760 mm

Hg (i.e., 1 atm) at 98.4�C. Calculate its molar heat of vaporization over this

temperature range.

4.2. The equilibrium constant for this reaction in aqueous solution at 25�C is

21.5 M�1:

Theophyllineþ salicylate anion Ð
K

complex

Calculate the standard free energy change for this reaction.

4.3. These are literature data for the vapor pressure of ethyl acetate, CH3COOC2H5,

as a function of temperature. Calculate the heat of vaporization.

t (�C) P (mm Hg)

�43.4 1

�13.5 10

9.1 40

27.0 100

59.3 400

77.1 760

4.4. A quantity pKa is defined by the relationship

pKa ¼ �log Ka

where Ka is the acid dissociation constant of a weak acid in water. Obtain an

equation by which the standard free-energy change can be calculated directly

from the pKa.

4.5. The pKa value of phenol is 10.0 at 25�C. Write the chemical reaction, define

Ka, and calculate �G� for the process.
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4.6. The pKa value of chloroacetic acid, ClCH2COOH, is 2.87 at 25�C, and its heat

of ionization (�H�) has been measured to be �1:12 kcal mol�1. Calculate its

standard entropy of ionization.

4.7. The ionization (acid dissociation) of chloroacetic acid takes place in aqueous

solution according to

ClCH2COOH Ð
Ka

Hþ þ ClCH2COO�

In view of this, attempt to rationalize the sign of �S� obtained in Problem 4.6.

4.8. The equilibrium constant for the addition of hydrogen cyanide to acetaldehyde

is 7100 M�1 at 25�C. Calculate �G�.

OH
j

CH3CHO þ HCN Ð
K

CH3CH
j
CN

NOTES

1. A component is defined in this way: C, the number of components, is the minimum number of

substances needed to make up the equilibrium mixture. For example, pure water contains

H2O;H3Oþ, OH�, and a mixture of hydrogen-bonded water multimers, but these are all

connected by (established by) equilibria, so C ¼ 1; you need take only one substance, water,

to create this system.

2. The equilibrium condition dmi ¼ 0 also applies to the case P ¼ 1, as in a liquid solution, and it

determines the direction in which solute diffusion takes place. If a nonequilibrium

distribution of solute exists, the solute particles will diffuse in the direction so as to

achieve the condition dmi ¼ 0 throughout the solution. This means that the direction of

diffusion is from regions of higher chemical potential to regions of lower chemical potential.

3. Conventionally the boiling point is considered to be the temperature at which the liquid and

vapor are in equilibrium at atmospheric pressure. This definition can be assumed when the

pressure is not stated.

4. Sublimation is less familiar than melting or boiling, but it can be important. Salicylic acid

readily sublimes. An old bottle of aspirin tablets may contain partially hydrolyzed aspirin

(acetylsalicylic acid). The products are acetic acid (a liquid, whosevapor smells likevinegar)

and salicylic acid, which may sublime and then condense in white crystals on the wall of the

bottle.

5. The multiplier is P� 1 rather than P because if we know CðP� 1Þ relationships, we have

exhausted the independent equations. for instance, suppose C ¼ 2 (components numbered

1,2) and P ¼ 3 (phases labeled a,b,c). Then the CðP� 1Þ ¼ 2	 2 ¼ 4 independent

equations are

m1ðaÞ ¼ m1ðbÞ m2ðaÞ ¼ m2ðbÞ

m1ðbÞ ¼ m1ðcÞ m2ðbÞ ¼ m2ðcÞ
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The equations m1ðaÞ ¼ m1ðcÞ and m2ðaÞ ¼ m2ðcÞ are not independent, but follow from the

preceding four equations.

6. Our modern interpretation of a balanced chemical reaction views the species symbols as

representing atoms, molecules, or ions, but the balanced reaction does not necessarily imply

an atomic viewpoint. The reaction simply describes an experimental observation and is a

classical thermodynamic concept.

7. It would be perfectly correct to write �m� instead of �G�. The latter symbolism is used in

order to be consistent with conventional practice.

8. An alternative viewpoint is that activities are dimensionless, thus requiring the activity

coefficient to have units. Each point of view is acceptable provided it is consistently applied

throughout a calculation. Observe, in this connection, that many thermodynamic equations,

exemplified by Eqs. (4.12) and (4.23), direct us to take the logarithm of a physical quantity

that may possess units. Of course, we cannot take the logarithm of a unit, and so we proceed

(as described in Appendix B) by applying ‘‘quantity algebra.’’ For example, we can write

P ¼ 1:5 atm, from which it follows that P ðatmÞ ¼ 1:5, a pure number, whose logarithm can

be taken. Similarly, in Example 4.3, Ka ¼ 1:75	 10�5 M, so Ka ðMÞ ¼ 1:75	 10�5, and

Eq. (4.25) should strictly be written

�G� ¼ �2:303RT log ½Ka ðMÞ


Figure 4.3 shows how this convention is properly used to label the axes of a graph.
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5

INTRODUCTION TO
PHYSICAL PROCESSES

5.1. SCOPE

The separation of properties or processes into physical and chemical categories is

arbitrary but useful, and in most instances it is not notably ambiguous. Here are the

criteria adopted in making the present separation:

1. All covalent bond changes (which necessarily result in alterations in primary

molecular structure) are chemical. This category includes most of the

reactions of interest in organic chemistry, inorganic chemistry, and biochem-

istry. Part III deals with such processes.

2. All changes in physical state or phase that do not involve covalent bond

changes are physical. Such processes include melting, vaporization, sub-

limation, dissolution, partitioning, and adsorption. These are of concern in

Part II.

3. There is an exception—electrolyte dissociation and behavior is treated

generally, in Part II, as a physical phenomenon, but the special case of

acid–base equilibrium is discussed as a chemical phenomenon in Part III.

4. An ambiguous area remains, consisting of changes in noncovalent interac-

tions roughly in the �G� range of 0–10 kcal mol�1. These processes include

molecular complex formation (binding phenomena of many types) and

conformational changes. We classify these as chemical, and treat them in

Part III.

Some slight repetition of material from Part I will be encountered in Part II, where

it is inserted for convenience.
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5.2. CONCENTRATION SCALES

Solution composition can be expressed on a physical (empirical) basis in terms of

the quantities measured in the laboratory. These are the common concentration

scales of this type:

Percent by Weight. The number of grams of solute contained in 100 g of

solution. The concentration of the strong mineral acids, as available commer-

cially, are expressed as percent by weight.

Percent Weight/Volume (% w/v). The number of grams of solute contained in

100 mL of solution. This scale is often used to describe the composition of

solutions of solids in liquids.

Percent by Volume. The number of mL of solute contained in 100 mL of solu-

tion. Solutions of liquids in liquids are commonly specified in this way. It is

important to note a possible ambiguity in this designation. Consider these two

operations: (1) 80.0 mL of ethanol is dissolved in water to make a final total

volume of 100 mL; (2) 80.0 mL of ethanol is mixed with 20.0 mL of water.

These solutions have different compositions, because preparation 2 does not

yield a final volume of 100 mL. In thermodynamic terms, the partial molar

volume of ethanol is not equal to its molar volume. In molecular terms, the

spatial and energetic character of the ethanol–water interaction is different

from those of ethanol-ethanol or water-water interactions. Solution 1 has a

composition of 80.0% by volume of ethanol. The composition of solution 2 is

most easily specified in terms of its volume fraction j, where the volume

fraction ji of component i is defined

ji ¼
ViPn
i¼1 Vi

Thus solution 2 has volume fraction �1 ¼ 0:20 of water and �2 ¼ 0:80 of ethanol.

In order to communicate without possible confusion, statements of solution compo-

sition should specify clearly, as, for example, by describing the manner of preparing

the solution, which concentration scale is meant.

Observe that these physical concentration scales constitute the three combina-

tions of mass/mass, mass/volume, and volume/volume. Other units may, however,

often be encountered. For example, milligram percent is the number of milligrams

of solute contained in 100 mL of solution. Another common unit is milligrams per

milliliter (mg/mL), which is numerically equal to grams per liter (g/L). Very dilute

solutions may be expressed in parts per million (ppm), which is the number of

grams of solute contained in 106 g of solution. (If the solvent is water, this is effec-

tively the number of grams of solute in 106 mL of solution.) Similarly, ppb means

parts per billion.

The chemical concentration scales are based on the concept of the amount of

substance as expressed in number of moles:
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Molarity (c)—the number of moles of solute contained in 1000 mL of solution.

Molarity has the units mol L�1, which is often designated M; it is expressed

as mol dm�3 in SI units. Some investigators use the unit millimolar (mM),

which denotes the number of millimoles contained in 1000 mL of solution;

for example, 0.030 M and 30 mM have the same meaning. Molarity is a very

practical concentration scale, but it has the disadvantage that the molarity of a

solution depends on the temperature, because the volume is temperature-

dependent.

Molality (m)—the number of moles of solute per 1000 g of solvent. The molality

is temperature-independent, and for this reason is often preferred in precise

physical chemical experimental work.

Mole fraction (x)—the number of moles of solute divided by the total number of

moles in the solution. The mole fraction is temperature-independent. A

convenient attribute of the mole fraction (as of all fractional quantities) is

that the sum of the mole fractions of all constituents in a solution is unity.

In general the molarity, molality, and mole fraction scales are not directly pro-

portional to each other, but in very dilute solutions of a solute i the relationships

are

xi ¼
ciM1

1000r1

ðxi � 1Þ ð5:1Þ

xi ¼
miM1

1000
ðxi � 1Þ ð5:2Þ

where subscript 1 refers to the solvent and i to the solute. In these dilute solutions

Eqs. (5.1) and (5.2) show that the various concentration scales are proportional to

each other; M1 is the molecular weight of the solvent, and r1 is its density.

5.3. STANDARD STATES

In Chapter 3 we encountered the concept of the standard state, and here we will

extend the treatment by explicitly invoking the concentration scales used in labora-

tory work. We begin with Eq. (3.37), repeated here:

mi ¼ m�i þ RT ln ai ð5:3Þ

In this equation, mi is the chemical potential (partial molar free energy) of

constituent i in a liquid mixture, m�i is its standard chemical potential, and ai is

its activity. The activity, which can be thought of as an ‘‘effective concentration,’’

is related to the actual concentration by

Activity ¼ activity coefficient� concentration
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where the activity coefficient is a number that accounts for deviations from ideal

behavior. Let us recall these definitions:

The standard state (with respect to constituent i) is that state of the system in

which the activity of i is unity; then, from Eq. (5.3), mi ¼ m�i .

The reference state (with respect to constituent i) is that state of the system in

which the activity coefficient of i is unity; then its activity equals its

concentration.

For the present let us suppose that the system is in its reference state (for constituent

i), so the activity coefficient is unity, and the activity is equal to the concentration.

But we have seen that concentrations can be expressed in molarity, molality, or

mole fraction. For constituent i in a given system, Eq. (5.3) may be written in terms

of each of these concentration units:

mi ¼ m�i þ RT ln ci ð5:4Þ
mi ¼ m�m þ RT ln mi ð5:5Þ
mi ¼ m�x þ RT ln xi ð5:6Þ

The situation represented by Eqs. (5.4)–(5.6) is analogous to the specification of

mechanical potential energy, say, of a rock on top of a hill. We can only speak

numerically of energy differences, and we calculate the potential energy of the

rock as the product mgh, where m is its mass, g is the gravitational acceleration,

and h is its height. But before we can make the calculation we must define a state

at which h ¼ 0, and this is arbitrary, meaning that we can choose any state we wish.

We might, in the case of the rock on the hill, choose to measure h from the valley

floor, but we could just as well choose sea level as this state. Equations (5.4)–(5.6)

present the same kinds of choices. In each case mi is the same definite quantity (cor-

responding to the potential energy of the rock on the hill). Each equation can be

rearranged to the form

mi � m�c ¼ RT ln ci

using Eq. (5.4) as an example. Since, for a given solution, ci, mi, and xi have dif-

ferent numerical values, so, too, do the quantities ðmi � m�cÞ, ðmi � m�mÞ, and

ðui � m�xÞ. Each of these quantities gives the value of the chemical potential ui rela-

tive to its standard state value. Each expression is thermodynamically acceptable;

they differ only in the values they assign to the standard potential. We can easily

find the relationship between these different standard chemical potentials. Let us

compare Eqs. (5.4) and (5.6). Recalling that we have assumed that the system is

in its reference state, which usually is the infinitely dilute solution, we can use

Eq. (5.1), substituting it into (5.6) to eliminate xi, and setting Eqs. (5.4) and (5.6)

equal to yield

m�c ¼ u�x þ RT ln
M1

1000r1
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For example, if the solvent is water, then M1 ¼ 18 and r1 ¼ 1:0, and we find

m�c ¼ m�x � RT ln 55:5. Concluding this exposition, we see that the selection of a

standard state is arbitrary, and that we select a standard state when we choose a

concentration scale. [Some authors write of ‘‘adopting the 1 M standard state,’’

for example, which merely means that the molar scale was used, with Eq. (5.4)

showing that when ci ¼ 1, then mi ¼ m�c .]

In the more general case where activity coefficients may deviate from unity,

Eqs. (5.4)–(5.6) become

mi ¼ m�c þ RT ln gcci ð5:7Þ
mi ¼ m�m þ RT ln gmmi ð5:8Þ
mi ¼ m�x þ RT ln gxxi ð5:9Þ

where the subscript i has been omitted from the m� and g terms to reduce typogra-

phical clutter. In general gc, gm, and gx differ for the same system, although in dilute

solutions they have nearly the same value (Glasstone 1947, p. 355). Certain conven-

tions allow us to carry out calculations to levels of accuracy appropriate to many

practical situations where extreme accuracy is not required. We will adopt these

conventions, which are repeated from Chapter 3 for convenience:

1. The fugacity of a gas is taken equal to its pressure (or partial pressure) in atm,

at low to moderate pressures.

2. The activity of a liquid solvent in a solution is equal to its mole fraction. It

follows that the activity of a pure liquid is 1.00, and that this is its standard

state. (This convention also applies to liquid solutes if desired.)

3. The activity of a pure solid is 1.00; this is the same as convention 2.

4. The activity of a solute in an infinitely dilute solution will be taken equal to

its molar concentration; that is, gc ¼ 1:00; the solute is in its reference state.

The standard state is rather peculiar; it approximates to the 1 M solution, but

at this concentration the solution probably does not behave ideally, so

although its activity is unity by definition, some of its properties are those

of the reference state. (We further expand on this in Section 7.2.)

5. The activity of an uncharged solute will be taken as 1.00 at any concentration.

This is an approximation justified by recognizing that uncharged molecules

experience much weaker forces of interaction than do ions. The approxima-

tion improves as the solution is made more dilute.

6. The activity coefficient of an ion can be drawn from experimentally

determined results (Harned and Owen 1958) or calculated from theory, as

will be described in Section 8.3.

It is instructive to write Eq. (5.7) in this expanded form:

mi ¼ m�i þ RT ln ci þ RT ln gi ð5:10Þ
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This equation shows how the numerical value of the chemical potential mi receives a

contribution from the arbitrarily assigned standard state (m�i ), a contribution from

RT ln ci, which describes the composition dependence of the ideally behaved con-

stituent, and a contribution from RT ln gi, which describes the nonideal behavior of

the constituent. Although not explicitly indicated, gi is also composition-dependent,

and as ci ! 0, gi ! 1.

PROBLEMS

5.1. Calculate the mole fraction x2 of benzoic acid in an aqueous solution 1.5 mM

in benzoic acid. Also calculate the mole fraction xi of water in this solution.

5.2. Concentrated hydrochloric acid is labeled to contain about 38.0% by weight of

HCl, and its density is about 1.19 g mL�1. Calculate the approximate molar

concentration of HCl in this solution.

5.3. What is the molar concentration of pure water?

5.4. Calculate the difference between standard chemical potentials in dilute

aqueous solution based on the molar and the mole fraction standard states,

at 25�C.

5.5. Obtain an equation with which molar and molal concentrations may be

interconverted in dilute solution.

5.6. Consider a liquid solution of solvent 1 and solute 2. Let n1 and n2 respectively

be the numbers of moles of solvent and solute in a given mass of solution,

whose density is r. Then derive an exact equation relating x2 and c2. [Hint:

The correct result must reduce to Eq. (5.1) in very dilute solution.]
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6

PHASE
TRANSFORMATIONS

6.1. PURE SUBSTANCES

Phase Diagrams. In this section we treat equilibria in heterogeneous systems,

that is, systems consisting of more than one phase. A phase of matter is uniform

in chemical composition and physical state. It may be subdivided, but it remains

a single phase. For example, a system consisting of ordinary crushed ice dispersed

in water possesses two phases: ice and water. These types of systems were treated

briefly in Chapter 4. Figure 6.1, which appeared earlier as Fig. 4.1, is a pressure–

temperature phase diagram for the simplest case, a pure substance possessing only

one form of each of the three phases solid, liquid, and vapor (gas). (A pure sub-

stance can have only a single vapor phase, and most pure substances have only a

single liquid phase,1 but many solid phases may exist, as will be described below.)

The line OC in Fig. 6.1 describes all systems in which the solid and liquid phases

coexist in equilibrium; that is, any pair of P; T coordinates on this line describe the

melting temperature of the solid at that pressure. Similarly line OB gives the boiling

temperature as a function of pressure, and line OA gives the sublimation tempera-

ture. Point O is called the triple point, a unique pair of P; T values at which the

solid, liquid, and vapor are in mutual equilibrium. The slopes of these lines are

given by Eq. (6.1), the Clapeyron equation, from Chapter 4:

dP

dT
¼ �H

T �V
ð6:1Þ

where �H is the enthalpy change for the process and �V is the volume change. For

the special case of the liquid–vapor transition (boiling), this equation is usually used
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in the approximate version called the Clausius–Clapeyron equation:

d ln P

dT
¼ �Hvap

RT2
ð6:2Þ

In its integrated forms the Clausius–Clapeyron equation becomes

log P ¼ ��Hvap

2:3RT
þ C ð6:3Þ

or

log
P2

P1

¼ �Hvap

2:3R

T2 � T1

T1T2

� �
ð6:4Þ

where C is a constant; �Hvap, the molar heat of vaporization, is assumed to be a

constant throughout the temperature range of interest; and the equations relate

boiling temperature to pressure.

The Gibbs phase rule is

F ¼ C � Pþ 2 ð6:5Þ

where P is now the number of phases in the system at equilibrium, C is the number

of components, and F is the number of degrees of freedom.2 F is the number of
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Figure 6.1. Pressure–temperature phase diagram of a pure substance.
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variables that must be fixed in order to completely define the system. For example,

along line OC in Fig. 6.1 there are two phases (solid and liquid) and one component

(since this is the diagram for a pure substance), so F ¼ 1� 2þ 2 ¼ 1. According

to this result, the system along line OC possesses one degree of freedom. This

means that we can select either the pressure or the temperature at will (provided

the value lies within the OC range); the other variable is then established by the

equilibrium.

At the triple point O;F ¼ 1� 3þ 2 ¼ 0; the system has no degrees of freedom.

The three phases solid, liquid, and vapor are all in equilibrium, and if this condition

is to be maintained, neither the temperature nor the pressure may be altered.

Figure 6.1 and the Clausius–Clapeyron equation show that the pressure may be

a fairly sensitive function of temperature along the vaporization line OB. By

definition the normal boiling point Tb is the boiling temperature when P ¼ 1 atm;

this is the boiling temperature usually measured in the laboratory (or the kitchen).

The melting point (also called the freezing point) is not very sensitive to pressure.

Polymorphism. A pure substance may be capable of existing in more than one

crystalline solid form. Each such crystalline solid is a separate phase, and these

forms are called polymorphs. The phenomenon of polymorphism (also known as

allotropy) is widespread, and it has pharmaceutical ramifications. Polymorphs

have different arrangements of the molecules in their crystal structures, but

chemically they are identical. The two or more polymorphs of a substance possess

different free energies, and the polymorph that has the lowest free energy is the

thermodynamically most stable form. The other forms are thermodynamically

unstable relative to the stable form, but it may happen that the rate of transforma-

tion from the unstable to the stable forms is so slow as to be negligible or practically

unimportant, in which case the unstable polymorph is said to be metastable. For

example, the element carbon can exist in two polymorphic forms called graphite

and diamond. Graphite is the thermodynamically stable form, and diamond is meta-

stable with respect to it, but although diamond is thermodynamically unstable, the

timescale on which it transforms to the more stable form is of no human concern.

Some polymorphic transformations may be quite fast, however.

A given substance may possess numerous polymorphs—phenobarbital has at

least 8 and may have 11 of them—but according to the phase rule, the maximum

number of phases, including solid phases, that can coexist in equilibrium is P ¼
C þ 2 (i.e., P is maximized when F is set to 0); for a pure substance this is three

phases. Figure 6.2 is the phase diagram of water at extremely high pressures

(Findlay et al. 1951). This phase diagram (which is based on the experimental

work of P. W. Bridgman) shows six ice polymorphs; these are labeled ice I (this

is ordinary ice), ice II, ice III, ice V, ice VI, and ice VII (the reported discovery

of ice IV was erroneous). Observe that a maximum of three phases may exist at

any fixed combination of temperature and pressure.

The pharmaceutical significance of polymorphism lies in two features: (1) the

different crystal forms have different physical properties and (2) polymorphs may

interconvert on a pharmaceutically pertinent time scale. These features have led to
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much pharmaceutical research in this area (Carstensen 1973, pp. 113–124;

Haleblian and McCrone 1969; Haleblian 1975; Florence and Attwood 1981, Chap-

ter 2). It has been found that the solubilities of polymorphic forms of a drug are

different. If the solubility of the less stable form is greater than that of the more

stable form, its solution will be unstable with respect to the more stable solid

form because it is supersaturated with respect to this form. Precipitation may occur

unexpectedly in such a situation unless some form of stabilization can be devised.

The bioavailability of a drug may depend on the drug’s polymorphic form. Chemi-

cal stability of drugs, and the physical stability of pharmaceutical dosage forms,

may be dependent on the polymorphic form of the drug and its propensity for trans-

formation to a more stable polymorph.

Note that the formation of a crystalline hydrate (or other solvate), in which

the compound crystallizes with one or more molecules of solvent in its crystal

structure, is not true polymorphism; a crystal hydrate is not chemically the same

substance as the unhydrated substance.

The Amorphous State. We have seen that a pure substance may assume any

one of several crystalline solid forms called polymorphs. There exists yet another

possibility called the amorphous or glassy state, in which the substance appears to
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Figure6.2. Pressure–temperature phase diagram of water at high pressures, showing the six ice

polymorphs. [Reproduced by permission from Findlay et al. (1951).]
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be solid in its consistency, yet X-ray diffraction data show the absence of the

periodic array of molecules characteristic of the crystalline state. The amorphous

(i.e., formless) state is really the supercooled liquid, which, although below

its normal freezing point, has not adopted the orderly arrangement of molecules

characteristic of the crystal. Although it appears to be a solid, it is really a highly

viscous liquid. Presumably some kinetic barrier to crystallization permits super-

cooling to take place. This pathway to the amorphous state is not the only one, how-

ever, and it has been found possible to generate amorphous samples by subjecting

crystalline solids to high-energy processes such as grinding, milling, and freeze

drying. The amorphous state is best detected by means of X-ray powder spectra.

The amorphous state is unstable with respect to (it is of higher energy than) the

crystalline solid, to which it may revert on a generally unpredictable timescale. Its

pharmaceutical advantages and disadvantages follow from these properties. Higher

solubility and bioavailability may be achieved with amorphous solids, but transfor-

mation to the crystalline state is a possibility. Experimental study of each substance

is required to establish its characteristic behavior.

The amorphous state is often studied by means of differential scanning calori-

metry (DSC), in which the temperature of the sample is raised while the heat

absorbed or released by the sample is monitored. Figure 6.3 shows DSC curves

for two amorphous samples of the drug indomethacin (Yoshioka et al. 1994).

One sample (dashed lines) had been prepared by rapidly cooling the melted

drug; the other sample (solid lines) had been more slowly cooled. Besides these

amorphous samples, indomethacin also forms two crystalline polymorphs: the

a form with melting point 155�C and the g with melting point 161�C.

As the temperature sweeps through the range 35–65�C, in Fig. 6.3a, both amor-

phous samples show endothermic peaks (they are absorbing heat) as they undergo a

transition. The onset of this transition, at about 50�C, is called the glass transition

temperature, Tg. With increased temperatures, the samples undergo crystallization

in Fig. 6.3b, with the release of heat (the heat of crystallization, which can be mea-

sured from the areas under the crystallization peaks). Finally, in Fig. 6.3c, both

samples melt. Observe that the two melting crystalline samples are actually
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Figure 6.3. DSC traces of two amorphous samples of indomethacin. See text for explanation.

Reproduced by permission from Yoshioka et al. (1994).
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mixtures of the a and g polymorphs (each curve has two components), but they

differ in terms of which polymorph is present in major fraction.

The properties of the amorphous state are a consequence of its high energy con-

tent, which is its dominant characteristic. It is a relatively unstudied state of matter,

for which increasing pharmaceutical applications may be expected.

6.2. MULTICOMPONENT SYSTEMS

This is an abbreviated treatment of this topic, limited in these two ways: (1) we

consider only binary (i.e., two-component) systems, and (2) we omit certain topics

as not particularly pertinent to our interests (fractional distillation is an example).

Fuller treatments are available (Rossini 1950, Chapter 32; Atkins 1994, Chapter 8).

Liquid–Liquid Systems. We will omit consideration of the vapor phase, in prin-

ciple by postulating that it is excluded from the system, in practice by working

(usually) under the ambient fixed atmospheric pressure. We begin by considering

a system of two liquids. Of course, whether a substance is a liquid or a solid

depends (at fixed pressure) on the temperature, but common usage denotes as

liquids those substances that exist in this state at or near room temperature. Pairs

of liquids often are classified as essentially completely immiscible (such as mercury

and water), as completely miscible in all proportions (e.g., ethanol and water), or as

partially miscible (e.g., diethyl ether and water). The completely immiscible case

need not concern us, since it effectively consists of two separate pure substances.

Completely miscible systems are dealt with in Chapter 7. We are left to consider

those pairs of liquids that are miscible in some proportions but are immiscible in

other proportions.

Inasmuch as we have fixed the pressure, the two experimental variables by

means of which the system may be manipulated are the temperature and the com-

position of the system, and phase diagrams are commonly constructed with

these variables as the coordinates. Usually the composition is expressed as mole

fraction or as percent by weight. Figure 6.4 shows a schematic temperature–

composition phase diagram for a partially miscible pair of liquids, 1 and 2. Any

combination of temperature and composition giving a point outside the phase

boundary line describes a homogeneous system; in this region 1 and 2 are mutually

miscible. Note that small concentrations of 1 will dissolve in 2, and vice versa;

moreover, as the temperature increases, the extent of mutual solubility increases.

At any temperature above Tc (which is called the upper critical temperature), the

two liquids are miscible in all proportions.

But if the temperature–composition combination places the system under

(within) the phase boundary line, two phases form. One phase is predominantly

1 saturated with 2, the other is largely 2 saturated with 1. At any given temperature,

say, T 0 in Fig. 6.4, the horizontal tieline pr connects the arms of the phase diagram,

and the compositions of the two phases are given by xp and xr. Moreover, if xq is the
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overall composition of the system, the amounts of the two phases are in the ratio of

the distances pq=qr. Figure 6.5 shows the experimental phase diagram for the phe-

nol–water system [see Findlay et al. (1951, p. 95); the melting point of phenol is

�41�C, and phenol is being treated as a liquid in this context]. This diagram is help-

ful in determining the ranges of compositions that will yield homogeneous solu-

tions of phenol in water at room temperature (25�C). Liquified Phenol U.S.P.

contains 89% by weight of phenol, placing it in the single-phase region of the

diagram.

Example 6.1. 50.0 g of Liquified Phenol U.S.P. is diluted with 50.0 mL of water at

room temperature. Analyze the outcome of this procedure.

Since Liquified Phenol contains 89% w/w of phenol, and the density of water is

1.0 g mL�1, the system as prepared contains 44.5% w/w phenol with a total weight

of 100 g. Figure 6.5 shows the 25�C tieline with point q given by the 44.5% system

composition. This point lies within the two-phase boundary, so the system will

separate into two layers. Reading the compositions of the layers at points p and r

tells us that one phase will contain 8% phenol and the other phase will contain 71%

phenol. The ratio pq=qr ¼ ð44:5� 8Þ=ð71� 44:5Þ ¼ 1:38.

We can go further than this. Since 100 g of total system contains 44.5 g of

phenol, we can write

Weight of phenol in aqueous layerþ weight of phenol in phenolic layer ¼ 44:5 g

 Xp  XqO  Xr I

 Two-phase

Homogeneous

Tc

T'

T

X2

p q r

Figure 6.4. Schematic temperature–composition phase diagram for two partially immiscible

liquids 1 and 2; x2 is the mole fraction of 2, and Tc is the upper critical temperature.
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Letting x be the weight of the aqueous layer in 100 g of sample gives

0:08xþ 0:71ð100� xÞ ¼ 44:5

resulting in x ¼ 42:1 g as the weight of the aqueous layer and therefore 57.9 g as the

weight of the phenolic layer. The aqueous layer contains ð0:08Þð42:1Þ ¼ 3:4 g

of phenol, and the phenolic layer contains ð0:71Þð57:9Þ ¼ 41:1 g of phenol. Note,

incidentally, that pq=qr ¼ 1:38 ¼ 57:9=42:1.

In these two-component systems each phase is a solution, which can be defined

as a phase of variable composition. Notice that we have not identified one of the

components as the solute and the other as the solvent; such a designation has no

thermodynamic significance, and is done solely for our convenience.

Liquid–Solid Systems. Imagine a two-component system consisting of two

solids A and B brought to a temperature above the melting points of both. Then

in the simplest instance a one-phase system will form consisting of a liquid solution
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Figure 6.5. Phase diagram for the phenol–water system. See discussion in Example 6.1.
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of A and B (Findlay et al. 1951, p. 135). Referring to Fig. 6.6, the area labeled L

(for liquid phase) will include the system as described, its precise location in the

diagram depending on the temperature and the composition.

The points A and B in Fig. 6.6 represent the melting points of solids A and B.

Now let the temperature be lowered (always allowing the system to remain at

equilibrium). Suppose the system initially is represented by point E. When the tem-

perature reaches point G, pure solid A will begin to form, and as the temperature

continues to fall (as heat is withdrawn from the system), more solid is formed.

Throughout the area ADC the system consists of pure solid A dispersed in a

solution of A and B. Its composition is given by tielines, such as HK in the figure.

When the system temperature reaches level C, the temperature ceases to fall,

even though heat continues to be withdrawn from the system; point C has no

degrees of freedom. (Recall that we have fixed the pressure.) At point C, solid

A, solid B, and solution phase are in mutual equilibrium. The solid phase at this

point is a finely divided two-phase dispersion of crystalline A and B called a eutec-

tic, and C is the eutectic point. Microscopic examination reveals that the eutectic is

a mixture and not a single phase. The composition of the eutectic mixture is fixed

for a given pair of substances. Observe that the eutectic melts at a lower tempera-

ture than either of its pure components. Eutectic formation is observed widely in

geologic deposits and metal alloys, and the phenomenon is of pharmaceutical

importance. Numerous drugs form eutectic mixtures, with the consequence that

they may liquify at ambient temperature owing to the melting point decrease char-

acteristic at the eutectic point. Acetaminophen, aspirin, menthol, phenacetin,
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Figure 6.6. The simplest solid–liquid phase diagram for a two-component system of A and B,
where L represents the liquid (solution) phase; C is the eutectic point. [Reproduced by

permission from Findlay et al. (1951).]

MULTICOMPONENT SYSTEMS 75



phenol, and thymol are some of these substances that are prone to eutectic forma-

tion. Special care in formulating or compounding these compounds is necessary

(Thompson 1998, p. 34.5).

We tend to think of curves such as AC and BC in Fig. 6.1 as freezing point (or

melting point) curves, but from the thermodynamic point of view they can just as

well be viewed as solubility curves. Suppose, for example, that A is a liquid at room

temperature but that B is a solid. Then the curve BC can be interpreted as the

solubility of B in A. We will not pursue this line of interpretation because

Chapter 10 is entirely concerned with solubility.

A traditional laboratory technique for the confirmation of identity of a solid sub-

stance is to mix some of the sample with an authentic specimen, and to measure the

melting point. If this mixed melting point is the same as that of the melting point of

the authentic specimen, the sample is very likely the same compound. If, on the

other hand, the melting point of the mixture is decreased, the two substances are

different. This is a consequence of the mutual depression of melting points seen

in Fig. 6.6 when two components are mixed.3

The region in Fig. 6.6 labeled Aþ B and lying entirely below point C may con-

sist merely of the two crystalline phases of A and B (leaving aside the phenomenon

of polymorphism). But another possibility is that A and B may form a solid solu-

tion, which is a homogeneous single-phase state of matter, no different in principle

from a liquid solution. Some drugs are known to form solid solutions (Carstensen

1977, pp. 23–26).

PROBLEMS

6.1. Suppose that a solution is prepared at 70�C to contain 65% by weight of

phenol in water. The solution is slowly cooled. At what temperature will it

separate into two phases?

6.2. Calculate the degrees of freedom at the eutectic point C in Fig. 6.6.

NOTES

1. Some substances reveal the existence of a second liquid phase called the liquid crystalline

phase. It is recognized by its optical properties.

2. The number of components may differ from the number of constituents. Here is a simple way

to determine C, the number of components: C is equal to the minimum number of bottles

of pure substances required to prepare the system in the laboratory.

3. The melting of ice on winter roads by spreading salt is another manifestation of the

phenomenon. NaCl and H2O from a eutectic of composition 23.3% NaCl at a eutectic

temperature of �21.1�C.
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7

SOLUTIONS OF
NONELECTROLYTES

7.1. IDEAL SOLUTIONS

A nonelectrolyte is a substance that is uncharged and that does not sensibly give

rise to ions. Our analysis will be sufficiently general if we consider solutions of

two nonelectrolytes, labeled 1 and 2; the results can be extended to more compo-

nents if necessary. For the present we limit discussion to single-phase systems.

A convenient starting place is with the experimental observation known as Raoult’s

law, which describes a particularly simple type of solution behavior in the form of

pi ¼ xiP
�
i ð7:1Þ

Raoult’s law states that the partial pressure pi of constituent i over its solution is

directly proportional to its mole fraction in the solution, where the proportionality

constant P�i is the vapor pressure of the pure liquid (i.e., when xi ¼ 1). An ideal

liquid solution is then one in which Raoult’s law is obeyed over the entire range

of composition, at all temperatures and pressures. As may be imagined, Raoult’s

law represents a limit of simple behavior toward which certain systems tend, rather

than an exact description, but if the solution components are chemically very simi-

lar, and are nonpolar molecules, behavior very close to the ideal may be observed.

A solution of benzene and toluene illustrates such behavior.

It can be proved (Glasstone 1947, p. 320) that if Raoult’s law applies to one of

the constituents of a solution, then it must also apply to the other. Figure 7.1 shows

Raoult’s law behavior for an ideal solution. Since the total pressure is the sum of the

partial pressures, then

P ¼ x1 P
�
1þ x2 P

�
2 ð7:2Þ

This is the equation of the topmost line in Fig. 7.1.
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We know from Chapter 4 that at equilibrium the chemical potentials of consti-

tuent i are equal in the vapor and liquid phases, or mi(g)¼ mi(l). We also can write

[see Eq. (3.35)], for a mixture of ideal gases, that

miðgÞ ¼ m�i ðgÞ þ RT ln pi

If we combine this relationship with the foregoing equality and with Raoult’s law,

we obtain

miðlÞ ¼ m�i ðlÞ þ RT ln xi ð7:3Þ

where m�i ðlÞ ¼ m�i ðgÞ þ RT ln P�i . Equation (7.3) may be taken as an alternative

description of an ideal-liquid solution (Smith 1977, p. 78). The standard chemical

potential u�i ðlÞ is the chemical potential of pure component i (i.e., when xi ¼ 1).

We can develop the thermodynamic properties of the ideal solution as follows.

The total free energy of the solution is given by

G ¼ m1x1 þ m2x2 ð7:4Þ

where x1 and x2 are mole fractions. The free-energy change on mixing 1 and 2 is

equal to the free energy of the solution after mixing minus the free energy of the

pure components before mixing, or

�Gmix ¼
X

mixi �
X

m�i xi ð7:5Þ
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Figure7.1. Raoult’s law behavior of both components of an ideal solution; p1 and p2 are the partial

pressures; P is the total pressure.
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Substituting from Eq. (7.3) into Eq. (7.5) leads to

�Gideal
mix ¼ RTx1 ln x1 þ RTx2 ln x2 ð7:6Þ

as the ideal free energy of mixing. Since the mole fractions are less than one, the

free energy of mixing is negative and the process is spontaneous.

The entropy of mixing is easily obtained by applying the relationship [Eq. (3.7)]

q�G

qT

� �
P

¼ ��S ð7:7Þ

to Eq. (7.6). The result is

�Sideal
mix ¼ �Rx1 ln x1 � Rx2 ln x2 ð7:8Þ

Therefore the entropy of mixing is positive, as we would expect. From the identity

�G ¼ �H � T �S we obtain, making use of Eqs. (7.6) and (7.8):

�Hideal
mix ¼ 0 ð7:9Þ

Finally, from Eq. (3.6), we obtain

q�G

qP

� �
T

¼ �V ð7:10Þ

applying this to Eq. (7.6), we get

�V ideal
mix ¼ 0 ð7:11Þ

Equations (7.6), (7.8), (7.9), and (7.11) give the essential thermodynamic properties

of the ideal solution. We can make some molecular interpretations of these results.

In an ideal solution, the three pairwise interactions between 1–1 molecules, 2–2

molecules, and 1–2 molecules are all energetically and spatially identical, so repla-

cement of a 1 molecule by a 2 molecule anywhere in the solution leads to no energy

or volume changes; hence �Hideal
mix ¼ 0 and �V ideal

mix ¼ 0. (It is these stringent con-

straints that account for the rarity of experimental examples of ideal solutions,

because if two real molecules have different identities, their energies and space-

filling requirements will differ to at least some degree.) The ideal entropy of mixing

is positive because the mixed system is more disordered than is the initial system

of separated species and the number of configurational microstates is greater.

Since �Hideal
mix ¼ 0 and �Sideal

mix > 0, the negative value of �Gideal
mix is entirely entropy-

driven.
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7.2. NONIDEAL SOLUTIONS

It will be no surprise to learn that few real solutions behave ideally. Nevertheless,

fairly simple behavior is widely observed in solutions that are very dilute with

respect to one component. It will now be convenient to designate the component

(to be labeled component 1) that is present in great excess as the solvent, and com-

ponent 2, present in low concentration, as the solute. The solvent is obviously a

liquid, but the solute may be either a liquid or a solid.

First consider Fig. 7.2, which shows vapor pressure–composition curves for both

solution components when derivations from ideality occur. In this figure the dashed

lines show ideal Raoult’s law behavior (compare with Fig. 7.1), whereas the solid

lines show positive deviations from Raoult’s law (Fig. 7.2a) and negative deviations

(Fig. 7.2b).1 The two components may exchange roles as solvent and solute

depending on which is in excess.

Now, in a dilute solution (i.e., dilute with respect to component 2, the solute), the

solvent, component 1, approaches a mole fraction of unity, and its vapor pressure

approaches that expected from Raoult’s law; this behavior can be seen in Fig. 7.2,

where the dashed and solid lines approach asymptotically as x appoaches unity.

This is reasonable behavior, since in this circumstance (the very dilute solution),

the solvent molecules are surrounded essentially only by other solvent molecules,

and hence are practically unperturbed by solute molecules. But it is otherwise for

the solute molecules in dilute solution, for then each solute molecule finds itself in

an environment of essentially only solvent molecules, which is clearly not typical of

the purely solute environment. Consequently the solute does not follow Raoult’s

law in dilute solution.
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Figure 7.2. Nonideal solution behavior showing positive deviations (a) and negative deviations
(b) from Raoult’s law. The mole fraction scale runs from 0 to 1 for one of the components and

from 1 to 0 for the other.
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Despite this result, a certain simplicity of behavior by the solute can be dis-

cerned. Experiment shows that, in the very dilute solution, the vapor pressure of

the solute is, in the limit of zero concentration, a linear function of its mole fraction,

as in

p2 ¼ x2k2
x ð7:12Þ

which should be compared with Raoult’s law, Eq. (7.1). Equation (7.12) is called

Henry’s law, and the constant of proportionality k2
x is the Henry’s law constant. The

distinction between Raoult’s law and Henry’s law is easily seen graphically in

Fig. 7.3.

The thermodynamic description of solute behavior in very dilute solutions is

based on Henry’s law, and it leads, by the same kind of argument used for ideal

solutions, to Eq. (7.13), which is very similar to Eq. (7.3) for the ideal solution,

except that the standard chemical potential incorporates the Henry’s law constant:

m2 ¼ m�2 þ RT ln x2 ð7:13Þ

We saw in Chapter 5 that we may base our standard state definitions on either

the mole fraction, the molal, or the molar concentration scales. Equations (7.12)

and (7.13) make use of the mole fraction convention, and this is shown in

Fig. 7.3 and again in Fig. 7.4a. Figure 7.4b shows the significance of the standard

Henry's 

Actual

Raoult's 

0 1

kx
2

P2
*

p2

x2

Figure 7.3. P�2 is the vapor pressure of the pure solute (x2 ¼ 1), and the actual vapor pressure

curve tends to this value. The Henry’s law constant kx
2 is a hypothetical value obtained by linear

extrapolation to x2 ¼ 1 of the tangent to the actual curve at x2 ¼ 0:
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state convention on the molar scale. Note how the superscript x or c is used with the

Henry’s law constant to clarify the definition. Of course kx
2 and kc

2 are different; their

relationship can be worked out as we did in Chapter 5 [see also Grant and Higuchi

(1990, p. 93)].

Finally we must consider nonideal solution behavior outside the very dilute solu-

tion range. We have seen how to cope with this behavior (Section 5.3) by defining

activity coefficients, so that the actual behavior is quantitatively expressed by an

activity coefficient that measures the deviation between real and ideal behavior.

Now we can see that the adoption of a criterion of ideal behavior is critical to

expressing the extent of deviation from this ideal. We are here approaching from

a different direction an issue already faced in Section 5.3. At that point we had

defined the activity of the solvent to be equal to its mole fraction. We now see

that this is equivalent to assuming that Raoult’s law is obeyed by the solvent, which

is a reasonable assumption in the dilute solution range. The activity of the solute, on

the other hand, we took as equal to its molar concentration in the very dilute range.

This is a Henry’s law reference state; the standard state is as shown in Fig. 7.4b. In

Chapter 8 we will learn how to estimate activity coefficients for ionic species,

which are notorious for their nonideal behavior; except in very concentrated solu-

tions, however, the activity coefficients of nonelectrolytes can be taken as unity for

most practical work.

The thermodynamic properties of real solutions are sometimes expressed in terms

of excess functions, which are defined as the difference between the actual value of

the function and the ideal value. For example, the excess entropy of mixing is

SE ¼ �Sreal
mix ��Sideal

mix

The excess functions can be positive or negative.2

Standard state,  unit mole fraction
(hypothetical)

Standard State, unit molar
(hypothetical)

Actual

Actual

0 1x2

 p2

kx
2

kc
2

c20 1
(a) (b)

Figure 7.4. Henry’s law constant kx
2 on the (a) mole fraction scale and (b) on the molar scale.

These standard states are different. They are both hypothetical, because real behavior (solid

curves) deviates from these linear extrapolations based on very dilute behavior.
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7.3. PARTITIONING BETWEEN LIQUID PHASES

The Partition Coefficient. Suppose that we bring two immiscible liquids in con-

tact, and then incorporate a nonelectrolyte solute such that its concentration is in the

dilute solution range. The solute will distribute itself between the two phases, each

of which constitutes a solution.3 Since the phases will arrange themselves according

to their densities, let us identify them as the upper (U) and lower (L) phases. The

distribution of solute between the phases is called partitioning. The typical separa-

tory funnel operation exemplifies this system. We take the pressure and temperature

as fixed.

At equilibrium the chemical potentials of the solute in the upper and lower

phases are equal:

mU
2 ¼ mL

2 ð7:14Þ

These chemical potentials will be written out for the Henry’s law molar standard

state definition, giving

m�U þ RT ln cU ¼ m�L þ RT ln cL ð7:15Þ

where for convenience the subscript 2 is omitted, assuming that the solute is meant.

Rearrangement of Eq. (7.15) gives

�m� ¼ �RT ln
cU

cL

ð7:16Þ

where �m� ¼ m�U � m�L. Comparison of Eq. (7.16) with the important equation

[Eq. (4.23)]

�G� ¼ �RT ln K ð7:17Þ

shows that the ratio cU=cL has the character of an equilibrium constant. In fact, it is

the equilibrium constant of this ‘‘reaction’’:

Solute in phase LÐ solute in phase U

This quantity is labeled P and is called the partition coefficient:

P ¼ cU

cL

ð7:18Þ

Partition coefficients are usually expressed in terms of their base 10 logarithms, log

P. This makes the numerical values directly proportional to the standard free-

energy change, according to Eq. (7.17), and it provides convenient magnitudes,

since P itself can be much smaller or larger than unity.
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Log P values have great utility in drug discovery and drug delivery research

programs. For these purposes the solvent of the upper phase is usually selected to

be 1-octanol, with water serving as the lower phase solvent. The partition coefficient

is then defined as

P ¼ coctanol

cwater

ð7:19Þ

Since water is more polar than is octanol, very polar solutes tend to have greater

affinity for the aqueous phase and therefore to have P values smaller than unity,

whereas nonpolar solutes have P values greater than unity. Consequently log P is

often used as a quantitative measure of a compound’s polarity.4

Log P values can be measured experimentally by the separatory funnel techni-

que, or modifications of it. Sometimes it is useful to be able to predict a log P value,

as for example if a compound of interest is not available or has not yet been synthe-

sized. Empirical methods, making use of a large body of experimental log P values,

have been developed that allow log P to be estimated solely on the basis of knowl-

edge of the solute’s molecular structure (Leo et al. 1971; Nys and Rekker 1974).

Table 7.1 lists a few log P values. Notice, for the series of normal alcohols, how

the trend of log P values appears to accord with our qualitative notions of the pola-

rities in this series. The log P of the aromatics is also consistent with expectations.

Example 7.1. 170.0 mg of benzylpenicillin (MW 334.4) was shaken with 10.0 mL

of 1-octanol and 25.0 mL of water. After the phases separated, the aqueous phase

was analyzed and found to contain 7.20 	 10�4 M benzylpenicillin. Calculate the

partition coefficient of benzylpenicillin in this system.

The total number of moles of benzylpenicillin is ntotal ¼ w=M, where w is the

weight in grams and M is the molecular weight. Obviously ntotal is the sum of

the amounts in the octanol and aqueous phases, or

noct þ naq ¼ ntotal

We also have the partition coefficient definition,

P ¼ coct

caq

Table 7.1. Log P (octanol/water) for some solutes

Solute Log P Solute Log P

Methanol �0.74 Benzene 2.13

Acetic acid �0.24 Phenol 1.46

Ethanol �0.32 Aniline 0.94

1-Propanol 0.34 Toluene 2.69

1-Butanol 0.88 Naphthalene 3.37

1-Pentanol 1.40 Aspirin 1.21
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and the concentrations (in mol L�1) are given by

coct ¼
noct

Voct

caq ¼
naq

Vaq

where the volumes are in liters. These equations suffice to solve the problem. We

find ntotal ¼ 0:170=334:4 ¼ 5:08	 10�4 mol. Then, from the definition of caq, we

obtain

naq ¼ caqVaq

¼ ð7:20	 10�4mol L�1Þð0:025 LÞ

¼ 0:18	 10�4mol

It follows that noct ¼ ntotal � naq; or noct ¼ 5:08	 10�4 � 0:18	 10�4 ¼ 4:90	
10�4 mol, and therefore that

coct ¼
4:90	 10�4 mol

0:01 L

¼ 4:90	 10�2 mol L�1

Finally

P ¼ coct

caq

¼ 4:90	 10�2

7:20	 10�4

¼ 68:1

or log P ¼ 1:83:

Example 7.2. Log P (octanol/water) of caffeine is �0.07 at 25�C. Calculate the

standard free-energy change for the partitioning process.

From Eq. (7.17), we have

�m� ¼ �2:303RT log P

¼ ð�2:303Þð1:987 cal mol�1 K�1Þð298:15 KÞð�0:07Þ
¼ 96 cal mol�1 ¼ 400 J mol�1

The interpretation of �m� is that it is the free-energy change when one mole of caf-

feine in its standard state in water is transferred to its standard state in octanol. (This

quantity is sometimes called the transfer free energy.)

From the log P value we find P ¼ 0:85. Caffeine partitions nearly equally

between the octanol and water phases, with a very slight preference for the water.
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Solvent Extraction. Partitioning of a solute between immiscible phases is a

valuable analytical technique, and it forms the basis of some chromatographic

separation methods. In the simplest case we have the type of system described in

the preceding discussion. Let p be the fraction of solute present in the upper phase

and q the fraction in the lower phase, so pþ q ¼ 1. This quantity p is defined as

p ¼ amount of solute in upper phase

total amount of solute
ð7:20Þ

If cU and cL are the concentrations and VU and VL are the volumes of the upper and

lower phases, then

p ¼ cUVU

cUVU þ cLVL

ð7:21Þ

Let us define the ratio of phase volumes as

R ¼ VU

VL

ð7:22Þ

and of course P ¼ cU=cL from Eq. (7.18). Combining these relationships gives

p ¼ PR

PRþ 1
ð7:23Þ

and so

q ¼ 1

PRþ 1
ð7:24Þ

Note that the product PR is equal to the ratio (amount in upper phase)/(amount in

lower phase); this quantity is called the capacity factor. Equation (7.23) gives the

fraction of solute extracted into the upper phase, and 100p is the percent extracted.

Example 7.3. Log P (octanol/water) ¼ 0.70 for ethyl acetate. If 10.0 mL of an aqu-

eous solution of ethyl acetate is extracted with one-25.0 mL portion of octanol,

what percentage of the ethyl acetate will be extracted into the octanol layer?

Since log P ¼ 0:70;P ¼ 5:0. We also have R ¼ 2:50. Applying Eq. (7.23) gives

p ¼ 0:926, so 92.6% will be found in the octanol.

Unless P is very large, a significant fraction of solute will be found in both

phases after a single extraction, as seen in Example 7.3. If the experimental goal

is to remove essentially all the solute from one phase into the other, common prac-

tice is to reextract with fresh portions of the extracting solvent, pooling the extracts,

until the solute has been quantitatively removed. We can calculate the number of

extractions required to extract any specified fraction of solute.
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As earlier, p is the fraction of solute extracted into the upper phase in a single

extraction, and q is the fraction in the lower phase. The first line in Table 7.2 shows

the state of the extraction after the first extraction.

If we accept the assumption that P is a true equilibrium constant, so that P has

the same value irrespective of the absolute concentrations,5 then the same fraction p

of solute remaining in the lower phase will be extracted into the upper phase each

time. (We assume that identical volumes of fresh upper phase are used in each

extraction.) Then the fraction of total solute removed in the nth extraction is equal

to the product of the fraction remaining and the fraction extracted in a single

extraction:

Fraction of total extracted in nth extraction ¼ fraction of total left after

ðn� 1Þth extraction	 p ð7:25Þ

Applying this equation to the second extraction gives

Fraction of total extracted in 2nd extraction ¼ pq

This is entered on the second line of Table 7.2. The total fraction extracted is now

equal to the sum of the fractions extracted in the first and second extractions, which

is pþ pq, and the fraction remaining is 1� total fraction extracted, which is equal

to q2 as seen in Table 7.2. In this way Table 7.2 is completed.

A final convenient expression is obtained by noting that

Total fraction extracted ¼ 1� fraction remaining

or, from the final entry in Table 7.2, after n extractions

Total fraction extracted ¼ 1� qn ð7:26Þ

Table 7.2. Calculation of the progress of extraction

Fraction of Total

Total Extracted Fraction Fraction

n in nth Extraction Extracted Remaining

1 p p 1� p ¼ q

2 pq pþ pq 1� ðpþ pqÞ ¼ q2

3 pq2 pþ pqþ pq2 1� ðpþ pqþ pq2Þ ¼ q3


 
 
 


 
 
 


 
 
 

n pqðn�1Þ Pn

n¼1 pqðn�1Þ qn
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Example 7.4. For the system described in Example 7.3, calculate the total fraction

extracted after 1, 2, 3, 4, and 5 extractions, if R ¼ 1:0.

Since P ¼ 5:0 and R ¼ 1:0, we find with Eq. (7.24) that q ¼ 1
6
¼ 0:167. Apply-

ing Eq. (7.26) gives the results in Table 7.3.

Observe the asymptotic approach to complete extraction, which in principle

can never be achieved because, in the terms of classical thermodynamics, at

equilibrium (which is reached at each stage of the extraction process) the chemical

potential of the solute must be identical in both phases, so the solute cannot be

absent from one phase and present in the other. In practice, of course, we can often

carry out the extraction to an extent that is practically indistinguishable from

completion.

Example 7.5. Using the same system of Examples 7.3 and 7.4, for which P ¼ 5:0,

compare the efficiency of extraction of a 15-mL aqueous solution of ethyl acetate

with (a) one 60-mL portion of octanol; (b) four 15-mL portions of octanol.

(a) With Eq. (7.23) and the quantities P ¼ 5:0, R ¼ 4:0, we find p ¼ 0:952, or

95.2% extracted in this experiment.

(b) With Eq. (7.26) and the quantities p ¼ 5:0, R ¼ 1:0, n ¼ 4 we find

q ¼ 0:0476 and total fraction extracted ¼ 0:9992, or 99.92% extracted in

this experimental design.

Example 7.5 demonstrates an important result of extraction theory. A more effi-

cient extraction is achieved with several extractions than with a single extraction,

even when the same volume of extracting solvent is employed in the different

operations.

Countercurrent Distribution. Although a single solute can be exhaustively

extracted from solution by means of multiple extractions, it is not possible to sepa-

rate two solutes (leaving one in each phase) by this technique unless the partition

coefficient of one of them is effectively zero or infinite. An alternative experimental

design, called countercurrent distribution (CCD), has been invented to allow

Table 7.3. Multiple extractions of a solute with
P ¼ 5 and R ¼ 1

Number of Total

Extractions, n Extracted (%)

1 83.33

2 97.21

3 99.53

4 99.92

5 99.99
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solutes having similar (yet quantitatively different) partition coefficients to be sepa-

rated. The term ‘‘countercurrent’’ means that the two phases move in opposite

directions, although actually one phase is held motionless and the other moves,

so the phases are in relative motion. Although CCD as a separation technique

has been superseded by chromatography, a description is worthwhile for two

reasons: (1) since thermodynamic equilibrium can be achieved at each stage of

the process, an exact mathematical analysis is possible, and the mathematics turn

out to be of a much wider applicability; and (2) CCD constitutes an excellent intro-

duction to the technique of partition chromatography, which in fact was initially

developed as a modification of CCD [the present treatment of CCD draws heavily

on earlier work (Connors 1982, pp. 357–364)].

The countercurrent distribution experiment uses a train of tubes within which the

individual equilibrations occur. At the beginning of the experiment each tube is

charged with an identical volume of the lower phase (e.g., water or an aqueous buf-

fer). These tubes are numbered 0, 1, 2, . . . , r. Into tube 0 a suitable volume of the

upper-phase solvent (e.g., ether) is introduced. The solute is added to tube 0; it is

immaterial whether the solute is added in the upper or the lower phase. Figure 7.5

is a schematic rendering of a countercurrent distribution of a single solute; it is

assumed, in this case, that p ¼ q ¼ 0:5. Figure 7.5a represents the train of tubes

as it has been described above, with 16 parts of solute added to the lower phase

of tube 0. Now the tube is shaken to allow distribution to occur; in Fig. 7.5b the

resulting partitioning of the solute is shown as 8 parts in each phase, since p ¼ q

for this particular solute.

Next the upper phase of tube 0 is transferred to tube 1 (this is called the

first transfer) and fresh solvent is added to tube 0 (Fig. 7.5c). The tubes are equili-

brated to give the distribution shown in Fig. 7.5d. This sequence is repeated until

three transfers have been effected (n ¼ 3), as shown in Fig. 7.5h.

The result of these operations has been to transfer the solute in the direction of

motion of the upper phase. This process may be repeated many times. Since only

the upper phase is transferred, clearly the solute can progress along the train of

tubes only by being extracted into the upper phase. Therefore the greater the value

of p, the further along the tube train the solute will progress in a given number

of transfers. Actually the solute is distributed over many tubes, as can be seen by

the sample shown in Fig. 7.5. If the original sample contains two solutes with dif-

ferent partition coefficients, they will progress along the tubes at different ‘‘rates,’’

the substance with the larger partition coefficient traveling faster. In order to sepa-

rate the solutes it is necessary only to perform enough transfers.

It is possible to predict quantitatively the countercurrent distribution behavior of

a solute if its partition coefficient is known for the liquid–liquid system. Since P and

R are known quantities, p and q may be calculated.

Suppose that one unit of a single solute is placed in the lower phase of tube 0; the

situation may be represented as in the first row of Table 7.4, where, as in the earlier

discussion, the tubes are numbered 0, 1, 2, . . . , r, and transfers 0, 1, 2, . . . , n. Before

equilibration all the solute is in the lower phase, and after equilibration a fraction p

of the solute is in the upper phase and q is in the lower phase.
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Next the upper phase of tube 0 is transferred to tube 1 (which contains fresh

lower phase) and fresh upper phase is placed in tube 0. The phases are equilibrated.

The fraction of total solute extracted into the upper phase of tube 0 will be p times

the fraction of solute in the tube, or pq. Similarly, the fraction of solute in the lower

phase is q times the fraction of solute in the tube, or q2. In this way the distribution

has been calculated through four transfers, as seen in Table 7.4.

In the last row of the table the total fraction of original solute in each tube is

listed. The distribution exhibits a marked symmetry in p and q. Obviously the

calculation of such a distribution for many transfers would be extremely laborious,

but it is fortunately not necessary to proceed as in the previous example. It has been

observed that the total fraction of original solute in each tube is given by the cor-

responding term in the binomial expansion, ðqþ pÞn. Two implications of this

result are (1) for n transfers there are n þ 1 terms, and therefore n þ 1 tubes;

and (2) the sum of all the terms is 1, since p þ q ¼ 1, and 1 to any power is 1.

(h)

Transfer Equilibration

n = 0

n = 1

n = 2

n = 3

r = 0 1 2 3

(a) (b)

(c) (d)

(e) (f)

(g)

Figure7.5. Schematic representation of countercurrent distribution with three transfers of a solute

with p ¼ 0:5. [Reproduced by permission from Connors (1987).]
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The expansion of the function ðqþ pÞn is laborious for large n, and an easier

calculation is available. The binomial expansion may be written

ðqþ pÞn ¼ qn þ nqn�1pþ nðn� 1Þ
2

qn�2p2 þ 
 
 
 þ pn

which can be expressed

ðqþ pÞn ¼
Xn

r¼0

n!

r!ðn� rÞ! prqðn�rÞ

where r is the number of the corresponding term in the expansion (the quantity n! is

called ‘‘n factorial’’ and means n! ¼ 1 
 2 
 3 
 4 
 
 
 n; the relationship 0! ¼ 1 is a

definition). Interpreting this in the context of CCD, we write Eq. (7.27) for the

rth term in the binomial expansion

Tnr ¼
n!

r!ðn� rÞ! prqðn�rÞ ð7:27Þ

where the quantity Tnr is read ‘‘the fraction of total solute contained in both layers

of the rth tube after n transfers.’’ A calculated countercurrent distribution is usually

exhibited as a plot of Tnr versus r. Equation (7.27) is called the binomial distribution.

Calculation of the CCD curve may be further simplified. According to statistical

theory, the mean of the binomial distribution is equal to np. The mean corresponds

Table 7.4. Calculation of the distribution through four transfersa

Tube Number, r

Transfer —————————————————————————————

Number, n 0 1 2 3 4

0 Ba 0=1

Ab p=q

1 B 0=q p=0

A pq=q2 p2=pq

2 B 0=q2 pq=pq p2=0

A pq2=q3 2p2q=2pq2 p3=p2q

3 B 0=q3 pq2=2pq2 2p2q=p2q p3=0

A pq3=q4 3p2q2=3pq3 3p3q=3p2q2 p4=p3q

4 B 0=q4 pq3=3pq3 3p2q2=3p2q2 3p3q=p3q p4=0

—————————————————————————————

Totals after q4 4pq3 6p2q2 4p3q p4

four transfers

a Before equilibration.
b After equilibration.

Source: Reproduced by permission from Connors (1987).
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to the maximum; therefore the tube number of the maximum in the curve, rmax, is

given by

rmax ¼ np ð7:28Þ

This simple expression permits one to calculate the maximum in the CCD curve if p

is known. Although n must be an integral number, rmax need not be. Note that rmax

is directly proportional to p. If Eq. (7.27) is written for Tnr and for Tnðr�1Þ, these

expressions can be combined to give

Tnr

Tnðr�1Þ
¼ pðn� r þ 1Þ

qr
ð7:29Þ

with which the fraction of solute in any tube can be calculated if the fraction in an

adjacent tube is known.

The easiest way to calculate an entire distribution curve with these equations

(assuming that p is known) is to first find rmax with Eq. (7.28). Next calculate Tnr

with Eq. (7.27) for one tube in the vicinity of rmax. Finally calculate the fractions of

solute in all surrounding tubes by means of Eq. (7.29). Figure 7.6 shows the results

of such a calculation for a typical separation of two solutes; it was assumed that

P1 ¼ 0:5, P2 ¼ 2:0, and R ¼ 1:00 for this system. In Fig. 7.6a the distribution of

each solute is shown after four transfers. In an actual experiment the tube contents

would be analyzed for total solutes present, and the experimental curve would

therefore represent the sum of the fractions of the individual solutes; this curve

is shown as the solid line in Fig. 7.6a. Separation is not yet apparent in this curve.

The individual distribution curves, however, show that a partial resolution has

occurred, with tubes 0 and 1 enriched in solute 1, tubes 3 and 4 enriched in solute

2, and tube 2 containing equal fractions of solutes 1 and 2.

Figure 7.6b shows the same system after 24 transfers. Separation of the solutes is

now apparent. Tubes 0–9 contain essentially only solute 1, whereas tubes 15–24

contain only solute 2. Portions of both solutes will be found in tubes 10–14. If

the experiment were extended to a larger number of transfers, a complete separation

could eventually be achieved. Note, however, that the width of the ‘‘zones,’’ or dis-

tribution curves, increases as the number of transfers increases.

In a real experimental situation, the quantity plotted on the vertical axis would

usually be an analytic quantity, such as weight of solute per tube, rather than the

fraction Tnr . It may be noted that from such an experimental distribution curve the

quantity rmax may be read and, by utilizing Eqs. (7.28) and (7.23), the partition

coefficient may be estimated.

The countercurrent distribution curve is not symmetric (unless p ¼ q), but as n

becomes larger, the curve approaches very closely a symmetric distribution.

The binomial distribution is a mathematical function that yields the probability

of ‘‘success’’ in what are known as Bernoulli trials. These are events, such a coin

tosses, in which there are only two possible outcomes (heads or tails). The analogy
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to CCD is that a molecule of solute has only two possible choices—it must take up

residence in either the upper phase or the lower phase. As the number of transfers

becomes very large, the discontinuous (i.e., stepwise) binomial distribution

approaches closely a continuous function, the normal distribution, which provides

for a faster means of calculating the CCD curve (Connors 1982, pp. 357–364).

PROBLEMS

7.1. Calculate the ideal entropy of mixing and free energy of mixing when 10.0 g

of benzene and 15.0 g of toluene are mixed at 25�C.

7.2. For alanine, log P (octanol/water) ¼ �2:94. For phenothiazine, log P ¼ 4:15.

Calculate the standard free energy changes for these phase transfer processes

at 25�C.

7.3. These are experimental partial pressures of benzene (B) and toluene (T) over

their solutions at 20�C:

0 2 4 6 8 10 12 14 16 18 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

21

Tnr

 (a)

21
Tnr

 (b)

0 2 4 6 8 10 12 14 16 18 20
0.0

0.1

0.2

0.3

0.4

Figure 7.6. Countercurrent distribution of two solutes in a system where P1 ¼ 0:5;P2 ¼ 2:0;

R ¼ 1:0: (a) distribution after 4 transfers; (b) distribution after 24 transfers. The calculated points

are connected by smooth curves, although in fact the distribution is discontinuous. [Reproduced
by permission from Connors (1987).]
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XB PB PT (mm)

0.00 0 22

0.27 18 17

0.44 34 12

0.55 41 11

0.67 49 8

1.00 75 0

7.3. Confirm the validity of Raoult’s law for this system by plotting the data. By

calculation determine the solution composition at which the partial pressures

of benzene and toluene are equal, and check your result on the graph you

have plotted. What is the total vapor pressure over the solution at this

composition?

7.4. These are partial pressures of chloroform over chloroform-acetone solutions at

35�C:

xðCHCl3Þ p (mm)

0.0 0

0.2 34

0.4 82

0.6 148

0.8 225

1.0 293

Plot the data, confirming the asymptotic approach to Raoult’s law in the nearly

pure chloroform, and the nonideal behavior in dilute solutions of chloroform.

Estimate the Henry’s law constant.

7.5. How many extractions are necessary to remove 99.9% of a drug from 30 mL of

an aqueous solution if it is extracted with 20 mL portions of ether and log P

(ether/water) ¼ 0:54?

7.6. (a) Consider the distribution of neutral weak acid HA between an organic

phase and an aqueous phase. Define the true partition coefficient as P ¼
[HA]org/[HA]aq. Presuming that the anion does not detectably partition

into the organic phase, derive this relationship between the true partition

coefficient P and the apparent partition coefficient Papp

Papp ¼
P½Hþ�
½Hþ� þ Ka

where Ka is the acid dissociation constant of HA, [Hþ] is the aqueous

phase concentration of hydrogen ion, and Papp is the ratio of total

concentrations of solute in the organic and aqueous phases.
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(b) Show how Papp is related to P at the limits of very low and very high

hydrogen ion concentration. How are P and Papp related when pH ¼ pKa?

(c) Calculate Papp as a function of pH for an acid having pKa ¼ 4.0 and for

which log P ¼ 1:00. Plot Papp against pH.

7.7. Consider a system consisting of a single solute partitioned among three

mutually immiscible phases A, B, and C, the system being at equilibrium.

(a) Define the three partition coefficients.

(b) Derive an equation relating one of the partition coefficients to the other

two.

(c) Derive an equation relating the fraction of solute in phase A to the

partition coefficients and the volumes of the two phases.

7.8. A mixture of three compounds was subjected to countercurrent distribution.

After 150 transfers, with each tube containing 5 mL of water and 5mL of ether,

the maxima in the CCD curve appeared at tubes 30, 75, and 120. Calculate the

partition coefficients of the three compounds.

NOTES

1. A solution having the compositon corresponding to either a maximum (Fig. 7.2a) or a

minimum (Fig. 7.2b) in the vapor pressure curve will distill as a constant boiling mixture of

constant composition, called an azeotrope. For instance, 95% alcohol is an azeotrope

containing 95.57% by weight (94.9% by volume) of C2H5OH:

2. A class of solutions called regular solutions is defined to have SE ¼ 0 and HE 6¼ 0, so that

entropically such solutions behave ideally, but they undergo nonideal energy changes.

Regular solutions are commonly formed from nonpolar components [see Hildebrandt et al.

(1970); see also Chapter 10 (below)].

3. Besides the phenomenon in which the solute distributes between the two phases, the upper

phase will be saturated with respect to the lower phase solvent, and vice versa. This mutual

saturation alters the solvent properties of the two phases, but it does not affect the

thermodynamic argument.

4. P (and therefore also log P) is a perfectly well-defined thermodynamic quantity. The concept

that log P is a measure of polarity is not a part of thermodynamics, however, and since this

concept, and othes like it, lie outside of thermodynamics, it is said to be extrathermodynamic.

5. From Eq. (7.18), cU ¼ PcL, which states that a plot of cU versus cL should be linear if P is a

constant independent of concentration. This plot is called a partition ordistribution isotherm.

A linear partition isotherm shows that P is independent of concentration.
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8

SOLUTIONS OF
ELECTROLYTES

8.1. COULOMBIC INTERACTION AND IONIC DISSOCIATION

An electrolyte is a substance that produces ions. Since the ions are charged species,

the force of interaction between them is a convenient starting point for our discus-

sion. The force of interaction between two particles having charges Q1 and Q2,

separated by distance r, is given by Coulomb’s law

F ¼ Q1Q2

4pEr2
ð8:1Þ

where E is a property of the medium, to be dealt with shortly. The potential energy

of interaction, V , is equal to the product of force and distance. The Coulombic

potential energy is therefore

V ¼ Q1Q2

4pEr
ð8:2Þ

Since the charge on an ion can be written as the product of its valence z (including

its sign) and the electronic charge e ðe ¼ 1:602� 10�19 CÞ, Eq. (8.2), for our

purposes, is equivalent to

V ¼ z1z2e2

4pEr
ð8:3Þ

For two ions of like charge, V and F are both positive and the force is repulsive,

whereas if the ions are of unlike charge, V and F are negative and are attractive.
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The zero of potential energy is taken to be when the ions are separated to infinity

(r ¼ 1).

The quantity E is called the permittivity, and it is best introduced through the

expression

Er ¼
E
E0

ð8:4Þ

where E0 is the permittivity of the vacuum and Er is called the relative permittivity.

Chemists, however, have traditionally referred to Er as the dielectric constant. The

relative permittivity or dielectric constant is measured as the electrical capacitance

of the medium (solvent) relative to the capacitance of the vacuum. It follows that Er

is a dimensionless number greater than one. Equation (8.3) is often written in the

form

V ¼ z1z2e2

4pE0Err
ð8:5Þ

The permittivity of the vacuum E0 has the value 8:854� 10�12 C2 J�1 m�1. Table 8.1

gives some dielectric constant values.

Example 8.1. Calculate the energy of the Coulombic interaction between a sodium

ion and a chloride ion, at contact distance, in vacuum and in water.

The ionic radii of Naþ and of Cl� (available in reference handbooks) are 0.95

and 1.81 Å, respectively, equivalent to an internuclear distance of r ¼ 2:76�
10�10 m. In vacuum

V ðvacuumÞ ¼ � ð1:602� 10�19 CÞ2

4pð8:854� 10�12 C2 J�1 m�1Þð1Þð2:76� 10�10 mÞ
¼ �8:36� 10�19 J

Table 8.1. Dielectric constants of some solvents

Solvent Er Solvent Er

n-Hexane 1.89 Methanol 32.6

Cyclohexane 2.02 Nitrobenzene 35

1,4-Dioxane 2.21 Acetonitrile 36.2

Benzene 2.28 N,N-Dimethylformamide 36.7

Diethyl ether 4.34 Ethylene glycol 37.7

Ethyl acetate 6.02 N,N-Dimethylacetamide 37.8

Acetic acid 6.19 Glycerol 42.5

n-Butyl alcohol 17.1 Dimethyl sulfoxide 49

i-Propyl alcohol 17.7 Formic acid 58

Acetone 20.7 Water 78.5

Ethanol 24.3 Formamide 110
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This is the energy of interaction between one Naþ and one Cl�. If we multiply by

Avogadro’s number to find the energy per mole of sodium chloride, we get

V ðvacuumÞ ¼ �504 kJ mol�1

¼ �120 kcal mol�1

a very strong interaction. In water Er ¼ 78:5, and the calculation gives

V ðwaterÞ ¼ �0:106� 10�19 J per ion pair

¼ �6:42 kJ mol�1

¼ �1:53 kcal mol�1

Example 8.1 shows that the dielectric constant of the medium markedly

influences the strength of the interionic interaction energy. The dielectric constant

is a measure of the ability of the medium to separate charges of unlike sign. (Not

coincidentally, the dielectric constant roughly parallels our chemical notion of sol-

vent polarity, and is often taken as a quantitative measure of polarity.) The larger

the dielectric constant, the easier two unlike charges can be separated. The high

dielectric constant of water is a manifestation of the very unusual nature of water

as a solvent. In fact, the classification of electrolytes into the categories of strong

electrolytes (i.e., essentially completely dissociated into ions in solution) and weak

electrolytes (incompletely dissociated) is based on the use of water as the solvent.

Substances that are strong electrolytes in water act as weak electrolytes in low

dielectric constant solvents.1 Let us pursue this issue by writing Eq. (8.6) for an

electrolyte, schematically denoted AB, when dissolved in a solvent:

AB
ionization

AþB�
dissociation

Aþ þ B� ð8:6Þ

Ionization is the production of ions,2 and dissociation is the separation of species

(whether ionic or uncharged). The extent of ionic dissociation is reasonably

described by Coulomb’s law. This is why we do not distinguish between ionization

and dissociation for aqueous solutions; because water’s dielectric constant is quite

large, the force between ions is relatively small, and as soon as ions form, they

dissociate. Ion pairs (the species Aþ B�) are seldom detectable in water. But in sol-

vents of low dielectric constant (typically with Er values less than �25), the extent

of dissociation is reduced, as may be demonstrated by repeating Example 8.1 with

some different Er values. Glacial acetic acid (the term ‘‘glacial’’ simply means

essentially pure in this context) is an important analytical solvent that has been

carefully studied. Because of its low dielectric constant, ion-pairs can be detected

in acetic acid solutions. Letting HOAc represent acetic acid (since acetic acid is

CH3COOH, the symbol Ac represents the acetyl group CH3CO), a solute acid

HX reacts according to

HXþ HOAcÐ H2OAcþX� Ð H2OAcþ þ X�
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In this scheme HOAc is acting to solvate the hydrogen ion, and H2OAcþ in acetic

acid is analogous to H3Oþ in water. For convenience we usually omit the solvent,

writing simply

HXÐ Hþ X� Ð Hþ þ X� ð8:7Þ

Now, in the conventional manner we define an ionization constant Ki and a disso-

ciation constant Kd as follows, using Eq. (8.7) as the defining reaction.

Ki ¼
½HþX��
½HX� ð8:8Þ

Kd ¼
½Hþ�½X��
½HþX�� ð8:9Þ

Next we define an overall dissociation constant KHX; we place all dissociated

species in the numerator and all undissociated species in the denominator:

KHX ¼
½Hþ�½X��

cHX

ð8:10Þ

where cHX ¼ ½HX� þ ½HþX��. In these equations brackets signify molar concentra-

tions. Combining Eqs. (8.8)–(8.10) gives

KHX ¼
KiKd

1þ Ki

ð8:11Þ

Similar equations can be written for bases and for salts. One of the consequences is

that the pH, which in water is the controlling factor in acid–base equilibria, does not

play a comparable role in glacial acetic acid. This is because very little of the acidic

species is present as dissociated Hþ; most of the acid is in the undissociated

form cHX.

8.2. MEAN IONIC ACTIVITY AND ACTIVITY COEFFICIENT

Let us now consider a strong electrolyte, such as a salt in aqueous solution. The

solute is completely dissociated into its constituent ions according to

MpXq Ð pMqþ þ qXp� ð8:12Þ

where p and q denote the number of positive and negative ions, respectively,

generated by one molecule of the salt. The following development is motivated

by the impossibility of separately varying and studying the cations and the anions;

electroneutrality dictates that only their combination in the ratio p=q can be

manipulated.
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We will adopt the infinite dilution Henry’s law reference state in the molar

concentration scale for all species. Then we can write for the cation and the anion

mþ ¼ m�þ þ RT ln aþ ð8:13aÞ
m� ¼ m�� þ RT ln a� ð8:13bÞ

and for the solute as a whole

m2 ¼ m�2 þ RT ln a2 ð8:14Þ

Now we postulate (assuming complete dissociation)

m2 ¼ pmþ þ qm� ð8:15Þ

and analogously

m�2 ¼ pm�þ þ qm�� ð8:16Þ

Simple algebraic combination of Eqs. (8.13)–(8.16) yields

a2 ¼ a
p
þaq
� ð8:17Þ

We define n as the number of ions generated by one molecule of solute, so

n ¼ pþ q ð8:18Þ

It is now conventional to define the mean ionic activity a
 by an

 ¼ a2, giving the

following, from Eq. (8.17):

an

 ¼ a

p
þaq
� ð8:19Þ

A self-consistent set of relations is obtained by making these further definitions; the

mean ionic activity coefficient is

gn
 ¼ gp
þg

q
� ð8:20Þ

and the mean ionic molarity is

cn
 ¼ c
p
þcq
� ð8:21Þ

so that we can write

a
 ¼ g
c
 ð8:22Þ
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The significance of these relationships is easiest to comprehend for the simplest

case of a 1 : 1 electrolyte such as NaCl. For this case p ¼ 1; q ¼ 1; n ¼ 2, and

we write from the foregoing

a2

 ¼ aþa� ð8:23aÞ

g2

 ¼ gþg� ð8:23bÞ

c2

 ¼ cþc� ð8:23cÞ

Although we separately know cþ and c� from c2, the solute concentration, we can-

not separately determine gþ; g�; aþ, and a�. The effect of the definitions given

above is to assign the extent of nonideality equally (when p ¼ q) to the cation

and the anion.

Example 8.2

(a) What is the mean ionic molarity of an aqueous solution 0.15 M in sodium chlor-

ide? Since sodium chloride is completely dissociated, cþ ¼ 0:15 M and

c� ¼ 0:15 M, giving, from Eq. (8.23c), c
 ¼ 0:15 M.

(b) What is the mean ionic molarity of an aqueous solution 0.25 M in K2SO4? For

this system p ¼ 2; q ¼ 1; n ¼ 3. The concentration of potassium ions, cþ, is

0.50 M and c�, the concentration of sulfate ions, is 0.25 M. From Eq. (8.21), we

have

c3

 ¼ ð0:50Þ2ð0:25Þ

c
 ¼ 0:397 M

8.3. THE DEBYE–HÜCKEL THEORY

In an infinitely dilute solution each solute ion is resident in an environment that

consists effectively only of the solvent (which we continue to treat as a continuum).

In such a situation the ion is free to exert whatever effects are characteristic of its

identity, unperturbed by other solute species; it is in its Henry’s law reference state,

and it behaves ideally.

If the ionic concentration of the solution is raised, either by increasing

the concentration of the solute of interest or by adding ions of a different electrolyte

solute, the environment of our ion changes. As the ionic concentrations increase,

the distance between ions decreases, and the Coulombic interaction energies

come into play. Ions of like charge tend to repel each other, and ions of unlike

charge attract each other. The consequence of these interactions is that instead of

a random distribution of ions throughout the solution, an ionic atmosphere develops

such that the volume centered on a cation possesses a net negative charge, whereas

the volume centered on an anion possesses a net positive charge (of course, the

solution as a whole is electrically neutral). These charge distributions, constituting
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perturbations of the infinite dilution environment, are manifested in solute behavior

that we interpret as nonideal, and that we measure in terms of a mean ionic activity

coefficient.

In 1923 Debye and Hückel developed a quantitative theory of this ionic

atmosphere effect. Although the Debye–Hückel theory is not itself part of thermo-

dynamics, its final result has been absorbed into thermodynamics, and it is routinely

used to interpret and to predict nonideal behavior in electrolyte solutions. The

Debye–Hückel equation is written

Log g
 ¼ �
Ajzþz�j

ffiffi
I
p

1þ aB
ffiffi
I
p ð8:24Þ

where A and B are constants whose values depend on the dielectric constant and the

temperature, and a is closely related to an ionic radius. The quantity I is the ionic

strength and is defined by Eq. (8.25), where ci is the molar concentration of ion i

and zi is its charge.

I ¼ 1
2

X
ciz

2
i ð8:25Þ

In Eq. (8.24), zþ and z� are the (absolute values of the) charges on the electrolyte of

interest; in Eq. (8.25), the ci and zi include all the ions in the solution.

For aqueous solutions at 25�C, Eq. (8.24) takes the specific form

Log g
 ¼ �
0:509jzþz�j

ffiffi
I
p

1þ
ffiffi
I
p ð8:26Þ

and at very low ionic strengths Eq. (8.26) approaches Eq. (8.27), which is known as

the Debye–Hückel limiting law:

Log g
 ¼ �0:509jzþz�j
ffiffi
I
p

ð8:27Þ

Example 8.3. What is the ionic strength of (a) a solution 0.10 M in NaCl and

0.05 M in HCl; (b) a solution 0.25 M in K2SO4?

(a) cNAþ ¼ 0:10 M; cHþ ¼ 0:05 M; cCl� ¼ 0:15 M; z2
i ¼ 1 for all ions. From

Eq. (8.25), we have

I ¼ 1
2
ð0:10þ 0:05þ 0:15Þ ¼ 0:15 M

The ionic strength of a solution of 1 : 1 electrolytes is equal to the total solute

concentration.

ðbÞ cKþ ¼ 0:50 M; zKþ ¼ þ1; cSO2�
4
¼ 0:25 M; zSO2�

4
¼ �2

I ¼ 1
2
ð0:50� 1þ 0:25� 4Þ ¼ 0:75 M
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The ionic strength of a solution containing polyvalent ions reflects the dominant

effect of the square of the charge on the ionic atmosphere. Notice that the

concentrations of Hþ and OH� arising from the dissociation of water are not

included in the calculation because they make a negligible contribution to the

ionic strength.

Example 8.4. Calculate the mean ionic activity coefficient of a 1 : 1 electrolyte at

concentrations of 0.001, 0.010, and 0.10 mol L�1, in water at 25�C. Use the Debye–

Hückel equation in the form of Eq. (8.26), and also the limiting law, Eq. (8.27).

From the given data, zþ ¼ þ1; z� ¼ �1, so jzþz�j ¼ 1, and I ¼ c, the molar

concentration. These results are found:

g

————————————

c ðMÞ Eq. (8.26) Eq. (8.27)

0.001 0.965 0.964

0.010 0.899 0.889

0.100 0.756 0.690

The results in Example 8.4 show that the limiting law and the full Debye–Hückel

equation agree closely in extremely dilute solution, but they begin to differ signifi-

cantly in the concentration region of �0.01 M (i.e., when
ffiffi
I
p
¼ 0:1). Above this

ionic strength Eq. (8.26) is necessary, but even this equation fails to agree closely

with experimental results at ionic strengths above about 0.05 M, where effects

specific to each electrolyte are observed. Table 8.2 lists some experimentally

determined mean ionic activity coefficients.3 We expect, from the appearance of

the product jzþz�j in the Debye–Hückel equation, that different charge types of

Table 8.2. Mean ionic activity coefficients in water at 25�C

g

———————————————————————————————

m HCl NaCl CaCl2 ZnSO4

0.001 0.966 0.966 0.888 0.734

0.005 0.928 0.929 0.789 0.477

0.01 0.905 0.904 0.732 0.387

0.02 0.875 0.875 0.669 0.298

0.05 0.830 0.823 0.584 0.202

0.1 0.796 0.778 0.531 0.148

0.2 0.767 0.732 0.482 0.104

0.5 0.757 0.679 0.457 0.063

1.0 0.809 0.656 0.509 0.044

2.0 1.009 0.670 0.807 0.035

3.0 1.316 0.719 1.55 0.041

Source: Data from Glasstone (1947, p. 402).
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electrolytes will behave differently, and this is seen. However, it is also observed

that electrolytes of the same charge type display behavior characteristic of the

individual electrolyte; compare HCl and NaCl in Table 8.2. Empirical extensions

of the Debye–Hückel equation have been proposed of the form (at 25�C in water)

Log g
 ¼ �
0:509jzþz�j

ffiffi
I
p

1þ aB
ffiffi
I
p þ CI ð8:28Þ

where the parameters aB and C are chosen to best fit the experimental data.

Figure 8.1 is a plot of the data from Table 8.2 in a format consistent with the

manner in which the Debye–Hückel equation is written, that is, as a plot of

log g
 against
ffiffi
I
p

. Figure 8.1 shows several interesting features. The individual

character of the nonideal behavior is clearly evident in the curves for HCl and

NaCl. The minima observed in these curves is not predicted by the Debye–Hückel

equation, and in some instances the mean ionic activity coefficients rise to values

greater than unity. From the limiting law, Eq. (8.27), we can predict the slope of the

plot for each charge type of electrolyte at infinite dilution, and these slopes are

drawn in Fig. 8.1. The Debye–Hückel limiting law gives a satisfactory account

of nonideal electrolyte behavior in very dilute solutions.

The Debye–Hückel theory finds very practical application in obtaining thermo-

dynamic acid dissociation constants for weak acids and bases. An apparent constant

is measured experimentally at, necessarily, finite ionic strength, and the theory is

used to correct the value to zero ionic strength. This calculation is described in

Chapter 13. One powerful consequence of the Debye–Hückel theory is that it

provides a firm theoretical basis for the extrapolation of electrolyte experimental

I
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Figure 8.1. Plot of data in Table 8.2. Limiting law slopes are drawn for 1 : 1, 1 : 2, and 2 : 2

electrolytes.
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data to infinite dilution; the appropriate independent variable is the square root of

the ionic strength.

PROBLEMS

8.1. Write the reactions for ionization and dissociation of a base B in glacial acetic

acid.

8.2. Calculate the ionic strengths of these three solutions (from Table 8.2): 3:0 m

NaCl; 3:0 m CaCl2; 3:0 m ZnSO4.

8.3. Calculate the mean ionic activity coefficient of 0.05 m NaCl in water at 25�C,

and compare your result with the experimental value in Table 8.2.

8.4. Estimate the mean ionic activity of 0.001 M HCl in an aqueous solution

containing 0.025 M KCl at 25�C.

8.5. Calculate the ionic strength of a solution containing 0.10 M Na3PO4 and

0.05 M KBr.

8.6. Obtain an estimate of the parameter C in Eq. (8.28) for CaCl2 by use of the

data in Fig. 8.1. [Hint: find the derivative d log g
=d
ffiffi
I
p

of Eq. (8.28), set equal

to zero (at the minimum), and solve for C.]

NOTES

1. The dielectric constant is a bulk property of matter, and its incorporation into Coulomb’s law

means that we are treating the solvent as a continuum; that is, the molecular (particulate)

nature of the solvent is ignored in this treatment.

2. The molecular interpretation of the ionization process may be complex, and will depend on

the molecular identity. One possibility is that two kinds of ion pairs may form. One of these,

represented AþB�, is an intimate ion pair; the other, shown as AþSB�, where S is a molecule

of solvent, is a solvent-separated ion pair.

3. See Glasstone (1947, p. 402). These activity coefficients can be measured in various ways.

One approach is to measure the derivation from ideality of the solvent, and to relate this to the

nonideality of the solute.
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9

COLLIGATIVE
PROPERTIES

Several properties of solutions depend (mainly) only on the number of solute par-

ticles (molecules or ions) and not on their identity. These are called the colligative

properties. They are pharmaceutically relevant.

9.1. BOILING POINT ELEVATION

The boiling point of a solution of a nonvolatile solute is higher than is the boiling

point of the pure solvent. This observation is readily explicable on the following

basis. The normal boiling point Tb of the solvent is the temperature at which its

vapor pressure is equal to 1 atm. When a solute is incorporated into the solvent,

according to Raoult’s law the vapor pressure over the solution is p1 ¼ x1P�1
[Eq. (7.1)]. (We will use subscript 1 to designate the solvent and 2 for the solute.)

Since x1 þ x2 ¼ 1, an increase in x2 results in a decrease in x1 and therefore a

decrease in p1, at a given temperature. In order to cause the solvent to boil, it is

now necessary to raise the temperature until p1 becomes 1 atm. This phenomenon

is known as the boiling point elevation, and it is seen to be a consequence of the

vapor pressure lowering by the presence of solute particles. As ordinarily discussed,

the boiling point elevation is treated as a phenomenon of nonelectrolyte solutions,

but solutions of electrolytes show the same effect. It is necessary to keep in mind

that the number of solute particles (i.e., their concentration) is the controlling factor,

and if the solute is an electrolyte, the number of particles depends on the charge

type and the extent of dissociation. For example, in a 0.10 M aqueous solution of

NaCl the effective concentration, as concerns the colligative properties, is 0.20 M.

A thermodynamic description of the boiling point elevation effect can be

achieved by the application of concepts that we have already developed. At
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equilibrium (i.e., at the boiling point), the chemical potential of the solvent is equal

in the vapor and liquid phases:

m1ðgÞ ¼ m1ðlÞ ð9:1Þ

By restricting attention to dilute solutions we can treat the solution as an ideal

solution, writing

m1ðlÞ ¼ m�1ðlÞ þ RT ln x1 ð9:2Þ
m1ðgÞ ¼ m�1ðgÞ þ RT ln p1 ð9:3Þ

Setting these equal, noting that p1 ¼ 1 atm at the boiling point, and writing

�G�vap ¼ m�1ðgÞ � m�1ðlÞ gives

�G�vap ¼ RT ln x1 ð9:4Þ

Putting Eq. (9.4) into the form �G�vap=T ¼ R ln x1 and applying the Gibbs–Helmboltz

equation [Eq. (3.18)] leads to

d ln x1

dT
¼ �

�H�vap

RT2
ð9:5Þ

where constant pressure is understood.1

When x1 ¼ 1, T ¼ Tb (the normal boiling point). Equation (9.5) is integrated

between the limits shown:

ðx1

1

d ln x1 ¼ �
�H�vap

R

ðT

Tb

dT

T2

The result is

ln x1 ¼ �
�H�vap

R

1

Tb

� 1

T

� �

which can be written

ln x1 ¼ �
�H�vap

R

T � Tb

T Tb

� �
ð9:6Þ

Now define the boiling point elevation as �Tb ¼ T � Tb, and, since T and Tb are

quite close together, approximate T Tb by T2
b. Making these substitutions in Eq. (9.6)

gives

ln x1 ¼ �
�H�vap�Tb

RT2
b
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Since x2 is small (the solution is dilute), we write2 ln x1 ¼ ln ð1� x2Þ � �x2. We

also convert x2, the mole fraction of solute, to m2, the molality of solute, with

x2 ¼ m2M1=1000, where M1 is the molecular weight of solvent [Eq. (5.2)]. The

final result of these substitutions is

�Tb ¼
RT2

b M1m2

1000�H�vap

ð9:7Þ

which can be written �Tb ¼ Kbm2, where

Kb ¼
RT2

b M1

1000�H�vap

ð9:8Þ

The proportionality constant Kb is called the boiling point elevation constant or

the ebullioscopic constant. Note that Kb can be calculated solely from properties

of the solvent, and that �Tb depends only on the identity of the solvent and the

concentration (not the identity) of the solute.

Example 9.1. The heat of vaporization of water is 9.717 kcal mol�1 at its boiling

point. Calculate the ebullioscopic constant of water:

Kb ¼
ð1:987 cal mol�1K�1Þð373:15 KÞ2ð18:02 g mol�1Þ

ð1000Þð9717 cal mol�1Þ
¼ 0:513 K g mol�1

The result in Example 9.1 may appear to say that the boiling point of a 1 m solution

will be raised 0.513 K, but of course a 1 m solution lies outside the dilute solution

range where this equation is valid.3

9.2. FREEZING POINT DEPRESSION

We have seen in Chapter 6 that the freezing point (melting point) of a two-component

system is lowered (relative to a pure substance). A simple quantitative treatment can

be based on the assumption that the solute does not dissolve in solid solvent; then

the solid that forms is pure solvent. The method is identical in form with that used

for the analysis of the boiling point elevation; we replace the chemical potential of

the gaseous solvent with that of the solid solvent. The result can be written

�Tf ¼ Kfm2 ð9:9Þ

where �Tf ¼ Tf � T and

Kf ¼
RT2

f M1

1000�H�f
ð9:10Þ
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where �H�f is the heat of fusion and Kf is the cryoscopic constant or freezing point

depression constant.

Example 9.2. The heat of fusion of water is 6.01 kJ mol�1. Calculate the freezing

point depression constant of water:

Kf ¼
ð8:314 J mol�1 K�1Þð273:15 KÞ2ð18:02 g mol�1Þ

ð1000Þð6010 J mol�1Þ
¼ 1:86 K g mol�1

9.3. OSMOTIC PRESSURE

Consider the experimental arrangement in Fig. 9.1, which shows a solvent compart-

ment (left) and a compartment containing a dilute solution of the same solvent

(right), the two compartments separated by a semipermeable membrane, which

permits the passage of solvent molecules but prevents the passage of solute

molecules. The presence of solute in the right-hand compartment reduces the

mole fraction of solvent in that compartment, and thereby reduces its activity

and chemical potential below their values in the pure solvent in the left-hand

compartment.

In order to achieve equilibrium, the chemical potential of the solvent must be

equal on both sides of the membrane. There is thus a driving force for the passage

of solvent molecules from left to right. (Although it is actually the chemical poten-

tial difference that is responsible for this effect, as it can also be rationalized as a

simple concentration effect, as the solvent concentration is higher on the left.) The

flow of solvent from left to right continues until it is opposed by the backpressure

generated by the increased height of solution in the right-hand column. (Or

Figure 9.1. Principle of osmosis and the osmotic pressure p.
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alternatively, the experiment can be arranged so as to apply an excess pressure to

the right until the flow of solvent is exactly balanced.) This phenomenon of the

passage of solvent through a semipermeable membrane under the influence of a

difference in chemical potentials is called osmosis, and the excess pressure (p in

Fig. 9.1) that equalizes the chemical potentials is the osmotic pressure.

Our thermodynamic analysis of osmosis begins with the statement of osmotic

equilibrium

m�1ðP; TÞ ¼ m1ðPþ p; T ; x1Þ ð9:11Þ

where the left side of the equation refers to pure solvent (the left-hand compartment

in Fig. 9.1) and the right side, to the solution. The parentheses contain the variables

controlling the particular quantities, in order to make explicit how the two sides

differ. We assume that the solution is dilute and behaves ideally. Then, on expand-

ing m1 in the usual manner, Eq. (9.11) becomes

m�1ðP; TÞ ¼ m�1ðPþ p; TÞ þ RT ln x1 ð9:12Þ

where now m�1ðPþ p; TÞdesignates the chemical potential of pure solvent at

pressure Pþ p. We now develop this quantity as in

m�1ðPþ p; TÞ ¼ m�1ðP; TÞ þ
ðPþp

P

V1 dP ð9:13Þ

where V1 is the molar volume of solvent [Eq. (3.6)]. Putting Eq. (9.13) into

Eq. (9.12) results in

ðPþp

P

V1 dP ¼ �RT ln x1 ð9:14Þ

Treating V1 as independent of pressure and integrating yields

pV1 ¼ �RT ln x1 ð9:15Þ

Using once again (see note 2) the approximation (for dilute solution) that

ln x1 ¼ �x2, Eq. (9.15) becomes pV1 ¼ x2 RT . Now, x2 ¼ n2=ðn1 þ n2Þ, which in

dilute solution is nearly equal to the mole ratio n2=n1. This gives

p n1V1 ¼ n2 RT ð9:16Þ

The product n1V1 ¼ V , the total volume of the solution, or

pV ¼ n2 RT ð9:17Þ
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The formal resemblance of Eq. (9.17) to the ideal-gas law is obvious. We can take

one further step by noting that the ratio n2=V is the molar concentration c2 of the

solute:

p ¼ c2 RT ð9:18Þ

Example 9.3. Calculate the osmotic pressure of an 0.01 M solution at 25�C. Since

we find it convenient to express pressure in atmospheres, we use R as 0.08206 L atm

mol�1 K�1. From Eq. (9.18), we have

p ¼ ð0:01 mol L�1Þð0:08206 L atm mol�1 K�1Þð298:15 KÞ
¼ 0:245 atm

Example 9.3 shows that osmosis is a very sensitive effect, much more so than are

the other colligative properties. This same solution would exhibit a boiling point

elevation of 0.0051 K (Example 9.1) and a freezing point depression of 0.0186 K

(Example 9.2). This sensitivity forms the basis of an experimental method, called

osmometry, for measuring molecular weights of solutes. Solutions are prepared with

known concentrations in grams per liter (g L�1) and their osmotic pressures are

measured. From Eq. (9.18) the corresponding molar concentration c2 is calculated.

Since c2 has the units mol L�1 and mol ¼ g=M2 (where M2 is the molecular weight

of the solute), the quantity M2 can be obtained. In practice deviations from ideality

must be taken into account (Atkins 1994, p. 229).

9.4. ISOTONICITY CALCULATIONS

Body membranes, including cell membranes, are semipermeable membranes to

some degree. They are generally permeable to water and are impermeable, or nearly

so, to many (but obviously not all) solutes. Thus we anticipate the existence of

osmotic pressure differences across these membranes. It is known that irritation

caused by foreign solutions is in part related to their osmotic pressure; the closer

the osmotic pressure of an administered solution is to that of the physiological solu-

tion on the other side of the membrane, the less the discomfort that is experienced.

Two solutions are said to be isoosmotic if they have the same osmotic pressure.

Isoosmoticity is therefore a physical property, based on the thermodynamic concept

of Section 9.3. A solution is said to be isotonic if it has the same osmotic pressure as

a reference body fluid, measured with respect to the appropriate body membrane.

Isotonicity is therefore a physiological concept. It is possible for a pair of solutions

to be both isoosmotic and isotonic, but they need not be, as when the biological

membrane is not perfectly impermeable to the solute. For example, 1.9%

boric acid solution (in water, the solvent for all solutions in this section) is both

isoosmotic and isotonic with respect to the eye, because the corneal membrane is

impermeable to boric acid. On the other hand, 1.9% boric acid is isoosmotic with
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the red blood cell contents, but it is not isotonic toward this biological medium,

because the red blood cell membrane is permeable to boric acid. (Boric acid is often

used to render ophthalmic solutions isotonic.)

A solution having an osmotic pressure greater than that of physiological fluids is

hypertonic; if its osmotic pressure is less than that of physiological fluids, it is

hypotonic. Consider a red blood cell surrounded by a hypertonic solution. Since

the osmotic pressure of the surrounding solution is greater than that inside the

cell (i.e., the water activity is less outside than inside the cell), water will flow

out of the cell, which shrinks and shrivels. If the red blood cell should be immersed

in a hypotonic solution, water will flow into the cell, which swells and may burst.

The goal of rendering pharmaceutical solutions isotonic is directed toward prevent-

ing or minimizing such physiological consequences.

Experimental work has shown that the freezing point of human blood

is �0.52�C. We consider that all other physiological fluids are effectively in

equilibrium with blood, and so they are isotonic with blood. Although we saw

that osmotic pressure is the most sensitive of the colligative properties, the freezing

point depression is much the easiest to measure, and so it forms the basis of all

isotonicity calculations. Here we will describe the simplest of these, called straight-

forwardly the freezing point depression method. For other methods the literature

may be consulted (Thompson 1998, Chapter 10; Windholz 1983, pp. MISC-47–

MISC-69; Reich et al. 2000). The basis of the method is the assumption that

contributions to the freezing point depression from multiple solutes are additive, and

so the goal of the calculation is to achieve a freezing point depression of �0.52�C.

Example 9.4. Estimate the concentration of sodium chloride required to produce

an isotonic aqueous solution.

The calculation is based on Eq. (9.9), �Tf ¼ Kfm2, with Kf ¼ 1:86�C (see

Example 9.2). We seek �Tf ¼ 0:52�C hence we need m2 ¼ 0:52=1:86 ¼ 0:28.

But NaCl is a 1 : 1 strong electrolyte, so each molecule yields two particles on

dissociation; therefore we actually need prepare a solution 0:28=2 ¼ 0:14 m.

Commonly this molal concentration is expressed as a molar concentration, neglec-

ting the difference; to obtain 0.14 M NaCl, whose molecular weight is 58.5, we take

(0.14) (58.5)¼ 8.19 g L�1, or 0.82 g/100 mL, which is 0.82%.

Experimentally it is observed that a solution 0.5% in NaCl exhibits a freezing

point depression of 0.289�C. Setting up the proportion

0:289�C

0:5%
¼ 0:52�C

x

we find x ¼ 0:9% NaCl. The slight discrepancy with the result in Example 9.4

probably is a consequence of nonideal solution behavior. An aqueous solution

containing 0.9% (w/v) sodium chloride is isotonic. This solution is called normal

saline or physiological saline.

Because of nonideal solution behavior or incomplete electrolyte dissociation, it

is preferable to make use of published freezing point depression data. However, if
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such data are not available, a very reasonable calculation can be based on the known

Kf value of 1.86 together with chemical knowledge of the nature of the solute.

Example 9.5. Give directions for the preparation of 100 mL of isotonic 1%

hexamethonium tartrate. The following data are available (Windholz 1983,

pp. MISC-47–MISC-69; Reich et al. 2000):

Concentration �Tf

0.5 0.045

1 0.089

2 0.181

3 0.271

5 0.456

We set up the problem in tabular form:

Desired �Tf value 0.52�C
�Tf of 1% of drug 0.089�C

————

Difference to be made up 0.431�C

We will use NaCl to make the solution isotonic. From the proportion

0:9%

0:52�C
¼ x

0:431�C

we find x ¼ 0:75%. Therefore we proceed by dissolving 1.0 g of hexamethonium

tartrate and 0.75 g of NaCl in enough water to make 100 mL.

If data are not available for the concentration we require, interpolation or

extrapolation may give the information.

Example 9.6. Prepare 2 oz of 2% isotonic imipramine hydrochloride.

Sources give �Tf ¼ 0:058�C at 0.5% and 0.110�C at 1%. We can plot these data as

in Fig. 9.2 and obtain the estimate �Tf ¼ 0:225�C at 2%. (Extrapolation is risky,

but it may be our best recourse.) We proceed as before:

Desired �Tf value 0.52�C
�Tf of 2% of drug 0.225�C

————
Difference to be made up 0.295�C

Again using NaCl, we obtain

0:9%

0:52�C
¼ x

0:295�C

x ¼ 0:51%
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If we needed to prepare 100 mL of the solution we would take 2.0 g of drug and

0.51 g of NaCl. However, only 2 oz (60 mL) of solution is required, so we take

( 60
100

) (2)¼ 1.2 g of drug and ( 60
100

) (0.51)¼ 0.31 g of NaCl in enough water to

make 60 mL.

If the prescription calls for more than one drug, the �Tf contributions of the several

drugs are summed. In ophthalmic solutions boric acid may be used to make the

solution isotonic; 1.9% boric acid solution is isotonic.

Although the several alternative methods of isotonicity calculation are all

derived from the freezing point depression method, one of these approaches merits

comment because of its simplicity and utility. The principle is as follows. If two

isotonic solutions are mixed, the resulting solution is isotonic. For example, if

the prescribed amount of drug is dissolved in just enough water to make an isotonic

solution, this solution could be diluted to the desired volume with normal saline and

the result will be isotonic. The United States Pharmacopeia gives formulas for

isotonic phosphate buffer solutions that can be used in this way, particularly for

ophthalmic solutions.

PROBLEMS

9.1. Starting with Raoult’s law, show that the extent of vapor pressure lowering is

directly proportional to solute concentration.

9.2. Calculate the boiling point elevation constant of ethanol, whose heat of

vaporization is 38.6 kJ mol�1.

9.3. Calculate the freezing point depression constant of glacial acetic acid, whose

heat of fusion is 11.7 kJ mol�1.

conc. (%)

0.0 1.0 2.0
0.00

0.05

0.10

0.15

0.20

0.25

∆T
f

Figure 9.2. Freezing point depression of hexamethonium tartrate. See Example 9.5.
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9.4. Give directions for the preparation of this ophthalmic solution; �Tf for 2%

pilocarpine nitrate is 0.247:

Pilocarpine nitrate 2%

Make isotonic with boric acid

Qs ad 1 oz

9.5. Estimate �Tf of 5% dextrose solution. Dextrose (glucose) is available as the

monohydrate, MW 198.2. What concentration of dextrose will yield an

isotonic solution?

NOTES

1. �Gvap ¼ m1 ðgÞ � m1ðlÞ ¼ 0, since the system is at equilibrium, but�G�vap ¼ m�1ðgÞ � m�1ðlÞ
is not zero; it is the standard free-energy change. It is therefore correct to label the enthalpy

change �H�vap. However, �H�vap is numerically identical to �Hvap, which appears in the

Clausius–Clapeyron equation [Eq. (4.11)]. The reason for this equality is that we have

postulated ideal solution behavior, and for the ideal solution, the enthalpy of mixing is zero

(Section 7.1). Consequently there is no enthalpy change on bringing the solution from x1 ¼ 1

to x1 < 1.

2. We are using the series expansion ln ð1� xÞ ¼ �xþ x2=2� x3=3þ 	 	 	.
3. Some discrepancies in the form of Eq. (9.8) for kb will be noted in the literature. some authors

(Williamson 1967, p. 102; Atkins 1994, p. 229) omit the factor 1000 in the denominator.

Others (Smith 1977, p. 90; Gupta 2000) include the 1000, and assign Kb the unit K. The

distinction lies in the units given to the molality m2, that is, whether molality has the units

mol kg�1 or mol (1000) g�1, or is considered to be a dimensionless number.
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10

SOLUBILITY

10.1. SOLUBILITY AS AN EQUILIBRIUM CONSTANT

The topic of solubility merits special attention because of its great importance in

pharmaceutical systems. We can generally anticipate that a drug must be in solution

if it is to exert its effect. Typically the type of system we encounter is a pure solid

substance (the solute) in contact with a pure liquid (the solvent). We allow

equilibrium to be achieved at fixed temperature and pressure, such that at equili-

brium the system consists of (excess) pure solid phase and liquid solution of solute

dissolved in solvent. According to Gibbs’ phase rule, P ¼ 2 and C ¼ 2, so

F ¼ C � Pþ 2 ¼ 2 degrees of freedom. These are the temperature and pressure,

which we have specified as fixed. Thus there remain no degrees of freedom;

the system is invariant. This means that at fixed temperature and pressure, the con-

centration of dissolved solute is fixed. We call this invariant dissolved concentration

the equilibrium solubility of the solute at this pressure and temperature. (We say

that the solution is saturated.) Our present concern is with how the equilibrium

solubility depends on the temperature and on the chemical natures of the solute

and the solvent.

Expressed as a reaction, the dissolution process is

Pure solute Ð solute in solution

At equilibrium the chemical potentials of the solute in the two phases are equal, or,

letting component 1 be the solvent and component 2 the solute

m2 ðsolidÞ ¼ m2 ðsolnÞ
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Writing out the chemical potentials gives

m�2 ðsolidÞ þ RT ln a2 ðsolidÞ ¼ m�2 ðsolnÞ þ RT ln a2 ðsolnÞ ð10:1Þ

where the standard state of the solid is the pure solid, and we will adopt as the

standard state of the solute in solution the Henry’s law definition on the molar

concentration scale. Rearranging Eq. (10.1) leads to

�m� ¼ �RT ln
a2 ðsolnÞ
a2ðsolidÞ ð10:2Þ

where �m� ¼ m�2 ðsolnÞ � m�2 ðsolidÞ. But the solid is in its standard state, so

a2 ðsolidÞ ¼ 1:0 by definition, and we obtain

�m� ¼ �RT ln a2 ðsolnÞ ð10:3Þ

We have seen that a2 ðsolnÞ is invariant—it is the activity corresponding to

the equilibrium solubility—so comparison of Eq. (10.3) with the fundamental

thermodynamic result

�G� ¼ �RT ln K ð10:4Þ

leads to the conclusion that a2 ðsolnÞ, the activity of the solute in a saturated

solution, must have the character of an equilibrium constant. As a consequence,

we can evaluate standard free energy, enthalpy, and entropy changes for the solution

process in the usual manner (Chapter 4). These quantities are respectively called the

free energy, heat, and entropy of solution.

For nonelectrolyte solutes, particularly those of limited solubility, so that the

saturated solution is fairly dilute, it will be acceptable to approximate the activity

a2 ðsolnÞ by the equilibrium solubility concentration. This is usually in molar

concentration units, and is often symbolized s.

10.2. THE IDEAL SOLUBILITY

A thermodynamic argument can predict the equilibrium solubility of a nonelectro-

lyte, provided it dissolves to form an ideal solution. Ideal behavior does not mean

that intermolecular interactions are absent. On the contrary, solids and liquids

would not exist without the intermolecular forces of interaction. In the present

context, ideal behavior means that the energy of interaction between two solvent

molecules is identical to that between one solvent and one solute molecule, so

that a solvent molecule may be replaced with a solute molecule without altering

the intermolecular energies. (This requires that the solvent and solute molecules

have the same size, shape, and chemical nature, a demanding set of limitations.)
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Quantitatively, an ideal solution can be defined as one having the following proper-

ties (Chapter 7):

�Hmix ¼ 0 ð10:5Þ
�Vmix ¼ 0 ð10:6Þ
�Smix ¼ �Rðx1 ln x1 þ x2 ln x2Þ ð10:7Þ

According to Eqs. (10.5) and (10.6), there is no heat or volume change on mixing

the solute and solvent in an ideal solution, and the entropy change is given by

Eq. (10.7). Since x1 þ x2 ¼ 1, the logarithmic terms are necessarily negative, so

�Smix is positive, and this constitutes the ‘‘driving force’’ for dissolution, because

of the relationship �G ¼ �H � T �S.

If the entropy of mixing is the driving force for dissolution, what is the ‘‘resis-

tance’’? It is the solute–solute interaction forces, which, for solids, lead to the

‘‘crystal lattice energy.’’ These must be overcome for the solute to dissolve.

Now, the free-energy change for the dissolution process is the same no matter

what reversible mechanism (path) is taken to pass from the initial state (pure solute)

to the final state (saturated solution), so we can divide the process as follows (for a

solid solute):

Crystalline solute Ð supercooled liquid solute

Pure liquid solvent Ð solvent containing cavity

Supercooled liquid solute Ð saturated solution

þ solvent-containing cavity

Crystalline soluteþ pure liquid solventÐ saturated solution

Since in an ideal solution the solvent–solvent interactions match the solvent–solute

interactions, the energy required to create molecule-sized cavities in the solvent is

offset by the energy recovered when the solute molecules are inserted into these

cavities. The energetic cost of the dissolution process then appears in the first

step, the melting of the solid. An equivalent viewpoint (Grant and Higuchi 1990,

p. 16) is that the enthalpy of solution is given by

�Hsoln ¼ �Hfusion þ�Hmix

But �Hmix ¼ 0 for an ideal solution, so �Hsoln ¼ �Hfusion.

The saturation solubility, we have seen, is an equilibrium constant, so the van’t

Hoff equation [Eq. (4.29)] is applicable

d ln x2

dT
¼ �Hf

RT2
ð10:8Þ

where the solubility is expressed as the mole fraction simply to maintain con-

sistency with Eq. (10.7), and where �Hf is the heat of fusion and T is the absolute
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temperature. We have seen above why the heat of fusion appears in a solubility

expression. (Incidentally, a dissolved solid should be viewed as possessing some

of the properties of the liquid state, consistent with the above view that fusion is

the first step in the dissolution process.) Now suppose that �Hf is independent

of temperature, which is equivalent to writing, for the solute from Eq. (1.23):

�Cp ¼ Cliq
p � Csolid

p ¼ 0 ð10:9Þ

Then integrating Eq. (10.8) from Tm to T gives

ln x2 ¼ �
�Hf

R

Tm � T

T Tm

� �
ð10:10Þ

where Tm is the melting temperature and T is the experimental temperature.

Equation (10.10) allows us to calculate the ideal solubility.

Example 10.1. The melting point of naphthalene is 80.2�C, and its heat of fusion at

the melting point is 4.54 kcal mol�1. What is the ideal solubility of naphthalene

at 20�C?

Log x2 ¼
�4540 cal mol�1

ð2:303Þð1:987 cal mol�1K�1Þ
60:2 K

353:35 K� 293:15 K

� �

¼ �0:577

x2 ¼ 0:265

Deviations from ideality will be manifested by discrepancies from the ideal solubi-

lity as calculated with Eq. (10.10). Table 10.1 lists equilibrium solubilities for

Table 10.1. Naphthalene solubility at 20�C

Solvent x2

(Ideal) 0.265

Chlorobenzene 0.256

Benzene 0.241

Toluene 0.224

Carbon tetrachloride 0.205

Hexane 0.090

Aniline 0.130

Nitrobenzene 0.243

Acetone 0.183

n-Butanol 0.0495

Methanol 0.0180

Acetic acid 0.0456

Water (25�C) 0.0000039

THE IDEAL SOLUBILITY 119



naphthalene in many solvents. Observe that those solvents most chemically like

naphthalene, that is, aromatic and nonpolar solvents, show behavior most closely

approximating ideal behavior.

At the melting temperature Tm the solid and liquid forms of the solute are

in equilibrium, so �Gf ¼ 0 and we get �Hf ¼ Tm�Sf , giving Eq. (10.11) as an

alternative form of Eq. (10.10):

ln x2 ¼ �
�SfðTm � TÞ

RT
ð10:11Þ

10.3. TEMPERATURE DEPENDENCE OF THE SOLUBILITY

Since �Hf is always a positive quantity, Eq. (10.10) predicts that the solubility of

a solid will increase with temperature. Moreover, Eq. (10.10) shows that if two solid

substances have the same heat of fusion, the one with the higher melting point will

have the lower solubility. Conversely, if they have the same melting point, the one

with the lower heat of fusion will have the higher solubility. All of these inferences

from Eq. (10.10) refer to systems forming ideal solutions, so deviations from the

predictions can occur for real systems. Nevertheless, the increase of solubility

with temperature is very widely observed for solids. Even the relationship of solu-

bility to melting point can be a useful guide, though confounding phenomena can

introduce complications; for example, hydrogen-bonding or other polar interactions

may raise both the melting point and the aqueous solubility. The comparison of the

temperature dependence of solubility of solids and gases is instructive; see

Table 10.2.

Equation (10.10) can be rearranged to Eq. (10.12):

ln x2 ¼ �
�Hf

RT
þ�Hf

RTm

ð10:12Þ

Table 10.2. The contrary effects of temperature on the solubilities of solids and gases

Solid Ð
�Hf

liquid Ð
�Hv

�Hc

gas

Solids Gases

Solution is the process of Solution is the process of

passing from solid to liquid passing from gas to

(fusion, �Hf ) liquid (condensation, �Hc), which

is the reverse of vaporization (�Hv)

�Hf is positive, so x2 increases �Hv is positive, so �Hc is negative; thus x2

as T increases decreases as T increases

120 SOLUBILITY



If �Hf is essentially constant over the experimental temperature range, Eq. (10.12)

predicts that a plot of ln x2 against 1=T will be linear with a slope equal to

��Hf=R. The line should terminate at the melting point, where 1=T ¼ 1=Tm. Often

such lines are straight, probably because the usual range of temperatures is small.

The slope gives �Hf in principle, but in actuality the quantity evaluated from the

slope is not precisely �Hf because the solution is seldom ideal, and instead the

quantity found in this way is termed the heat of solution.

Throughout this discussion we have been assuming that the solid phase consists

of the pure solid and not a solid solution. Another possible complication arises if

the solid substance can exist in two crystalline forms (polymorphs; Chapter 6),

which interconvert at transition temperature Tt. The van’t Hoff plot can resemble

Fig. 10.1a or Fig. 10.1b depending primarily on the kinetics of the transformation.

In Fig. 10.1a, the two forms are sufficiently stable that their solubilities can be

separately measured at the same temperatures, which are below the transition

temperature. Nevertheless, the crystal form having the higher solubility (at a given

temperature) is thermodynamically unstable (it is said to be metastable, since its

kinetics of transformation permit it to exist for some period during which it acts

as if it were stable), and will ultimately be converted to the stable form. Extrapola-

tion of the lines to the transition temperature may be possible. Sulfathiazole in 95%

ethanol shows the Fig. 10.1a behavior (Milosovich 1964; Carstensen 1977, p. 7).

In Fig. 10.1b, one form exists in one temperature range, the other form in a

temperature range on the other side of Tt. The melting point observed will be that

of the higher-melting polymorph. Carbon tetrabromide exemplifies this behavior

(Hildebrand et al. 1970, p. 23).

(a) (b)

1/T
1/Tt 1/Tt

ln
 x

2

Figure 10.1. Hypothetical solubility van’t Hoff plots for polymorphs.
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Let us return to the assumption that the change in heat capacities, �Cp, is zero,

for all the subsequent discussion was based on this assumption. If �Hf in fact is a

function of temperature, then �Cp is not zero. Suppose we make the more reason-

able assumption that �Cp is a nonzero constant, and write �Hf as

�Hf ¼ �Hm
f ��CpðTm � TÞ ð10:13Þ

where �Hm
f is the heat of fusion at Tm. Equation (10.13) is inserted into Eq. (10.8),

which can be rearranged and integrated to give Eq. (10.14):

ln xs
2 ¼
��Hm

f

R

Tm � T

T Tm

� �
þ�Cp

R

Tm � T

T

� �
��Cp

R
ln

Tm

T
ð10:14Þ

This equation is useful for assessing the error that may be introduced by making the

simple assumption �Cp ¼ 0. Suppose, for example, that the experimental tempera-

ture is 25�C and the melting point is 100�C. Then the last two terms in Eq. (10.14)

become equal to 0:25�Cp=R� 0:22�Cp=R ¼ 0:03�Cp=R. Thus considerable

compensation can take place, making the approximation �Cp ¼ 0 more acceptable

than it might have seemed.

Example 10.2. These are solubility data for nitrofurantoin in water (Chen et al.

1976). Analyze the data to obtain the heat of solution.

t ð�CÞ 106x2

24 6.01

30 8.57

37 13.16

45 18.99

The data are manipulated as required to make the van’t Hoff plot according to

Eq. (10.12):

T ð103KÞ log x2

3.37 �5.22

3.30 �5.06

3.23 �4.88

3.14 �4.72

The plot is shown in Fig. 10.2. It is possible that the points describe a curve, but this

is uncertain with the data as given, for conceivably the scatter is a consequence of

experimental random error. A straight line has therefore been drawn. Its slope is
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�2300 K, so we calculate

�Hsoln ¼ ð2300 KÞð1:987 cal mol�1 K�1Þ
¼ 4570 cal mol�1

¼ 4:57 kcal mol�1

¼ 19:1 kJ mol�1

Note that the enthalpy change is labeled �Hsoln to indicate explicitly that this is a

heat of solution.

10.4. SOLUBILITY OF SLIGHTLY SOLUBLE SALTS

Many salts exhibit very low solubilities in water. Silver chloride is an example;

if aqueous solutions of silver nitrate and sodium chloride are mixed, solid silver

chloride precipitates. It is conventional to describe this process as the reverse of

the precipitation reaction, namely, as the dissolution of the salt. Let us begin

with the simplest case of a 1 : 1 sparingly soluble salt MX. The solid crystalline

form is ionic. When it dissolves in water the ions dissociate, and no ion pairs are

detectable. We therefore write the equilibrium as

MXðsÞ Ð Mþ þ X� ð10:15Þ

Proceeding as we have done for several earlier processes, we equate the chemical

potentials of the solid and the dissolved solute at equilibrium:

mðsÞ ¼ mðsolnÞ

103/ T

3.1 3.2 3.3 3.4

 

-5.2
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-4.8

-4.6

lo
g 

X
2

Figure10.2. van’t Hoff plot for nitrofurantoin solubility.
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Expanding these gives

m�ðsÞ þ RT ln aðsÞ ¼ m�þ þ RT ln aþ

þ m�� þ RT ln a�

and collecting terms (and noting that aðsÞ ¼ 1 by our standard state definition),

�m� ¼ �RT ln aþa� ð10:16Þ

where �m� ¼ m�þ þ m�� � m�ðsÞ. Evidently then [compare with Eq. (10.4)], the

product aþa� is an equilibrium constant. By Eq. (8.23a) we see that aþ a� ¼ a2
	,

where a	 is the mean ionic activity, and since a2
	 ¼ g2

	c2
	, Eq. (10.16) can be

written

�m� ¼ �RT ln g2
	c2
	 ð10:17Þ

If no extraneous ions are present, so that the ionic strength is due solely to the ions

from the sparingly soluble salt (and hence is very low), the activity coefficient term

is essentially unity. Moreover, the molar concentrations of the cation Mþ and the

anion X� are equal, and each is numerically equal to the equilibrium molar

solubility of the salt, which is commonly denoted s. Thus Eq. (10.17) becomes

�m� ¼ �RT ln s2 ð10:18Þ

Equation (10.17) is exact; Eq. (10.18) is usually a reasonable approximation, and

both implicitly define the equilibrium constant for Eq. (10.15). This constant is

symbolized Ksp and is called the solubility product. Since solubility products are

very small numbers, it is common to state them as pKsp, where pKsp ¼ �log Ksp.

Table 10.3 lists some pKsp values.

Table 10.3. Solubility products for slightly soluble saltsa

Salt pKsp Salt pKsp

BaSO4 9.96 PbCO3 13.13

CaCO3 8.54 PbS 27.9

Ca(OH)2 5.26 MgCO3 7.46

Ca3(PO4)2 28.7 Hg2S 47.0

CuI 11.96 HgS (red) 52.4

AuCl 12.7 HgS (black) 51.8

AuCl3 24.5 AgBr 12.30

Fe(OH)2 15.1 AgCl 9.75

Fe(OH)3 37.4 AgI 16.08

a In the temperature range 18–25�C; water is the solvent.
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Example 10.3. What is the solubility of silver chloride in water? From Table 10.3,

pKsp ¼ 9:75 for AgCl, so Ksp ¼ 1:78� 10�10. From Eq. (10.18), Ksp ¼ s2, so

s ¼
ffiffiffiffiffiffiffi
Ksp

p
¼ 1:33� 10�5 M.

In the general case of the salt whose formula is MpXq the solubility product is

defined, in accordance with the usual formulation of equilibrium constants:

Ksp ¼ c
p
Mc

q
X ð10:19Þ

The quantity that we label s then depends on the stoichiometry.

Example 10.4. What is the molar solubility of ferrous hydroxide?

From Table 10.3, pKsp ¼ 15:1, or Ksp ¼ 7:9� 10�16. The dissolution reaction is

FeðOHÞ2 Ð Fe2þ þ 2OH�

so Ksp ¼ cFec2
OH. (The charges on the subscripts are omitted for clarity.) Since each

molecule of Fe (OH)2 that dissolves yields one Fe2þ ion, we define the solubility as

the concentration of ferrous ion, or cFe ¼ s. The stoichiometry yields cOH ¼ 2 cFe,

so the result is1

Ksp ¼ s� ð2sÞ2 ¼ 4s3

Therefore s ¼ 5:8� 10�6 M.

Example 10.5. What is the solubility of silver chloride in 0.02 M KCl? Assume

activity coefficients are unity.

Again we set cAg ¼ s, the solubility. The solubility product is defined

Ksp ¼ cAgcCl; however, the chloride concentration has been augmented by the

addition of potassium chloride, so we write cCl ¼ 0:02þ s; that is, the chloride con-

centration is the sum from two sources, the KCl and the AgCl. We therefore have

Ksp ¼ sð0:02þ sÞ, which is a quadratic equation that can be solved for s. Before

doing that, however, it is worth trying the approximation cCl ¼ 0:02, which involves

neglecting the relatively small contribution from dissolution of the AgCl. Thus

Ksp ¼ 0:02s ¼ 1:78� 10�10

s ¼ 8:9� 10�9 M

First note that the approximation seems well justified. More interestingly, observe

that the solubility of silver chloride has been reduced from about 1� 10�5 M in

water (Example 10.3) to about 1� 10�8 M in 0.02 M KCl. This is an example of

the common ion effect. The solubility of any slightly soluble salt can be reduced by

adding an excess of one of its constituent ions.

The accuracy of such calculations can be improved by making use of the Debye–

Hückel equation to estimate the values of mean ionic activity coefficients.
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10.5. SOLUBILITIES OF NONELECTROLYTES: FURTHER ISSUES

Salt Effects. In Example 10.5 we encountered one type of salt effect. There is

another type of salt effect that is observed when the solubility of a nonelectrolyte

is studied as a function of ionic strength (or of the concentration of an added

electrolyte). Compare the nonelectrolyte solubility in the absence and presence

of added salt. Since the solid solute is present in both cases

mðsolidÞ ¼ mðcs ¼ 0Þ ¼ mðcsÞ

where cs is the concentration of added salt. Therefore aðcs ¼ 0Þ ¼ aðcsÞ, or

s0g0 ¼ sg ð10:20Þ

where s0 and s are the solubilities in the two cases. Thus g=g0 ¼ s0=s; and since

g0 ¼ 1 is a reasonable assumption, g ¼ s0=s, and we have a method for measuring

nonelectrolyte activity coefficients. Moreover, it is found experimentally that the

quantity log (s0=s) often varies linearly with cs, or

Log
s0

s
¼ kscs ð10:21Þ

If s0=s > 1, then ks is positive, and the nonelectrolyte is said to be ‘‘salted out’’; if

s0=s < 1, then ks is negative, and the solute is ‘‘salted in.’’ These are called the

‘‘salting-out and salting-in effects,’’ and the constant ks is known as the Setschenow

constant.

Regular Solution Theory. We have seen that an ideal solution has thermody-

namic mixing quantities �Hmix ¼ 0 and �Smix ¼ �Rðx1 ln x1 þ x2 ln x2Þ. A regular

solution is defined to be one having an ideal entropy of mixing but a nonideal

enthalpy of mixing. Recall also that the ideal solubility of a nonelectrolyte (i.e.,

the solubility when a nonelectrolyte forms an ideal solution) is given by

ln x2 ¼
��Hf

R

Tm � T

T Tm

� �
ð10:22Þ

where �Cp is assumed to be zero or negligible. The molecular interpretation of an

ideal solution is that the energy of interaction of a solute molecule with a solvent

molecule is identical with the energy of interaction of two solvent molecules.

The molecular interpretation of regular solution theory is quite different; in

regular solution theory the energy of 1–2 interactions (where 1 is the solvent, 2

is the solute) is approximated as the geometric mean of 1–1 and 2–2 interaction

energies, or2

U12 ¼ ðU11U22Þ1=2 ð10:23Þ
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This approximation results in regular solution theory being applicable mainly to

fairly nonpolar systems, that is, nonpolar nonelectrolytes dissolved in nonpolar

solvents. For our present interest, the essential result (Hildebrand and Scott 1964,

p. 271) of regular solution theory is embodied in Eq. (10.24), which may be

compared with Eq. (10.22):

ln x2 ¼ �
�Hf

R

Tm � T

T Tm

� �
� V2j2

1

RT
ðd1 � d2Þ2 ð10:24Þ

where V2 is the molar volume of solute and j1 is the volume fraction concentration

of solvent in the solution. The quantities d1 and d2 are the solubility parameters of the

solvent and solute. These are physical properties with the following significance.

The term �Hvap, the molar heat of vaporization, is the enthalpy required to effect

the transformation of one mole of liquid to its vapor state. During this process all

the solvent–solvent interactions (which are responsible for the existence of the

liquid phase) are overcome. A quantity called the cohesive energy density (CED)

is defined

CED ¼ �Hvap � RT

V
ð10:25Þ

where V is the molar volume of the liquid. We anticipate, and we find, that liquids

with strong intermolecular interactions (especially polar ‘‘associated’’ liquids

having the potential for strong dipole–dipole and hydrogen-bonding interactions)

have larger ced values than do nonpolar liquids. Table 10.4 lists some CED values.

Because of the manner in which CED appears in regular solution theory equa-

tions, Hildebrand (Hildebrand et al. 1970; Hildebrand and Scott 1964, p. 271)

defined the solubility parameter d by Eq. (10.26). Table 10.4 also gives d values.

d ¼ ðCEDÞ1=2 ð10:26Þ

Referring now to Eq. (10.24), note that if d1 ¼ d2, we recover Eq. (10.22) for the

ideal solution; in other words, the condition d1 ¼ d2 is equivalent to the condition

�Hmix ¼ 0. The greater the difference d1 � d2 (or of d2 � d1, because the differ-

ence is squared), the greater the deviation from ideality, and, as Eq. (10.24) shows,

the lower the solubility that is predicted. This provides a guide for experimental

design; to achieve maximal solubility according to regular solution theory, strive

to equate the solubility parameters of solvent and solute. Since the solute identity

is usually established by the nature of the problem, the experimental variable is the

solvent identity. Sometimes mixed solvent systems function better than do pure sol-

vents for this reason. For example, a mixture of ether ðd ¼ 7:4Þ and ethanol

ðd ¼ 12:7Þ dissolves nitrocellulose ðd ¼ 11:2Þ, although neither pure liquid serves

as a good solvent for this solute.3

Although the cohesive energy density, and therefore the solubility parameter, is a

well-defined physical property for any solvent, regular solution theory is limited
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(e.g., by the geometric mean approximation) to solutions of nonpolar substances. It

should therefore not be expected to apply quantitatively to polar systems such as

aqueous solutions.

Example 10.6. Predict the solubility of naphthalene in n-hexane at 20�C. The solu-

bility parameters are d1 ¼ 7:3 and d2 ¼ 9:9 (both in cal1=2 cm�3=2), and the molar

volumes are V1 ¼ 132 cm3 mol�1 and V2 ¼ 123 cm3 mol�1. See Example 10.1 for

additional data.

We use Eq. (10.24), which in Example 10.1 was expressed in terms of log x2. In

that form the first term on the right had the value �0:577, which we need not recal-

culate. Now we consider the second term. We lack only the quantity j1, the volume

fraction of solvent. This appears to be a dilemma, because we cannot estimate j1

until we know x2, which is what we want to calculate.

If we anticipate that the solute has a low solubility, it may be acceptable to make

the approximation j1 ¼ 1. An alternative is to take the result for an ideal solution

(Example 10.1, which gave x2 ¼ 0:265) as a basis for estimating j1. We will do the

problem in both ways.

(a) Let j1 ¼ 1. Then from eq. (10.24),

Log x2 ¼ �0:577� ð123 cm3Þð1Þ2ð7:3� 9:9 cal1=2 cm�3=2Þ2

ð2:303Þð1:987 cal mol�1 K�1Þð293:15 KÞ
¼ �0:577� 0:620 ¼ �1:197

x2 ¼ 0:064

Table 10.4. Cohesive energy densities and solubility parameters

Solvent CED (cal cm�3) dðcal1=2 cm�3=2Þ

n-Pentane 50.2 7.0

Cyclohexane 67.2 8.2

1,4-Dioxane 96 10.0

Benzene 84.6 9.2

Diethyl ether 59.9 7.4

Ethyl acetate 83.0 9.1

Acetic acid 102 10.1

n-Butyl alcohol 130.0 11.4

n Propyl alcohol 141.6 11.9

Acetone 95 9.9

Ethanol 168 12.7

Methanol 212 14.5

Acetonitrile 141.6 11.9

Dimethylformamide 146.4 12.1

Ethylene glycol 212 14.6

Glycerol 272 16.5

Dimethylsulfoxide 144 12.0

Water 547.6 23.4
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(b) The volume fraction is defined as follows:

j1 ¼
n1V1

n1V1 þ n2V2

ð10:27Þ

Suppose n1 þ n2 ¼ 1; from Example 10.1, x2 ¼ 0:265, or n2 ¼ 0:265 and n1 ¼
0:735. Using these numbers in Eq. (10.27) gives j1 ¼ 0:748. (Note how close

j1 is to x1, because V1 and V2 are similar.) Repeating the calculation gives

Log x2 ¼ �0:577� 0:335 ¼ �0:912

x2 ¼ 0:122

We therefore predict that x2 is between 0.064 and 0.122, and we might take the

average as our best estimate. The experimental result (Table 10.1) is x2 ¼ 0:090.

Prediction of Aqueous Solubilities. Water is the preferred solvent for liquid

dosage forms because of its biological compatibility, but unfortunately many drugs

are poorly soluble in water. To be able to predict the aqueous solubility of com-

pounds, even if only approximately, is a valuable capability because it can guide

or reduce experimental effort. Water is a highly polar and structured medium in

which nonideal behavior is commonly observed, so we must abandon hope that

the ideal solubility prediction of Eq. (10.10) will be useful, and even the regular

solution theory [Eq. (10.24)] is ineffectual in solving this problem. Effective

approaches may be guided by thermodynamic concepts, but they incorporate

much empirical (i.e., experimental) content.

Although the ideal solubility equation will not suffice to predict nonelectrolyte

solubility in water, the solute–solute interactions responsible for maintaining

the crystal lattice must nevertheless be overcome, so Eq. (10.10) will still be applic-

able as a means of estimating the solute–solute interaction. What must be done in

addition is to take account of the solvent–solvent and solvent–solute interactions,

for these will in general not offset each other. In a paper that includes a valuable

collection of solubility data, Yalkowsky and Valvani (1980) have developed a very

useful method based on this approach. They start with Eq. (10.10), which they

transform to Eq. (10.11), repeated here:

ln x2 ¼ �
�SfðTm � TÞ

RT
ð10:28Þ

They then carry out an analysis of experimental entropies of fusion, reaching these

conclusions:

For spherical (or nearly so) molecules: �Sf ¼ 3:5 cal mol�1 K�1

For rigid molecules: �Sf ¼ 13:5 cal mol�1 K�1
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For molecules having n > 5 flexible chain atoms: �Sf ¼ 13:5þ 2:5
ðn� 5Þ cal mol�1 K�1

In the following we will use only the result for rigid molecules.

Yalkowsky and Valvani then take the log P value of the solute (where P is the

1-octanol/water partition coefficient) as an empirical measure of the solution phase

nonidealities. They combine this with Eq. (10.28), convert to molar concentration,

and apply a small statistical adjustment, finally getting Eq. (10.29) for the calcula-

tion of rigid nonelectrolyte molar solubility in water at 25�C:

Log c2 ¼ �0:011ðtm � 25Þ � log Pþ 0:54 ð10:29Þ

where tm is the solute melting point in centigrade degrees. For liquid nonelectro-

lytes tm is set to 25, so the first term vanishes. Log P may be available from

experimental studies, but it may have to be estimated by methods cited in Chapter 7.

Yalkowsky and Valvani applied Eq. (10.29) to solubility data on 167 compounds

whose solubilities ranged over nine orders of magnitude, finding that the estimated

solubilities agreed with the observed solubilities to within 0.5 log unit for all but

eight compounds, and in no case was the error greater than a factor of 10. Equation

(10.29) is a very practical solution to the problem of predicting aqueous solubilities.

Amidon and Williams (1982) refined the approach of Yalkowsky and Valvani,

achieving better accuracy but at the cost of increased complexity in the equation.

Grant and Higuchi (1990) describe alternative methods of calculation that are based

on different pathways from the initial to the final state.

Equation (10.10) and equations derived from it, such as Eqs. (10.28) and (10.29),

contain the difference ðTm � TÞ, showing that a higher melting temperature is

reflecting stronger solute–solute interactions in the solid state. As a general but

not precise rule, we may anticipate that very polar molecules (or functional

groups) will conduce to strong intermolecular interactions by means of electrostatic

forces, which for certain groups may include hydrogen bonding. Thus high

molecular polarity tends to be associated with high melting temperature, and higher

melting temperatures lead to lower solubilities, at least as they are described by

Eq. (10.10).

Now consider the special case of water as a solvent. Water is a very polar solvent

and is capable of functioning as a hydrogen bond donor and acceptor. Very polar

solute molecules will tend to interact strongly with the solvent water; these are the

solvent–solute or solvation interactions that increase solubility. But we have seen

that highly polar substances tend to have high melting temperatures, so we are

led to the tentative conclusion that melting temperature may be an approximate

indicator of the extent of solvent–solute interaction. It follows (still arguing in

this approximate mode) that the opposing factors of solute–solute (crystal lattice)

and solvent–solute (solvation) interactions are both measured by, or at least

indicated by, the same quantity, namely, the melting temperature.4 Thus in some

degree we may anticipate that these two factors will compensate each other, with

the consequence that the solubility will become essentially independent of the
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melting temperature. But then the first term in Eq. (10.29) will (approximately)

vanish, leading to a dependence solely on log P.

Correlations of log c with log P are well known (Yalkowsky and Valvani 1980;

Grant and Higuchi 1990, Chapter 8). Equations (10.30a) and (10.30b) are such

correlations, based on solubility data for compounds having a considerable range

of structural features. These equations are to be judged solely by their success in

reproducing or predicting solubilities; they are purely empirical.

Log c2 ¼ �log P� 1:00 ðfor solidsÞ ð10:30aÞ
Log c2 ¼ �log Pþ 0:27 ðfor liquidsÞ ð10:30bÞ

A comparison of the performance of Eq. (10.29) with Eqs. (10.30) indicates that

Eq. (10.29) is slightly superior, but there are some reversals. If the solute melting

point is not available, Eq. (10.30a) offers an alternative method of estimation.

Example 10.7. Estimate the aqueous solubility at 25�C of isophthalic acid, for

which log P ¼ 1:73 and whose melting temperature is 346�C.

With Eq. (10.29), log c2 ¼ �4:72; with Eq. (10.30a), log c2 ¼ �2:73. The

experimental result is log c2 ¼ �3:40. Evidently neither Eq. (10.29) nor

Eq. (10.30a) yields a fully satisfactory answer in this case. (Although interestingly

their average is 3.73, in error by only about a factor of 2 in the solubility c2.)

Obviously there is scope for improved methods of estimation.

Solubility in Mixed Solvents. If the equilibrium solubility of a solute in water

is too low to achieve the desired ‘‘target’’ concentration, a preferred approach in

many instances is to incorporate an organic solvent in the aqueous solution, in

this way increasing the solubility of the solute. This organic solvent (often called

the cosolvent) must be miscible with water, at least in the proportions used, and

if the solution is to be a dosage form, the cosolvent must be physiologically accept-

able. These requirements severely limit the cosolvent selection. But beyond this

issue is the matter of the optimal cosolvent concentration in the mixed solvent sys-

tem of water and cosolvent. As in our treatment of aqueous solubility, we seek

methods that are rapid and easy to apply, even though approximate in their

accuracy, because the calculation will always be followed by laboratory studies

to confirm or refine the numerical estimate.

If the solute and solvent molecules in a solution differ greatly in size, plots of

various experimental quantities against solvent composition tend to be more sym-

metrical when solvent composition is given in volume fraction than in mole fraction

(Williamson 1967, p. 44). This observation forms the basis of a model proposed by

Yalkowsky and Rubino (1985). For these three-component systems, let water be

component 1, the cosolvent component 2, and the solute component 3. The molar

solubility of solute in water is written ðc3Þ1 and its molar solubility in pure

cosolvent as ðc3Þ2. In solvent of any composition the solute solubility is written

c3. Then the Yalkowsky–Rubino model becomes

Log c3 ¼ j1log ðc3Þ1 þ j2 log ðc3Þ2 ð10:31Þ
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where j1 and j2 are the volume fractions of water and cosolvent, respectively.

Since j1 þ j2 ¼ 1, an equivalent form of Eq. (10.31) is

Log c3 ¼ j2½log ðc3Þ2 � log ðc3Þ1� þ log ðc3Þ1 ð10:32Þ

This equation predicts that log c3 will be a linear function of j2.

Equation (10.31) is a postulate. It can be described as a linear combination

model, or as a weighted average; that is, log c3 is postulated to be an average of

log ðc3Þ1 and log ðc3Þ2, each of these making a contribution according to (weighted

by) its volume fraction.

The procedure for testing and using this model is simple. On a graphical scale of

j2 one plots log ðc3Þ1 at j2 ¼ 0:0 and log ðc3Þ2 at j2 ¼ 1:0. These points are

connected by a straight line, which is the graphical representation of Eq. (10.32).

A test of the model consists of plotting experimental solubilities at intermediate

values of j2 to learn how well they agree with the straight-line prediction. Alter-

natively, if (as is usually the case) such data are not available, the model is assumed

to be (approximately) valid, and that value of j2 is read off the line that will achieve

a desired target solubility. It is not necessary to carry this operation out graphically,

for by rearrangement of Eq. (10.32) we obtain

j2 ¼
log c3 � log ðc3Þ1

log ðc3Þ2 � log ðc3Þ1
ð10:33Þ

With this equation the required volume fraction of cosolvent can be calculated,

according to this model.

Figure 10.3 shows solubility data for the system water (1)-ethanol (2)-naphtha-

lene (LePree et al. 1994). The straight line connecting the extreme points constitu-

tes the linear combination model, Eq. (10.32); the points are experimental.

Obviously the points do not describe a straight line, so in this sense, and for this

system, the model does not appear to be valid. On the other hand, as an approximate

guide to the dependence of solubility on solvent composition it may be helpful to

the experimentalist, and it is in this sense that the model should be judged. It is not a

precise description of physicochemical behavior, but rather is a useful tool in

formulation development.

Example 10.8. Propose a water/ethanol mixed solvent composition that will

dissolve 2.5 mg mL�1 of naphthalene. The solubility of naphthalene in water is

2:14� 10�4 M, and in ethanol it is 0.675 M.

The target concentration of 2.5 mg mL�1 is equivalent to 2.5 g L�1. The mole-

cular weight of naphthalene is 128.2, so the molar target concentration c3 is

0.0195 M, or log c3 ¼ �1:71. From the given data we have log ðc3Þ1 ¼ �3:67

and log ðc3Þ2 ¼ �0:17. Applying Eq. (10.33), we obtain

j2 ¼
�1:71� ð�3:67Þ
�0:17� ð�3:67Þ

¼ 0:56
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Thus we predict that a volume fraction of 0.56 ethanol will dissolve the target

concentration. This result could also have been obtained by reading from the

straight line of Fig. 10.3. It is interesting to note, from the experimental points

in Fig. 10.3, that a volume fraction j2 ¼ 0:51 will actually dissolve the target

concentration.

More accurate models of solvent effects are available, but these require much

experimental effort and are computationally more elaborate.

PROBLEMS

10.1. The melting point of benzoic acid is 122.4�C, and its heat of fusion is

4.44 kcal mol�1. Calculate its ideal solubility at 25�C.

10.2. From the data in Example 10.2, convert the mole fraction solubilities to molar

solubilities, construct the van’t Hoff plot, and evaluate the heat of solution.
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Figure10.3. The linear combination model for naphthalene solubility in aqueous ethanol solutions.
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10.3. Derive an equation relating the molar solubility of calcium phosphate to its

solubility product, and calculate its molar solubility.

10.4. A solution containing NaBr, NaCl, and NaI is titrated with silver nitrate

solution. Predict the order in which the silver halides will precipitate.

10.5. Predict the solubility of iodine in carbon tetrachloride at 25�C. The melting

point of iodine is 113.6�C, its heat of fusion is 3.71 kcal mol�1, its molar

volume is 59 cm3, and its solubility parameter is 14.1. The solubility

parameter of carbon tetrachloride is 8.6.

10.6. Predict the molar solubility of progesterone in water at 25�C. The melting

point of progesterone is 131�C and its log P value is 3.87.

10.7. The solubility of naphthalene in water at 25�C is 2:14� 10�4 M, and its

solubility in dimethylsulfoxide (DMSO) is 1.920 M. Estimate the mixed

solvent composition required to dissolve 4 mg mL�1 of the solute.

NOTES

1. Equations like this one in Example 10.4 are easily solvedby a logarithmic technique. We have

7:9� 10�16 ¼ 4s3, or 1:975� 10�16 ¼ s3. Take logarithms of both sides, obtaining

�15:70 ¼ 3 log s, or �5:235 ¼ log s. The antilogarithm gives s.

2. The arithmetic mean of two numbers is ðaþ bÞ=2; their geometric mean is ðabÞ1=2.

3. As a strategy for optimizing solvent selection, evidently this approach requires an estimate of

the solubility parameter of the solute. There are several ways to obtain this. One method is

suggested by the example; presumably the solubility parameter of the solvent mixture that

maximizes solubility is also the solubility parameter of the solute.

4. Polarity is just one factor controlling the melting temperature. Symmetry is another; the more

symmetric the molecule, the higher the melting temperature (when comparing ‘‘similar’’

molecules).
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SURFACES AND
INTERFACES

Up to this point in our study of thermodynamics we have dealt with bulk phases

only; that is, we have ignored possible influences of the surfaces of these phases.

This attitude is justified when the surface constitutes a very small fraction of the

system. In some circumstances, however, the surface : volume ratio of the system

becomes relatively large, and then the properties of the surface may dominate the

behavior of the system. In the pharmaceutical field, the dosage forms called emul-

sions, suspensions, and foams exemplify such circumstances; collectively these are

known as disperse systems; emulsions are dispersions of liquid droplets in an

immiscible liquid, suspensions are dispersions of solid particles in a liquid, and

foams are dispersions of gases in liquids.

Let us begin with a clarification of terminology. Strictly speaking, the boundary

between any two phases constitutes an interface, but it is conventional to call this

interface a ‘‘surface’’ when one of the phases is a vapor or gas (especially, and

usually, when it is air). We therefore have these identifications:

Surfaces Interfaces

Solid–gas Solid–solid

Liquid–gas Solid–liquid

Liquid–liquid

Despite these definitions, it is common to use the word ‘‘surface’’ in a generic sense

to embrace all such phase boundaries.
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11.1. THERMODYNAMIC PROPERTIES

Surface Tension and Interfacial Tension. Let us carry out this thought-

experiment. Figure 11.1a illustrates a column of a liquid, constituting a single phase,

and having a cross-sectional area of 1 cm2. Now imagine this column to be pulled

apart cleanly into two parts, as shown in Fig. 11.1b. The result of this imagined

experiment has been to create two surfaces of the liquid, each of area 1 cm2.

Energy was required to create these surfaces, because molecules had to be pulled

apart, and the forces of intermolecular interaction had to be overcome. The work of

carrying out this process is called the work of cohesion, wc, and it is set equal to the

energy of the surfaces that were created. (Because we can neither create nor destroy

energy, the work wc done on the system is now possessed by the system in the form

of surface energy.) We write

wc ¼ 2g ð11:1Þ

where g is the surface energy per square centimeter, and is called the surface ten-

sion. (The factor 2 appears because 2 cm2 of surface were created in Fig. 11.1.)

γ

γ

(b)(a)

Figure11.1. (a) A column of liquid 1 cm2 in cross section; (b) the column separated to create two

surfaces, each with area 1 cm2 and surface tension g.
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We can now connect this concept of surface energy to other kinds of energy by

recalling (Chapter 1) that work (or energy) can be expressed as the product of an

intensity factor and a capacity factor. For surface work or energy we have

Surface energy ¼ surface tension� change in surface area

�G ¼ g�A
ð11:2Þ

If �A is positive (surface area is created), �G is positive and the process is non-

spontaneous; work must be done to create new surface area. If �A is negative, �G

is negative and the process is spontaneous. The surface energy is identified with the

change in Gibbs free energy if the temperature and pressure are constant.

Table 11.1 lists the surface tensions of some liquids. First consider the units of g,

which is an energy per unit area. Thus in SI units, J m�2 is a correct designation for

the units of g. Moreover, since work (energy) is the product of force and length, and

1 J ¼ 1 N m, the units N m�1 are also acceptable. In the older cgs system, in which

most of the literature values of g are recorded, the corresponding units are erg cm�2

and dyn cm�1. However, in order that the numerical values of g be identical in the

cgs and SI systems, the SI units are multiplied by 103. Thus we can state the surface

tension of water in these equivalent units:

g ¼ 71:8
erg

cm2
¼ 71:8

dyn

cm
¼ 71:8

mJ

m2
¼ 71:8

mN

m

Inasmuch as the surface tension is a measure of the energy required to create unit

area of surface, we might expect g to be larger for solvents having stronger inter-

molecular forces of interaction, and generally we see that this expectation is borne

out. Very polar molecules and those capable of hydrogen bonding tend to have

higher values of g than do nonpolar substances.

As the temperature of a liquid is increased, the liquid acquires more thermal

energy, and so less additional energy needs to be supplied to create new surface.

As a consequence, the surface tension is smaller at higher temperatures.

Table 11.1. Surface tensions at 25�C

Solvent g ðdyn cm�1Þ Solvent g ðdyn cm�1Þ

n-Hexane 17.9 Acetone 22.9

Cyclohexane 19.8 Ethanol 21.8

Benzene 28.2 Methanol 22.4

Diethyl ether 16.5 Acetonitrile 28.5

Chloroform 26.5 Glycerol 62.5

Ethyl acetate 23.2 Dimethylsulfoxide 42.8

n-Butyl alcohol 24.2 Water 71.8

n-Propyl alcohol 23.4 Mercury 485.5
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Another point of view may be helpful in visualizing the physical nature of the

surface tension. The properties of a system consisting of a liquid in contact with its

vapor do not change discontinuously at the surface, but rather change in a smooth

continuous fashion. Another way to say this is to point out that the surface is not a

mathematical boundary, but is a region having a thickness of several molecular dia-

meters. Consider the density as a property that varies from a relatively high value in

the bulk liquid (expressed as g mL�1 or as number of molecules per unit volume) to

a very low value in the vapor. Evidently the density will have an intermediate value

in the surface region. Taking a slice coplanar with the surface, then, the number of

molecules per unit area in the surface is smaller than in the bulk. In other words, the

surface is analogous to an extended spring; energy is required to create the surface

(or to stretch the spring), and this energy is manifested as a tension in the plane of

the surface; this is the surface tension (Fowkes 1964).

Now we will carry out another thought experiment in the style of Fig. 11.1, this

one as shown in Fig. 11.2. Here we have a column of 1 cm2 cross-sectional area, but

consisting of two immiscible liquid phases, 1 and 2, in contact. We now imagine the

phases separated at their boundary. According to our earlier analysis, we can expect

an amount of work to be required equal to the sum g1 þ g2, for 1 cm2 of surface of

each 1 and 2 is created in this process. But there is a further factor to consider, for in

the initial state of the system there existed an interface between 1 and 2, and this

γ2

γ1

γ12

1

2

1

2

(b)(a)

Figure 11.2. (a) A column of 1 cm2 cross-sectional area of phases 1 and 2 in contact; (b) the
phases are separated to create two surfaces, one of liquid 1, the other of liquid 2.
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interface itself possesses surface (or interface) energy, labeled g12. In the final state

of the system this interface no longer exists, so neither does its energy, which has, in

effect, been applied to defray the energetic cost of creating the two new surfaces.

The work involved in passing from the initial state in Fig. 11.2a to the final state in

Fig. 11.2b is called the work of adhesion, wa, and is given by

wa ¼ g1 þ g2 � g12 ð11:3Þ

The quantity g12 is the interfacial tension. It has the same units and the same phy-

sical significance as the surface tension. Table 11.2 gives some interfacial tensions.

It must be realized that in such systems the two liquids are mutually saturated.

The interfacial tension can be measured, or it can be calculated with reasonable

accuracy by means of

g12 ¼ g1 þ g2 � 2ðgd
1g

d
2Þ

1=2 ð11:4Þ

where gd
1 and gd

2 are the London dispersion force contributions to g1 and g2 (Fowkes

1964). The dispersion force is an attractive force (sometimes called the van der

Waals force) between all molecules. For nonpolar molecules such as saturated

hydrocarbons it is the only attractive force, so gd ¼ g for such liquids. For mercury

gd is 200 dyn cm�1 and for water gd ¼ 21:8 dyn cm�1. Equation (11.4) incorporates

the geometric mean approximation of regular solution theory (Section 10.5); see

Eq. (10.23) in particular.

Example 11.1. Estimate the interfacial tension at the water/n-hexane interface. We

use Eq. (11.4):

g12 ¼ 71:8þ 17:9� 2ð21:8� 17:9Þ1=2

¼ 50:2 dyn cm�1

The experimental value (Table 11.2) is 51.1 dyn cm�1.

Because a surface is of relatively high energy compared to the bulk, there is a

thermodynamic driving force for minimization of surface area. A sphere is the

Table 11.2. Interfacial tensions at 20�C

Liquids g ðdyn cm�1Þ Liquids g ðdyn cm�1Þ

Water/mercury 375 Water/n-hexane 51.1

Water/n-octane 50.8 Water/CCl4 45

Water/benzene 35.0 Water/ether 10.7

Mercury/benzene 375
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geometric form having the minimum surface : volume ratio, so that under the influ-

ence of surface tension alone units of matter will tend to assume a spherical shape,

as with droplets of liquids. This tendency may be opposed by other forces, such as

the gravitational force. The trend to surface minimization also accounts for the ten-

dency of a dispersion of liquid drops in a liquid (an emulsion) to coalesce into two

bulk phases.

Spreading of Liquids on Liquids. Picture a small volume of liquid 2 placed on

the planar surface of liquid 1. What will happen? Will it just sit there as a globule

(flattened by gravity into a ‘‘lens’’ shape), or will it spread out into a very thin film?

This question can be answered by considering the work of adhesion (which mea-

sures the attraction between 1 and 2) and the work of cohesion (which measures the

attraction within 2) (Adamson 1960, p. 107; Bummer 2000). The spreading coeffi-

cient S2=1 for the spreading of 2 on 1 is defined as

S2=1 ¼ wa � wcð2Þ ð11:5Þ

where wcð2Þ is the work of cohesion of liquid 2. Similarly, the spreading coefficient

S1=2 for the spreading of 1 on 2 is

S1=2 ¼ wa � wcð1Þ ð11:6Þ

Incorporating Eqs. (11.1) and (11.3) into these definitions gives

S2=1 ¼ g1 � ðg2 þ g12Þ ð11:7Þ
S1=2 ¼ g2 � ðg1 þ g12Þ ð11:8Þ

Let us try to anticipate the possible outcomes of numerical calculations of spread-

ing coefficients. If wa � wcð2Þ, evidently the attraction between 1 and 2 is greater

than the self-attraction of liquid 2, so the spreading coefficient will be positive and

we may expect 2 to spread on 1. Compare the rather extreme cases in Example 11.2.

Example 11.2. Calculate the spreading coefficients of water on mercury and of

mercury on water and interpret the results. (Ignore the density difference!)

Let mercury be liquid 1 and water liquid 2. From Eqs. (11.7) and (11.8) and data

in Tables 11.1 and 11.2, we have

S2=1 ¼ 485:5� ð71:8þ 375Þ ¼ þ38:7

S1=2 ¼ 71:8� ð485:5þ 375Þ ¼ �788:7

Thus water will spread on mercury but mercury will not spread on water.

In general a liquid of lower surface tension will spread on a liquid of higher surface

tension. However, spreading does not continue indefinitely, because the phenomenon
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in which liquid 2 spreads on liquid 1 creates a new surface tension, leading to a

situation in which the spreading coefficient is negative and addition of further 2

leads to formation of a lens rather than continued spreading.

Wetting of Solids by Liquids. Consider the system of a drop of liquid L on a

planar surface of a solid S, where the system is at equilibrium with the vapor V of

the liquid. The shape of the drop can be specified in terms of the angle y that a

tangent makes to the surface of the liquid at its point of contact with the solid.

This angle is called the contact angle. It can be measured experimentally.

A simple relationship can be obtained connecting y with the system surface and

interfacial tensions. Figure 11.3 shows the construction, the lengths of the arrows

(vectors) being proportional to the indicated tensions. At equilibrium, the force

associated with tension gSV is exactly balanced by the sum of the forces due to

gSL and the component of gLV lying in the same plane and direction as gSL. This

component has the magnitude ab in the figure, and is seen to be equal to gLV cos y.

Thus Eq. (11.9) can be written.

gSV ¼ gSL þ gLV cos y ð11:9Þ

The tension gLV is, of course, simply the surface tension of the liquid. gSL is the

liquid/solid interfacial tension, and gSV is the surface tension of the solid.

If the liquid wets the solid, the liquid spreads out on the surface, reducing the

angle y; commonly a liquid that wets a solid is considered to have a contact angle of

0�. If y > 90�, the liquid does not wet the solid. Examination of Fig. 11.3 shows

that y will be reduced under the influence of these factors: a larger value of gSV,

or smaller values of gLV and of gSL. For a given solid, wetting will be favored

by liquids with lower surface tensions. For a given liquid, wetting will be favored

by solids with higher surface tensions.1

Pressure Difference across Spherical Surfaces. A bubble is a region of

vapor (often including air) surrounded by a thin film of liquid. A cavity is a hole

(containing vapor) in a liquid. A droplet is a small volume of liquid. Bubbles,

V

γ
SV

γ
SL

γ
LV

L

S

θ
a b

Figure11.3. Contact angle y of a solid on a solid.
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cavities, and droplets are approximately spherical; they would be spheres if surface

forces only were active, but other forces distort their shape. We will assume that

they are spheres. Bubbles actually have double walls, an inner film and an outer

film, so they have twice the surface area of a sphere their size. Cavities and droplets

have single surfaces.

An interesting property of these systems has been known for a long time. Con-

sider a spherical system (we may think of a bubble, while neglecting the double

wall), of radius r. There is a driving force for reducing r as a consequence of

two factors. One of these is the external pressure on the bubble, and the other is

the surface energy. At equilibrium this combined force is just balanced by that

due to the internal pressure. We seek the condition of equilibrium balance. First

we write the external and internal work terms, then differentiate these with respect

to r (giving forces), and then equate the forces.

The external work is a sum of a work of expansion contribution and a surface

work term:

dwext ¼ Pext dV þ g dA

The force is dwext=dr, or

dwext

dr
¼ Pext

dV

dr
þ g

dA

dr

For a sphere V ¼ ð4=3Þpr3 and A ¼ 4pr2, so we get

dwext

dr
¼ 4pr2Pext þ 8prg ð11:10Þ

The internal work is dwint ¼ PintdV , giving in the same way

dwint

dr
¼ 4pr2Pint ð11:11Þ

Equating Eqs. (11.10) and (11.11) yields

Pint ¼ Pext þ
2g
r

ð11:12Þ

According to this surprising result, the pressure inside the bubble or cavity is

greater than that outside by the amount 2g=r.

Example 11.3. Calculate the pressure difference inside and outside a cavity in

water whose radius is 0.01 mm.

We use eq. (11.12) with r ¼ 10�5 m and g ¼ 71:8 mN m�1, finding

Pint � Pext ¼ 1:436� 107 mN m�2
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This quantity can be converted to more familiar units by using the identities

1 Pa ¼ 1 N m�2

1 atm ¼ 101325 Pa

The result is 0.142 atm.

For a planar surface, r is infinite, so the pressure difference vanishes.

Two practical consequences of eq. (11.12), which we will not develop here, are

(1) the vapor pressure of very small droplets is greater than that of large droplets, so

the small droplets evaporate; (2) the solubility of very small particles is greater than

that of larger particles (Glasstone 1947, p. 247).

11.2. ADSORPTION

The Surface Phase. To the eye a surface or interface at equilibrium appears to

be a quiescent, two-dimensional element, but since matter is atomic or molecular in

structure we have to consider the nature of the surface in molecular terms. We know

that molecules possess thermal energy; in particular, they possess translational

energy and are incessantly in motion. Thus at the boundary between a liquid and

its vapor, molecules are passing from the liquid state to the vapor state, and vice

versa. If the system is at thermodynamic equilibrium, these two rates are equal,

so the net transport between the phases is zero, but the extent of molecular traffic

is prodigious. The molecules within the liquid phase are also in thermal motion. We

noted earlier that the surface region extends several molecular diameters in thick-

ness into the liquid phase. This surface region or phase cannot be sharply demar-

cated at either of its boundaries (with the bulk liquid or with the vapor) because of

the molecular motion. Far from being a quiescent two-dimensional construction,

the surface region is a turbulent three-dimensional ‘‘interphase.’’

Molecules in the surface region experience a force field different from that

experienced by those in the bulk. A molecule within a bulk liquid is enveloped

in a homogeneous force field (on average), because its molecular environment is

the same in every direction. Consequently the forces on the molecule are every-

where balanced out, so it experiences no net force. At the surface, on the other

hand, the molecule’s environment is disymmetric; it experiences more intermolecu-

lar forces from the bulk liquid side than from the vapor side. (This disymmetric

nature of the forces is treated by some authors as the source of the surface tension.)

Notwithstanding our recognition that the surface region is ill-defined geometri-

cally on the molecular scale, we find it convenient, and also justifiable, as we will

see, to treat the surface as a two-dimensional mathematical abstraction. First, treat-

ing the surface region realistically as a phase, we may conclude from standard

thermodynamics that the chemical potentials of all constituents in a system at equi-

librium are identical in all phases, including the surface phase. Next, turning to the

surface region treated abstractly as a mathematical surface dividing two phases,
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refer to Fig. 11.4a, which depicts two phases, a and b, divided by surface s, whose

location is arbitrarily chosen to separate chemically bulk a from chemically bulk b;

that is, s is located somewhere within the surface region. Suppose the system

consists of two components, 1 and 2. The element shown in the figure has cross-

sectional area A. If n1 and n2 are the total numbers of moles of 1 and 2 contained

between the limits aa and bb, respectively, we can write these mass balances:

na
1 þ n

b
1 þ ns

1 ¼ n1 ð11:13aÞ

na
2 þ n

b
2 þ ns

2 ¼ n2 ð11:13bÞ

Now since the molar concentration of 1 in phase a is ca1 ¼ na
1=Va, where Va ¼ xA,

and so on, we expand Eq. (11.13) to

xAca1 þ yAc
b
1 þ ns

1 ¼ n1 ð11:14aÞ

xAca2 þ yAc
b
2 þ ns

2 ¼ n2 ð11:14bÞ

We divide by A and define � ¼ ns=A, obtaining

xca1 þ yc
b
2 þ �1 ¼

n1

A
ð11:15aÞ

xca2 þ yc
b
2 þ �2 ¼

n2

A
ð11:15bÞ

β β

α α

b bb

a a a a

S

S'
x

y

x'

y'

    (a) (b)

b

Figure11.4. (a) Two-phase system, with aa and bb located within bulk phases a and b, and s the

dividing boundary within the surface phase; (b) same as (a) but with the dividing boundary

moved to s0.

144 SURFACES AND INTERFACES



This quantity � is called the surface excess of the specified constituent. Referring to

Eq. (11.13a), we can write

�1 ¼
n1

A
� na

1 þ n
b
1

A

which shows that �1 can be zero, positive, or negative. If �1 is positive, an excess of

constituent 1 (relative to the bulk) is located at the surface, whereas a negative value

of �1 indicates a deficiency at the surface (although it is still called the surface

excess).

Returning to our mathematical treatment, let us suppose that phase b is a vapor

phase, and that c
b
2 is negligible. We then have

xca1 þ �1 ¼
n1

A
ð11:16aÞ

xca2 þ �2 ¼
n2

A
ð11:16bÞ

Next we construct Fig. 11.4b for the same system, altering the construction only by

displacing boundary s to position s0 (but still within the surface region). Repeating

the treatment gives the following, by analogy with Eq. (11.16):

x0ca1 þ �01 ¼
n1

A
ð11:17aÞ

x0ca2 þ �02 ¼
n2

A
ð11:17bÞ

Since n1 and n2 are fixed and independent of the choice of s or s0, we write from

(11.16) and (11.17)

xca1 þ �1 ¼ x0ca1 þ �01 ð11:18aÞ
xca2 þ �2 ¼ x0ca2 þ �02 ð11:18bÞ

These two equations combine to give

�01 � �1

ca1
¼ �02 � �2

ca2

which further rearranges to

�01ca2 � �02ca1 ¼ �1ca2 � �2ca1 ¼ constant ð11:19Þ

That is, the left-hand portion of Eq. (11.19) refers solely to dividing line s0, whereas

the right-hand portion refers solely to dividing line s, and these are equal. If we

created yet more dividing surfaces (within the surface region), say, s00, s000, and so
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on, the corresponding terms would all be the same. The conclusion is that the

choice of dividing surface is arbitrary and irrelevant, provided it lies within the sur-

face region. Of course, the numerical values of the surface excesses depend on the

location of the dividing line, so practical issues may lead to a preferred location, but

there is no fundamental issue involved (Adamson 1960, pp. 73–79).

This consideration leads to a very convenient simplification in our next develop-

ment, for, if we can place the dividing surface as we wish, why not place it so that

one of the surface excesses is equal to zero?

The Gibbs Adsorption Equation. We are going to develop a famous equation

of Gibbs by following a path used earlier in analyzing an open system without con-

sideration of a surface phase. Where we earlier wrote the free energy as the general

function [Eq. (3.19)]

G ¼ f ðT;P; n1; n2; . . .Þ

we now expand the description, writing

G ¼ f ðT ;P; g; n1; n2; . . .Þ ð11:20Þ

In order to simplify the treatment, we will consider that the temperature and pres-

sure are constant, and that only two components are present. Carrying through the

earlier development gives the surface phase analog to the Gibbs–Duhem equation

[Eq. (3.28)]

A dgþ ns
1 dm1 þ ns

2 dm2 ¼ 0 ð11:21Þ

where m1 and m2 are the chemical potentials of the two components in the surface

phase (but we do not need to distinguish them as surface potentials because at equi-

librium the potential is the same everywhere).

Now dividing through by A and recalling the definition of surface excess gives

dgþ �1 dm1 þ �2 dm2 ¼ 0 ð11:22Þ

Next we make use of the demonstration of the preceding analysis, where we saw

that the dividing surface can be arbitrarily placed, and we choose to place it such

that �1, the surface excess of component 1 (which we can take as the solvent) is

zero. Thus

dg ¼ ��2 dm2 ð11:23Þ

At low solute concentrations, where the solute activity coefficient may be taken as

essentially unity, we have

m2 ¼ m0 þ RT ln c2 ð11:24Þ
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Combining Eqs. (11.23) and (11.24) gives the Gibbs adsorption equation:2

�2 ¼ �
c2

RT

dg
dc2

� �
ð11:25Þ

The great value of the adsorption equation is that it connects the readily measurable

quantities on the right-hand side with the somewhat abstract concept of the surface

excess. Qualitatively we can see that if the surface tension of a solution of solute 2

in solvent 1 decreases as the concentration of 2 increases, then �2 is positive, mean-

ing that solute 2 is more concentrated at the surface than in the bulk of the solution.

Substances that exhibit positive surface excesses, and therefore produce surface ten-

sion decreases, are called surface active agents, or surfactants. Soaps and deter-

gents are surfactants. Such agents tend to be fairly large molecules, having one

end of the molecule polar (and therefore attracted to a polar solvent like water)

and the other end nonpolar (and therefore preferring to reside in a nonpolar phase).

Even quite small molecules with these molecular attributes exhibit positive surface

excesses. Organic solvents such as alcohols, acetone, acetonitrile, and dimethylsulf-

oxide decrease the surface tension of water.3 Inorganic salts, on the other hand,

increase the surface tension of water.

Equation (11.25) can be written in the equivalent form

�2 ¼ �
1

RT

dg
d ln c2

� �
ð11:26Þ

or

dg ¼ �RT �2 d ln c2 ð11:27Þ

Of course �2 is a function of concentration, so simple integration is unwarranted,

but Eqs. (11.26) and (11.27) suggest that plots of g against ln c2 may be fruitful

forms of data analysis. Such plots are curved, but their slopes (tangents to the

curve) yield estimates of �2 as a function of concentration (Bummer 2000).

Adsorption Isotherms. Adsorption is that process in which a substance devel-

ops a positive surface excess at a surface or interface. In our present discussion we

will restrict attention to those systems in which a component of a gas or vapor phase

is adsorbed to a solid surface, or in which a component of a liquid solution is

adsorbed to a solid surface. The substance that is adsorbed is called the adsorbate,4

and the solid is called the adsorbent. It might seem that the Gibbs surface excess �
is the quantity that should be sought experimentally in a study of adsorption, but

usually some more accessible measure of the extent of adsorption is determined.

A graph of this measure of extent of adsorption against the partial pressure of

the adsorbate in the vapor (for vapor–solid systems) or against its solution concen-

tration (for liquid–solid systems) is called an adsorption isotherm. (The term iso-

therm simply means that the temperature is held constant.)
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Many shapes of adsorption isotherms have been found experimentally, but we

will consider only one of these in detail. This function, called the Langmuir adsorp-

tion isotherm, is widely observed, its physical basis is simple, and its mathematics

turn out also to be applicable to other types of systems involving noncovalent inter-

actions, such as enzyme–substrate complexing and molecular complex formation.

To focus attention, suppose that we have a two-component solution of solvent 1 and

solute (adsorbate) 2 in contact, and at equilibrium, with solid. The process can be

portrayed as

Adsorbate in solution
adsorption

desorption
adsorbate on surface

Our approach, oddly, is a kinetic one. At equilibrium the rate at which molecules of

adsorbate adsorb to the surface is just equal to the rate at which they desorb from

the surface. We write these expressions for these rates:

Rate of adsorption ¼ kac2 Af ð11:28Þ
Rate of desorption ¼ kdAb ð11:29Þ

In these equations c2 is the solution concentration of adsorbate; ka and kd are rate

constants for adsorption and desorption, respectively; Af is the solid surface area

per unit mass (usually per gram) that is ‘‘free,’’ namely, unoccupied by adsorbate

molecules; and Ab is the solid surface area per unit mass that is ‘‘bound,’’ or occu-

pied by adsorbate molecules. Equation (11.28) postulates that the rate of adsorption

is directly proportional to the concentration (actually activity) of adsorbate and to

the amount of space available for adsorption on the surface. Equation (11.29) says

that the rate of desorption is directly proportional to the extent of surface already

covered by adsorbate molecules. It is important to recognize that, for any given sys-

tem, Eqs. (11.28) and (11.29) a priori may or may not be valid; they constitute

hypotheses, to be justified by subsequent testing against experimental data.

At equilibrium these two rates are equal. Let us work out the ramifications of this

equality:

kac2Af ¼ kdAb ð11:30Þ

Define the total surface area per unit mass as At, so

At ¼ Af þ Ab ð11:31Þ

Eliminating Af , defining K ¼ ka=kd (K is an equilibrium constant), and rearranging

gives

Kc2 ¼
Ab

At � Ab

ð11:32Þ
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We now define y, the degree of saturation, by

y ¼ Ab

At
ð11:33Þ

Combining Eqs. (11.32) and (11.33) gives

Kc2 ¼
y

1� y
ð11:34Þ

which is one form of the Langmuir adsorption isotherm. More commonly it is

encountered in this rearranged form:

y ¼ Kc2

1þ Kc2

ð11:35Þ

Equation (11.35) is equivalent to

Ab ¼
KAtc2

1þ Kc2

ð11:36Þ

Now let s be the area occupied per molecule on the surface, so Ab=s is the number

of molecules adsorbed per gram of solid, and nb ¼ Ab=sNA (where NA is Avoga-

dro’s number) is the number of moles of adsorbate bound per gram of solid. Simi-

larly, At=sNA ¼ nmax is the maximum number of moles that can be bound per gram

of solid. Making substitutions in Eq. (11.36) gives finally

nb ¼
Knmaxc2

1þ Kc2

ð11:37Þ

This is a very practical form of the Langmuir adsorption isotherm. Experimentally

we know c2, the solution concentration of adsorbate, and we measure nb, the num-

ber of moles of adsorbate per gram of solid.

Two practical problems remain. We wish to test the hypothesis against the data

(i.e., we wish to establish whether the system is described by the Langmuir iso-

therm), and, if Eq. (11.37) is in fact descriptive of the system, we wish to evaluate

the model parameters K and nmax. Both problems have traditionally been solved by

rearranging Eq. (11.37) to this form:

c2

nb

¼ c2

nmax

þ 1

Knmax

ð11:38Þ

This is the equation of a straight line. If the Langmuir isotherm is obeyed, a plot of

c2=nb against c2 should be linear, with slope ¼ 1=nmax and intercept ¼ 1=Knmax.

Thus nmax ¼ 1=slope, and K ¼ slope=intercept.
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From Eq. (11.37) we can analyze Langmuirian behavior. If c2 is very low, so that

Kc2 
 1, then nb � Knmaxc2; the isotherm is nearly linear at very low adsorbate

concentrations. At relatively high c2 values, where Kc2 � 1, then nb � nmax;

the extent of adsorption reaches a maximum value and becomes independent of

the solution concentration. The physical interpretation of this result is that the sur-

face is completely covered with adsorbate molecules, and that no further adsorption

can occur because no more solid surface is accessible. This is interpreted to mean

that the surface is covered with a layer of adsorbate one molecule thick (a mono-

molecular layer). This is one of the physical implications of the Langmuir isotherm.

Another implication is that adsorption ‘‘sites’’ on the solid surface are independent

in the sense that the energy of adsorption of an adsorbate molecule to a surface site

is independent of whether an adjacent site is already occupied.

These physical restrictions are rather severe, so it may seem unlikely that the

Langmuir isotherm will be followed by real systems, yet many adsorption systems

fit the equation well or at least reasonably so as a good approximation. Figure 11.5

shows some isotherms for the adsorption of dyes on cornstarch (Zografi and Mat-

tocks 1963). The shapes of these curves are typical of Langmuirian adsorption, and

the plots according to Eq. (11.38), in Fig. 11.6, confirm the validity of Eq. (11.37)

as a description of the phenomenon.

Example 11.4. Figure 11.7 is the isotherm for the adsorption of indolinospiropyran

from cyclohexane solution onto alumina of specific area 155 m2 g�1 (Connors and

Jozwiakowski 1987; Jozwiakowski 1987). The quantity y is the amount adsorbed in

mg g�1. From the plot according to Eq. (11.38) these parameters were found:

K ¼ 810 M�1 and ymax ¼ 53:9 mg g�1. The molecular weight of the adsorbate is
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Figure11.5. Plots of milligrams of dye absorbed per gram of cornstarch ½xðMÞ
, versus milligrams
of dye per 100 ML of solution at equilibrium for FD&C Red No. 3 ( g), FD&C Blue No. 2 (�), Ext.

D&C Red No. 15 (�), FD&C Yellow No. 5 (�), and FD&C Green No. 1 (*). [Reproduced with

permission from Zografi and Mattocks (1963).]
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327. Calculate the area occupied per molecule of adsorbate on the surface of the

solid.

The area we want is s, which appears in the relationship At=sNA ¼ nmax. We

therefore first convert ymax to nmax; ymax ¼ 53:9 mg g�1 ¼ 0:0539 g g�1; dividing

by the molecular weight gives us nmax ¼ 1:65� 10�4 mol g�1.

We solve for s in s ¼ At=NAnmax, where At ¼ 155 m2g�1, finding s ¼
1:56� 10�18 m2molecule�1, which is equivalent to 156 Å2 molecule�1. Inciden-

tally, the specific area At is itself determined by a gas adsorption method.
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Figure11.6. Plots according to Eq. (11.38) for the isotherms shown in Fig. 11.5. [Reproduced with

permission from Zografi and Mattocks (1963).]
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Figure 11.7. Adsorption isotherm at 25�C for indolinospiropyran from cyclohexane onto alumina.

The smooth line was drawn with Eq. (11.37) and the parameters given in Example 11.4.

[Reproduced by permission from Connors and Jozwiakowski (1987).]
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Solids as adsorbents have limited but important application as pharmaceutical

agents; they serve mainly to adsorb toxic agents in the gastrointestinal tract. Acti-

vated charcoal is used for this purpose, being administered as soon as possible after

ingestion of a toxic dose of a drug or poison, which on adsorption to the solid is

effectively inactivated and is excreted. Besides this emergency application, adsor-

bents are widely used in the purification of chemicals, because they are effective

in adsorbing colored impurities (colored molecules tend to have large surface

areas and numerous polar groups) and in separation processes such as chroma-

tography.

PROBLEMS

11.1. Calculate the work of adhesion at the water-diethyl ether interface.

11.2. Calculate the spreading coefficients of water on ether and of ether on water,

and interpret the results.

11.3. Calculate the surface work required to enlarge a cavity in water from a

diameter of 0.1 mm to a diameter of 1 mm.

11.4. Equation (11.38) is a linearized version of Eq. (11.37). There exist two

additional linearized forms of Eq. (11.37). Find these linear equations, and

show how the model parameters can be obtained from the slope and intercept

of the plots.

11.5. These are data for the adsorption of 6-methoxybenzoindolinopyran from

cyclohexane solution onto silica gel of specific area 300 m2 g�1. The quantity

y is the amount of adsorbate adsorbed in mg g�1. The molecular weight of the

adsorbate is 307. Analyze the data; that is, determine if the data fit the

Langmuir isotherm and, if so, evaluate the model parameters (Connors and

Jozwiakowski 1987; Jozwiakowski 1987).

103 c2 ðMÞ y ðmg g�1Þ

1.18 58.2

2.08 60.6

4.26 94.7

5.75 103.5

8.65 105.8

10.62 107.4

12.27 119.7

14.13 123.8

16.06 124.8

16.98 127.6

19.81 134.3
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NOTES

1. Solids with higher surface tensions are said to be higher energy solids. Such solids tend to

possess polar functional groups. A solid such as paraffin, which is a saturated hydrocarbon, is

a low-energy solid. Silica (glass) is of higher energy.

2. See Gibbs (1876, 1878). Equations (11.23) and (11.25) are obtained on pp. 232 and 235,

respectively, of the Dover (1961) edition. Much of Gibbs’ massive work on thermodynamics

is difficult for the modern reader to follow, in part because his symbolism differs from our

usage, but two of the symbols Gibbs introduced, m for chemical potential and � for surface

excess, are still used, so his surface equations are more accessible. Incidentally, Gibbs would

write Eqs. (11.23) and (11.25) with the symbol �2ð1Þ, thus explicitly noting that this is the

value of �2 given that �1 is set to zero.

3. Equations have been described with which the surface tensions of binary aqueous–organic

solvent mixtures can be modeled over the entire composition range; see Connors and Wright

(1989) and Khossravi and Connors (1993).

4. In adsorption the adsorbate adheres to the surface of the solid. In absorption the solute is

taken up throughout the volume of the solid. When the nature of the process is unknown, the

generic term sorption may be used.
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III

THERMODYNAMICS OF
CHEMICAL PROCESSES

Parts I and II of this book provide most of the concepts and quantitative relation-

ships that we will need in our treatment of chemical processes. Occasional

reference will be made to passages or equations in earlier chapters so as to mini-

mize repetition of material. For brevity we state here that, except when indicated

otherwise, constant temperature and pressure may be assumed; thus minimization

of the Gibbs free energy is the criterion for equilibrium. Commonly the fixed

pressure is the ambient (atmospheric) pressure and the fixed temperature is 25�C
or ‘‘room temperature.’’ Usually solute concentrations are given in moles per liter

(molarity), symbolized either cA or [A]; these represent concentrations at

equilibrium unless noted otherwise. The solute reference state is the infinitely dilute

solution, and very often we will suppose that the solute is in its reference state so

that its activity coefficient is unity and its activity is equal to its concentration; this

condition will allow us to focus on the essential chemistry of the process without

being needlessly distracted by considering corrections for nonideal behavior. Such

corrections can always be brought into the description as they are found to be

required.
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Kenneth A. Connors
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12

ACID–BASE EQUILIBRIA

Most drug molecules and biomolecules include one or more acidic or basic

functional groups, so acid–base chemistry is pervasive in pharmaceutical systems.

Acid–base equilibria therefore deserve detailed attention.

12.1. ACID–BASE THEORY

Definitions. Acid–base phenomena were observed very early in the development

of chemical science, but their systematic understanding is a twentieth-century

accomplishment. The Arrhenius theory of acids and bases, dating from the close

of the 19th century, postulated that an acid is a substance that in water gives rise

to hydronium ions, and that a base is a substance that in water gives rise to

hydroxide ions. Thus HCl is an acid and NaOH is a base. The admittedly basic

properties of compounds like amines, which do not contain the elements of the

hydroxide ion, were proposed to result from reaction with water (hydrolysis) to

generate hydroxide ions, as in

RNH2 þ H2OÐ RNHþ3 þ OH�

The Arrhenius theory provided a satisfactory conceptual basis for understanding

acid–base behavior in aqueous solution, but it was limited by its dependence on

water as a solvent.

Acid–base behavior is observable in many solvents other than water, and such

systems became comprehensible with the introduction, in 1923, of an acid–base

theory by Bronsted (and independently by Lowry) based on these definitions; an
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acid is a species that can donate a proton, and a base is a species that can accept a

proton. In reaction form this is

HA
acid
Ð Hþ þ A� ð12:1Þ

Hþ þ B
base
Ð BHþ ð12:2Þ

Observe that the Bronsted definitions are built on the proton, and not the hydronium

ion, so the new definition is independent of the solvent. We now proceed to explore

the ramifications of this powerful definition.1

The Conjugate Pair Concept. Observe in Eq. (12.1), on reading it from right to

left, that the species A� is accepting a proton, and so it must, by definition, be a

base. Similarly, in Eq. (12.2) read from right to left, BHþ is donating a proton,

so it must be an acid. The Bronsted acid–base definitions can be generally

represented by

AcidÐ Hþ þ base ð12:3Þ

An acid–base pair related by Eq. (12.3) is called a conjugate acid–base pair. Thus,

referring to Eq. (12.1), we speak of A� as the conjugate base of acid HA; from

Eq. (12.2), BHþ is the conjugate acid of base B.

Equation (12.3) and the associated definitions make no mention of the charge

types of the acid or base; the only requirement is that an acid be one positive charge

greater than its conjugate base. Here are examples of equilibria that fit Eq. (12.3),

showing acids and bases of various charge types:

Acid Base

CH3CH2COOH Ð Hþ þ CH3CH2COO�

HCO�3 Ð Hþ þ CO2�
3

CH3CH2NHþ3 Ð Hþ þ CH3CH2NH2

Hþ3 N��C6H4��NHþ3 Ð Hþ þ H2N��C6H4��NHþ3

The proton of Eq. (12.3), which is a naked nucleus, is a species of extremely high

reactivity, a reactivity so high that in ordinary chemical systems the proton will not

be detectable (because it will certainly combine with some other species in its

vicinity). Consequently we never actually observe Eq. (12.3) by itself. But if we

combine two conjugate pairs, the proton donated by the acid of one pair can be

accepted by the base of the other pair, and we observe an overall proton transfer

reaction. Writing the conjugate pair reactions separately and adding them to give

the net reaction:
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Pair 1: HA
acid 1

Ð Hþ þ A�
base 1

Pair 2: B
base 2
þHþ Ð BHþ

acid 2
——————————

Overall: HA þ BÐ A� þ BHþ

The net result is that a proton has been transferred from the first pair to the second

pair (reading from left to right), or vice versa when reading from right to left.

Next suppose that one of the pairs is the solvent. In particular, let it be water, our

most important solvent. Water reacts in the pattern of Eq. (12.3):

H2O
acid
Ð Hþ þ OH�

base
ð12:4Þ

Thus H2O is an acid, and OH� is its conjugate base. But water is also capable of

functioning in this version of Eq. (12.3):

H3Oþ
acid

Ð Hþ þ H2O
base

ð12:5Þ

Thus H2O is the conjugate base of H3Oþ. A substance that (like water) can be either

an acid or a base is said to be amphoteric. The amphoteric nature of water allows it

to play the role of the second conjugate pair for either acids or bases. If the solute is

an acid (say, HA), then H2O functions as a base:

HA þ H2OÐ A� þ H3Oþ ð12:6Þ

whereas if the solute is a base (say, B), then H2O functions as an acid:

Bþ H2OÐ BHþ þ OH� ð12:7Þ

Throughout most of Chapter 12 we will be concerned with reactions like those in

Eqs. (12.6) and (12.7).

Dissociation Constants. Consider the system described by Eq. (12.6) at

equilibrium.2 We can apply the thermodynamic concept of the equilibrium constant

(Section 4.3) to define the quantity Ka:

Ka ¼
½H3Oþ	½A�	
½HA	 ð12:8Þ

where we assume that activity coefficients are unity. (The activity of water is equal

to its mole fraction, essentially unity in dilute solution.) Very commonly, when

water is understood to be the solvent, Eq. (12.6) is abbreviated to

HAÐ Hþ þ A�
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and Eq. (12.8) becomes

Ka ¼
½Hþ	½A�	
½HA	 ð12:9Þ

The equilibrium constant Ka is known as the acid dissociation constant (also called

the acid ionization constant or the acidity constant). In like manner, from Eq. (12.7)

we define the base dissociation constant Kb:

Kb ¼
½BHþ	½OH�	
½B	 ð12:10Þ

We can apply the same formalism to water. From Eq. (12.4), we have

Kw ¼ ½Hþ	½OH�	 ð12:11Þ

where again the activity of water in the denominator is unity. Kw is called the ion

product or autoprotolysis constant of water.

We are now prepared to develop the most powerful quantitative result of the

Bronsted acid–base theory. Consider the equilibria of HA as an acid and of A�

as its conjugate base:

HAÐ Hþ þ A�; Ka ¼
½Hþ	½A�	
½HA	 ð12:12Þ

A� þ H2OÐ HAþ OH�; Kb ¼
½HA	½OH�	
½A�	 ð12:13Þ

Now multiply together the Ka of eq. (12.12) and the Kb of Eq. (12.13). The result is

[Hþ] [OH�], or

Kw ¼ KaKb ð12:14Þ

where the Ka and Kb of Eq. (12.14) refer to a conjugate acid–base pair. Since Kw is

a constant (at a given temperature), Eq. (12.14) says that Ka and Kb are reciprocally

related; that is, Kb ¼ Kw=Ka. Values of Kw are known over the entire practical

temperature range, so a result of Eq. (12.14) is that if we know either Ka or Kb,

we can calculate the other. It is not necessary to measure both quantities.

We will subsequently see that Ka is a measure of acid strength and that Kb is a

measure of base strength. Thus Eq. (12.14) shows that the strengths of an acid and

its conjugate base are not independent; on the contrary, the stronger the acid, the

weaker the base, and vice versa. Because of this relationship, we commonly specify

acid strength in terms of Ka, but we do not use Kb to describe the strength of a base.

Instead we use the Ka of the conjugate acid of the base. This may seem illogical, but

it is traditional, and we will return to the issue in Section 12.7.
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As it happens, Ka and Kb values are usually very small numbers, so for

convenience (as one motive) we define

pK ¼ �log K ð12:15Þ

where K may be Ka, Kb, or Kw. The symbol p is a mathematical operator that turns a

quantity into its negative logarithm. Applying Eq. (12.15) to Eq. (12.14) gives

pKw ¼ pKa þ pKb ð12:16Þ

which is a very convenient form.

Conventionally we divide acids and bases into the classes of strong acids and

bases and of weak acids and bases. Strong acids and bases are strong electrolytes,

essentially completely dissociated in water; HCl, H2SO4, HNO3, NaOH, and KOH

are examples. Weak acids and bases are incompletely dissociated in water; car-

boxylic acids, phenols, and amines are examples. The concept of the equilibrium

constant is usefully applied only to the weak acids and bases.

pH. Let us apply the p operator to the hydrogen ion concentration. We write

pH ¼ �log ½Hþ	 ð12:17Þ

Extending this formalism to Eq. (12.11) gives

pKw ¼ pHþ pOH ð12:18Þ

from which we see that the acidity of a solution (measured by pH) and its alkalinity

(measured by pOH) are coupled, so we do not need to measure both quantities. In

the laboratory it is much easier to measure pH, so this is the quantity that we use to

describe solution acidity or alkalinity. Table 12.1 lists pKw values at several

temperatures (Harned and Owen 1958, p. 638). Note that pKw ¼ 14:00 at 25�C.

Table 12.1. Ion product of water as a function of
temperature

t ð�CÞ pKw

0 14.94

10 14.54

20 14.17

25 14.00

30 13.83

40 13.54

50 13.26

60 13.02
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A solution in which pH ¼ pOH is said to be neutral; hence a neutral solution has

pH ¼ 7:00 (but only at 25�C). The practical pH range in water is essentially defined

by the value of pKw, or 14 pH units. The lower the pH the more acidic the solution;

the higher the pH, the more alkaline the solution.3

Example 12.1

(a) Convert Ka ¼ 2
 10�4 to pKa.

pKa ¼ �log Ka

¼ �ðlog 2þ log 10�4Þ
¼ �ð0:30� 4Þ
¼ �ð�3:70Þ
¼ 3:70

(b) If pKa ¼ 5:30, what is Ka?

�log Ka ¼ 5:30

log Ka ¼ �5:30

¼ �6:00þ 0:70

Ka ¼ 5:0
 10�6

Example 12.2. pKa ¼ 4:75 for acetic acid at 25�C. What is Kb of acetate ion?

From pKa ¼ 4:75 we find Ka ¼ 1:78
 10�5. Using either Eq. (12.14) or

Eq. (12.16), we find pKb ¼ 9:25 or Kb ¼ 5:62
 10�10.

Example 12.3. What is the hydroxide ion concentration of a solution having

pH ¼ 6:50 at 25�C?

From Eq. (12.18), pOH ¼ 14:00� 6:50 ¼ 7:50, so ½OH�	 ¼ 3:16
 10�8 M.

Example 12.4. The pKa of the conjugate acid of methylamine is 10.64 at 25�C.

Calculate the standard free energy change for the acid dissociation process.

From the basic thermodynamic result

�G� ¼ �RT ln K

and the definition pKa ¼ �log Ka we derive

�G� ¼ 2:303 RT pKa

¼ ð2:303Þð1:987 cal mol�1 K�1Þð298:15 KÞð10:64Þ
¼ 14517 cal mol�1

¼ 14:5 kcal mol�1

¼ 60:7 kJ mol�1
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�G� is positive because Ka is smaller (much smaller) than one. pKa is seen to be

directly proportional to �G�.

12.2. pH DEPENDENCE OF ACID–BASE EQUILIBRIA

Fractional Distribution of Acid–Base Species. Some of the treatment

described here follows Connors (1982). Picture a very dilute solution of a given

weak acid or base in an aqueous medium whose pH can be controlled, indepen-

dently of the solute of interest, by the experimenter. Such pH control is easy to

accomplish. We now assert, and will shortly demonstrate, that the fractions of

solute present in the conjugate acid and base forms depend only on the pH of the

solution and the pKa of the acid. Thus the pH is a ‘‘master variable’’ that controls all

acid-base equilibria in the solution.

Consider acid HA (whose charge type is irrelevant in what follows), having acid

dissociation constant Ka. Let c be its total molar concentration, so that the mass

balance expression Eq. (12.19) can be written.

c ¼ ½HA	 þ ½A�	 ð12:19Þ

We introduce the fractions of solute in the conjugate acid and base forms with these

definitions:

FHA ¼
½HA	

c
ð12:20Þ

FA ¼
½A�	

c
ð12:21Þ

Algebraic combination of Eqs. (12.9) and (12.19)–(12.21) gives

FHA ¼
½Hþ	

½Hþ	 þ Ka

ð12:22Þ

FA ¼
Ka

½Hþ	 þ Ka

ð12:23Þ

which relate the fractions of solute in the conjugate acid and base forms to the acid

dissociation constant and the hydrogen ion concentration of the medium. Equations

(12.22) and (12.23) confirm the earlier assertion that the solution pH (which we

recall can be established independently of the solute acid) is the only variable

controlling the position of the acid–base equilibrium. Figure 12.1 is a plot of

FHA and FA against pH, calculated with Eqs. (12.22) and (12.23) for a hypothetical

acid having pKa ¼ 4:0. This curve is called a sigmoid curve because of its shape.

From Eqs. (12.22) and (12.23) we can deduce these general properties of such

distribution curves. At any given pH, FHA þ FA ¼ 1 [a conclusion implicit
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in Eq. (12.19)]. At the point where the two curves cross, FHA ¼ FA ¼ 0:5, and at

this point ½Hþ	 ¼ Ka, or pH ¼ pKa. At pH values much less than pKa, FHA

approaches unity and FA approaches zero; at pH values much greater than pKa,

FA approaches unity and FHA approaches zero. The curves in Fig. 12.1 apply

to any monoprotic acid–base pair (i.e., one having only a single acid–base group

and therefore only a single pKa value) merely by sliding the curves along the pH

axis until their pH of intersection matches the solute pKa. From Fig. 12.1 we also

can see that most of the interesting acid–base chemistry of this system takes place

in the approximate pH range of pKa �2 units; outside this range the solute exists

largely either as HA (at low pH) or as A� (at high pH).

Rearrangement of Eqs. (12.20) and (12.21) gives ½HA	 ¼ cFHA and ½A�	 ¼ cFA;

if, therefore, the total concentration c is known (c is sometimes called the analytical

concentration), and if the pH and pKa are known, the individual conjugate acid and

base species concentrations are easily calculated.

Example 12.5. The pKa of benzoic acid is 4.20. Calculate the concentrations

of benzoic acid and benzoate ion in a solution whose pH¼ 5.20 and which was

prepared to contain 0.005 M benzoic acid.

The preceding wording may seem confusing, but it is a fair example of the

terminology that might be used in a laboratory. Its meaning is that c ¼ 0:005 M.
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Figure12.1. Variation with pH of the fraction FHA (conjugate acid) and FA (conjugate base) for an

acid with pKa ¼ 4:0. [Reproduced by permission from Connors (1982).]
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From the pKa we find Ka ¼ 6:31
 10�5 and from the pH we find ½Hþ	 ¼ 6:31

10�6. Equations (12.22) and (12.23) then give FHA ¼ 0:0909 and FA ¼ 0:909.

Thus ½HA	 ¼ 0:005
 0:0909 ¼ 4:55
 10�4 M and ½A�	¼0:005
0:909 ¼4:55

10�3 M. The slight discrepancy between the given value of c and the value obtained

by summing ½HA	 and ½A�	 results from rounding errors (and is probably experi-

mentally negligible). Notice that pH ¼ pKa þ 1 and that at this condition

½A�	 ¼ 10½HA	.

A diprotic acid (sometimes called a dibasic acid) possesses two acidic groups

and two pKa values. We can symbolize such an acid as H2A and write the acid–

base equilibria as follows:

H2AÐ
K1

Hþ þ HA�

HA�Ð
K2

Hþ þ A2�

The placement of K1 and K2 over the arrows effectively defines these constants. We

proceed to define fractions as before, except that now we have three solute species

FH2A ¼
½H2A	

c

FHA ¼
½HA�	

c

FA ¼
½A2�	

c

where c ¼ ½H2A	 þ ½HA�	 þ ½A2�	. Combining these relations with the two

dissociation constants gives

FH2A ¼
½Hþ	2

½Hþ	2 þ K1½Hþ	 þ K1K2

ð12:24Þ

FHA ¼
K1½Hþ	

½Hþ	2 þ K1½Hþ	 þ K1K2

ð12:25Þ

FA ¼
K1K2

½Hþ	2 þ K1½Hþ	 þ K1K2

ð12:26Þ

Obviously FH2A þ FHA þ FA ¼ 1. Observe how the three terms that make up the

denominator constitute in turn the numerators of Eqs. (12.24)–(12.26). At high

values of the hydrogen ion concentration the term ½Hþ	2 dominates; as ½Hþ	
decreases the middle term, K1½Hþ	, takes over as the largest contributor, and finally

at small values of ½Hþ	 the last term, K1K2, becomes the largest. Again some

general relationships can be derived from Eqs. (12.24)–(12.26). Where the curves

for FH2A and FHA cross, equating Eqs. (12.24) and (12.25) gives pH ¼ pK1.
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Similarly, where FHA and FA are equal, pH ¼ pK2. The pH at which the maximum

in FHA appears is found by differentiating Eq. (12.25) with respect to ½Hþ	 and

setting the derivative equal to zero; the result is

pHmax ¼
pK1 þ pK2

2
ð12:27Þ

Figure 12.2 is a plot of Eqs. (12.24)–(12.26) for a hypothetical diprotic acid having

pK1 ¼ 5:0 and pK2 ¼ 10:0. Note that the fraction FHA rises essentially to unity at a

pH given by Eq. (12.27).

Now compare Fig. 12.3 with Fig. 12.2. Again the curves are calculated with

Eqs. (12.24)–(12.26), but now pK1 ¼ 7:0 and pK2 ¼ 8:0. Equation (12.27) is still

obeyed, but now the fraction FHA fails to rise to anywhere near unity. The behavior

seen here is closely connected with the observation, in Fig. 12.1, that the essential

acid–base chemistry occurs largely in the pH region pKa � 2 units. In Fig. 12.2 the

pK1 and pK2 values differ by 5 units, so the two acid–base equilibria described by

K1 and K2 act essentially independently. In Fig. 12.3, however, �pKa ¼ pK2 � pK1

is only 1 unit. As, in imagination, the pH is raised, swept from left to right across

Fig. 12.3, H2A is converted to HA�; this transformation commences at about

pK1 � 2 units, or pH 5. But before it can be carried to completion (which would

not occur until pK1 þ 2, or pH 9), the system has been brought to within the range

pK2 � 2, or pH 6, so the second transformation, of HA� to A2�, must take place.

The consequence is that FHA cannot rise as high as it did in Fig. 12.2, where �pKa

was 5 units. Generally one may expect successive pKa values to control essen-

tially independent equilibria if �pKa � 4. The consequence in Fig. 12.2 is that

the system contains essentially only two acid–base species ðH2Aþ HA� or
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Figure12.2. Species distribution diagram for a dibasic acid H2A with pK1 ¼ 5:0 and pK2 ¼ 10:0.

[Reproduced by permission from Connors (1982).]
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HA� þ A2�Þ at any given pH. In Fig. 12.3, however, the three species coexist in a

wide pH range.4

These principles can be extended to acids and bases with any number of

acid–base groups. The form of the expressions for the fractions is seen to take

on a predictable pattern, and it is possible to write these expressions down without

derivation. For the tribasic acid H3A these expressions become

FH3A ¼
½Hþ	3

½Hþ	3 þ K1½Hþ	2 þ K1K2½Hþ	 þ K1K2K3

FH2A ¼
K1½Hþ	2

½Hþ	3 þ K1½Hþ	2 þ K1K2½Hþ	 þ K1K2K3

and so on.

Example 12.6. Calculate the concentration of monoanion in an aqueous solution

0.01 M in phthalic acid at pH 5.00. pK1 ¼ 2:95; pK2 ¼ 5:41.

Phthalic acid is

COOH

COOH

1
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Figure 12.3. Species distribution diagram for a dibasic acid H2A with pK1 ¼ 7:0 and pK2 ¼ 8:0.

[Reproduced by permission from Connors (1982).]
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The two ionizable groups are obviously equivalent. We calculate K1 ¼ 1:12
 10�3

and K2 ¼ 3:89
 10�6. From Eq. (12.25), we obtain

FHA ¼
ð1:12
 10�3Þð1
 10�5Þ

ð1
 10�5Þ2 þ ð1:12
 10�3Þð1
 10�5Þ þ ð1:12
 10�3Þð3:89
 10�6Þ
¼ 0:713

Then from ½HA�	 ¼ cFHA, we have

½HA�	 ¼ 0:01
 0:713

¼ 7:13
 10�3 M

Buffer Solutions. Suppose that an aqueous solution is prepared to contain a

mol L�1 of a weak acid HA and b mol L�1 of its conjugate base A�. (Of course

A� will be accompanied by b mol L�1 of its counterion, a cation.) As we have

done earlier, the Ka for this system is defined

Ka ¼
½Hþ	½A�	
½HA	 ð12:28Þ

and we now apply the p operator to Eq. (12.28) to obtain the convenient form

pKa ¼ pH� log
½A�	
½HA	 ð12:29Þ

The quantities a and b are the formal concentrations of HA and A�; the actual

equilibrium concentrations are somewhat different from these values because

both of these equilibria must be mutually satisfied:

HAÐ Hþ þ A�

H2OÐ Hþ þ OH�

We can find exact expressions for these concentrations by making use of mass

balance and electroneutrality relationships. To be specific, suppose that the cationic

counterion is labeled Mþ. Then these two mass balance expressions can be written

as follows:

b ¼ ½Mþ	 ð12:30Þ

aþ b ¼ ½HA	 þ ½A�	 ð12:31Þ

The electroneutrality principle asserts that any macroscopic volume of solution is

electrically neutral. This means that the sum of positive charges equals the sum of
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negative charges. For the aqueous solution under discussion

½Hþ	 þ ½Mþ	 ¼ ½OH�	 þ ½A�	 ð12:32Þ

Algebraic combination of Eqs. (12.30)–(12.32) gives the desired relationships:

½HA	 ¼ a� ½Hþ	 þ ½OH�	 ð12:33Þ

½A�	 ¼ bþ ½Hþ	 � ½OH�	 ð12:34Þ

Combining Eqs. (12.29), (12.33), and (12.34), we obtain

pKa ¼ pH� log
bþ ½Hþ	 � ½OH�	
a� ½Hþ	 þ ½OH�	 ð12:35Þ

If the solution pH is in the approximate range 4–10, the contributions of ½Hþ	 and

½OH�	 in Eq. (12.35) are usually negligible, and Eq. (12.35) becomes

pKa ¼ pH� log
b

a
ð12:36Þ

In this form Eq. (12.36) is known as the Henderson–Hasselbalch equation. This is a

very convenient form for carrying out calculations.

A solution that contains comparable and appreciable concentrations of a conju-

gate weak acid–base pair is called a buffer solution because it resists a change in pH

on the addition of a small amount of acid or base. This phenomenon can be demon-

strated with an example. Suppose a solution is prepared to be 0.1 M in acetic acid

ðpKa 4:76Þ and 0.1 M in sodium acetate. Then b=a ¼ 1:00 and, according to

Eq. (12.36), pH ¼ pKa, or pH ¼ 4:76. Now let 1.0 mL of 0.1 M NaOH be added

to 100 mL of this solution; what will be the new value of pH? It may be assumed

that the sodium hydroxide converts an equivalent amount of acetic acid to sodium

acetate. The solution therefore contains, after addition of the sodium hydroxide,

ð100Þð0:1Þ � ð1Þð0:1Þ ¼ 9:9 mmol of acetic acid, and ð100Þð0:1Þ þ ð1Þð0:1Þ ¼
10:1 mmol of acetate, all in 101 mL of solution. The ratio b=a is now 1.02, its loga-

rithm is 0.01, and Eq. (12.36) shows that the new pH is 4.77. Addition of the alkali

has resulted in a pH change of only 0.01 unit. If the same volume of the

sodium hydroxide solution had been added to 100 mL of pH 4.76 strong acid,

the pH would have changed to about 11.

Equation (12.36) will sometimes be encountered in different guises, because

some authors consider that a weak acid, on treatment with a strong base, is

converted to its salt; thus the equation could be written pH ¼ pKa þ log (salt/

acid); when a weak base is treated with a strong acid to form its salt, the equivalent

form is pH ¼ pKa þ log (base/salt). Because of the possible confusion resulting

from this terminology, we will use the Bronsted terminology by speaking of
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conjugate acid and base species. Thus Eq. (12.36) and equivalent versions always

can be written in the form

pH ¼ pKa þ log
½conjugate base	
½conjugate acid	 ð12:37Þ

This equation relates the three quantities pH, pKa, and the ratio b=a. Often two of

these are known and the third may then be calculated.

Example 12.7. Calculate the pH of a buffer solution prepared by dissolving

242.2 mg of tris(hydroxymethyl)aminomethane in 10.0 mL of 0.170 M HCl and

diluting to 100 mL with water. The molecular weight of the solute is 121.1. It is

a primary amine of structure (HOCH2)3CNH2, with pKa ¼ 8:08 for the conjugate

acid.

A total of 2.00 mmol of solute was weighed out, and 1.70 mmol of HCl was

added. Since the HCl reacts with the amine to convert an equivalent amount to

its conjugate acid (protonated) form, this means that a ¼ 1:7=100 M and b ¼
ð2:0� 1:7Þ=100 M. Using these figures in the Henderson–Hasselbalch equation,

we obtain

pH ¼ pKa þ log
0:003

0:017
¼ 8:08� log

0:017

0:003

¼ 8:08� log 5:67 ¼ 7:25

In this calculation the ratio was inverted merely to give a value greater than

unity, for ease in taking the logarithm.

Example 12.8. Calculate the pH of a buffer prepared to contain 0.09 M NaH2PO4

and 0.01 M K2HPO4. pK1 ¼ 2:23, pK2 ¼ 7:21, pK3 ¼ 12:32 for phosphoric acid.

In general a buffer of a polyprotic acid may be a very complex mixture, and a

species distribution diagram is helpful in clarifying the problem. Figure 12.4 shows

this diagram for phosphoric acid. The pK values of this acid are widely spaced, and

phosphoric acid behaves essentially as if it were an equimolar mixture of three

monobasic acids of the given pK values. From the experimental values a ¼ 0:09 M

and b ¼ 0:01 M, Fig. 12.4 clearly shows that the pH will be approximately 6.3 and

that the solution contains practically no H3PO4 or PO3�
4 at this pH. We have now

simplified the problem to that of a monobasic acid ðH2PO�4 Þ and its conjugate base

ðHPO2�
4 Þ, with the dissociation constant pK2 ¼ 7:21. Applying the Henderson–

Hasselbalch equation gives pH ¼ 7:21� log 9 ¼ 6:26.

Table 12.2 was constructed by means of Eq. (12.36). Table 12.2 illustrates the

symmetry and simplicity provided by the logarithmic form of the dissociation

constant expression. The table also confirms the suggestion derived from

Fig. 12.1 that most of the acid–base ‘‘action’’ takes place in the approximate pH

range pKa � 2.
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Inasmuch as the function of a buffer is to minimize changes in pH, it is useful to

have a measure of the ‘‘buffering capacity’’ of a buffer solution. This is provided by

the buffer index b. Let b be the concentration of strong base added to a solution

containing total concentration c of a weak acid. Then b is defined by

b ¼ db

dpH
ð12:38Þ

Thus b is the concentration of strong base required to change the pH by a given

amount; the larger the value of b, the greater is the buffer capacity of the solution.

Since the strong base converts the weak acid to its conjugate base, b has the

meaning given to it earlier, and we write from Eqs. (12.21) and (12.23), FA ¼
b=c ¼ Ka=½Hþ	 þ KaÞ, or

pH

H
3
PO

4 H
2
PO

4
- HPO

4
2-

PO
4
3-

F

0 2 4 6 8 10 12 14

0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 12.4. Species distribution diagram for phosphoric acid: pK1 ¼ 2:23, pK2 ¼ 7:21,
pK3 ¼ 12:32. [Reproduced by permission from Connors (1982).]

Table 12.2. Relationship of pH, pKa, and the conjugate
base/acid ratio

b=a pH

0:001ð10�3Þ pKa � 3

0:01ð10�2Þ pKa � 2

0:1ð10�1Þ pKa � 1

1ð100Þ pKa

10 ð101Þ pKa þ 1

100 ð102Þ pKa þ 2

1000 ð103Þ pKa þ 3
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b ¼ cKa

½Hþ	 þ Ka

Therefore

db

d½Hþ	 ¼
�cKa

ð½Hþ	 þ KaÞ2

and

db

d pH
¼ �2:3½Hþ	 db

d½Hþ	

b ¼ 2:3 cFHA FA

Equation (12.39) shows that b is directly proportional to total buffer concentration

c, as well as to the product FHAFA. It is easy to show (e.g., by inserting numbers for

the fractions) that this product is maximal when FHA ¼ FA ¼ 0:5, which, we have

seen, occurs when pH ¼ pKa. This result, together with extensive laboratory experi-

ence, leads to the guideline that buffer capacity is maximal when pH ¼ pKa and is

acceptable in the approximate range of pH ¼ pKa � 1. This is the information

needed to design effective buffer solutions.5

12.3. CALCULATION OF SOLUTION pH

We have already seen some calculations of solution pH, but here the treatment will

be more systematic. There are two kinds of aqueous solutions to consider: (1) a

solution prepared with a single solute, whether a strong acid, strong base, weak

acid, or weak base; and (2) a solution prepared to contain two conjugate species,

namely a weak acid and its conjugate base. Obviously all acid–base systems contain

both species; the distinction being made is that in (1) one of these arises solely from

the operation of the solution equilibria, whereas in (2) the experimenter ensures by

manipulation that appreciable concentrations of both are present.

Any aqueous acid–base system can be completely described by carrying through

the following procedure:

1. Write the electroneutrality equation for the solution.

2. Write the mass balance expressions for each solute.

3. Define all pertinent Ka values.

4. Define Kw.

5. Algebraically combine the preceding expressions.
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Seldom is it necessary to carry through the system in its full generality, and we will

see that shortened versions, often employing chemically reasonable approxima-

tions, will usually suffice. The level of accuracy sought is determined by the typical

accuracy in an experimental measurement, which is, at best, about 0.01 pH unit.

Strong Acid or Base. A strong acid or base is essentially completely dissociated

in dilute aqueous solution. The common strong acids are hydrochloric (HCl),

sulfuric (H2SO4), nitric (HNO3), and perchloric (HClO4); the common strong bases

are sodium and potassium hydroxides (NaOH, KOH).

Let c be the total (analytical) molar concentration of strong acid HX. According

to the electroneutrality principle applied to this solution

½Hþ	 ¼ ½OH�	 þ ½X�	 ð12:40Þ

The source of the hydroxide ion is the dissociation of water. The mass balance

expression for this solution is

c ¼ ½X�	 ð12:41Þ

Equations (12.40) and (12.41) can be combined with the definition of Kw to give a

quadratic equation, which can be solved for ½Hþ	. However, if the concentration c is

greater than 
 10�6 M, then ½X�	 will be much greater than ½OH�	, and we can

write the acceptable approximation ½Hþ	 ¼ ½X�	, or

½Hþ	 ¼ c ð12:42Þ

which states that the hydrogen ion concentration is numerically equal to the total

concentration of strong acid. Similarly for a strong base MOH the electroneutrality

equation is

½Hþ	 þ ½Mþ	 ¼ ½OH�	 ð12:43Þ

which simplifies to c ¼ ½OH�	, where c is the analytical concentration of the strong

base.

These calculations have ignored nonideality effects, which, we have seen, set

in at fairly low ionic strengths for ionic species (Chapter 8). For example, the

calculated pH of 0.10 M HCl is 1.00, whereas the measured pH is 1.10.

Example 12.9

(a) What is the pH of 0.005 M H2SO4? Sulfuric acid dissociates according to

H2SO4 ! 2Hþ þ SO4
2�. Thus in this solution ½Hþ	 ¼ 2c ¼ 0:010 M, and

pH ¼ 2:00.

(b) What is the pH of 0.025 M NaOH? We have ½OH�	 ¼ 0:025 M, so pOH ¼ 1:60

and pH ¼ 14:00� 1:60 ¼ 12:40.
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Weak Acid. Let HA be a monoprotic weak acid at total concentration c. The

dissociation reaction is

HAÐ
Ka

Hþ þ A�

From the electroneutrality principle we write

½Hþ	 ¼ ½OH�	 þ ½A�	 ð12:44Þ

and the mass balance expression is

c ¼ ½HA	 þ ½A�	 ð12:45Þ

An exact solution combines Eqs. (12.44) and (12.45) with the definitions of Ka and

Kw. Usually, however, it is reasonable to approximate Eq. (12.44) by ½Hþ	 ¼ ½A�	.
Using this equality in the definition of Ka yields

Ka ¼
½Hþ	2

c� ½Hþ	 ð12:46Þ

which can be rearranged to the quadratic form

½Hþ	2 þ Ka½Hþ	 � Kac ¼ 0 ð12:47Þ

Application of the quadratic formula gives

½Hþ	 ¼ �Ka �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

a þ 4Kac
p

2
ð12:48Þ

One uses the physically meaningful solution.

Suppose that ½Hþ	 � c; then the denominator in Eq. (12.46) can be approxi-

mated by c� ½Hþ	 � c. If this is acceptable, we obtain Ka ¼ ½Hþ	2=c, or

½Hþ	 ¼
ffiffiffiffiffiffiffiffi
Kac
p

ð12:49Þ

This equation offers an extremely simple solution to the problem. Whether this

approximation is reasonable can be assessed by comparing the results calculated

by Eqs. (12.48) and (12.49).

The preceding derivations are applicable to aqueous solutions of monoprotic

acids regardless of charge type, so Eqs. (12.48) and (12.49) apply to neutral acids

(such as RCOOH), to positively charged acids (like RNHþ3 ), and to negatively

charged acids (like HPO2�
4 ).
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Example 12.10

(a) Calculate the pH of 0.02 M trans-cinnamic acid (pKa ¼ 4:30). We can use

Eq. (12.49) with c ¼ 0:02 and Ka ¼ 5:0
 10�5; the result is ½Hþ	 ¼ 1:0

10�3 M, or pH ¼ 3:00. Assessing the validity of the approximation leading to

Eq. (12.49), we see that c ¼ 0:020 M and ½Hþ	 ¼ 0:001 M (as calculated), so

½Hþ	 is about 5% of c. Let us repeat the calculation with Eq. (12.48):

½Hþ	 ¼
�5
 10�5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5
 10�5Þ2 þ ð4Þð0:02Þð5
 10�5Þ

q
2

¼ �5
 10�5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25
 10�10 þ 0:4
 10�5
p

2

¼ �5
 10�5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
 10�6
p

2

¼ 0:002� 0:00005

2

¼ 0:975
 10�3

so pH ¼ 2:99. The approximate solution, Eq. (12.49), gave pH ¼ 3:00, which

usually would be considered acceptable, because pH seldom can be measured

to better than 0.01 unit.

(b) Calculate the pH of 0:05 M ammonium chloride (pKa ¼ 9:25). Ammonium

chloride is a salt. It dissociates completely according to

NH4Cl! NHþ4 þ Cl�

The ammonium ion NHþ4 is a weak acid:

NHþ4 Ð
Ka

Hþ þ NH3

Therefore we anticipate that the solution will be acidic.6 The given pKa is for

the acid NHþ4 . Using Eq. (12.49) with c ¼ 0:05 and Ka ¼ 5:62
 10�10 gives

½Hþ	 ¼ 5:30
 10�6 M, or pH ¼ 5:28. Our experience with Example 12.10(a)

convinces us that this is an acceptably accurate solution.

Weak Base. The base dissociation reaction is

Bþ H2O Ð
Kb

BHþ þ OH�

and by reasoning identical with that applied to the weak acid case, we derive

Kb ¼
½OH�	2

c� ½OH�	 ð12:50Þ
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When ½OH�	 � c, Eq. (12.50) becomes

½OH�	 ¼
ffiffiffiffiffiffiffiffi
Kbc
p

ð12:51Þ

where c is the total base concentration. Equations. (12.50) and (12.51) apply to

neutral bases (like RNH2), to positively charged bases (like H2NCH2CH2NHþ2 ),

and to negatively charged bases (like RCOO�).

Example 12.11. What is the pH of 0.10 M potassium acetate? (pKa ¼ 4:76).

We will use Eq. (12.51) with c ¼ 0:10. The pKa that is given is for the conjugate

acid, namely, acetic acid. The chemistry of this system mimics what we saw in

Example 12.10(b). First the salt potassium acetate (symbolized KOAc) completely

dissociates:

KOAc! Kþ þ OAc�

The potassium ion is neutral, but OAc� is a weak base; it is the conjugate base of

acetic acid, and it makes the solution basic because of the equilibrium

OAc� þ H2OÐ HOAcþ OH�

From pKa 4.76 we find pKb ¼ 14:00� 4:76 ¼ 9:24, or Kb ¼ 5:75
 10�10. Apply-

ing Eq. (12.51), we obtain

½OH�	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5:75
 10�10Þð0:1Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:75
 10�11
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
57:5
 10�12
p

¼ 7:6
 10�6

so pOH ¼ 5:12 and pH ¼ 8:88. It is helpful to check that the calculated pH is on

the correct side of neutrality.

Mixture of Weak Acid and Its Conjugate Base. We have already treated this

case under Buffer solutions. The appropriate relationship is

pKa ¼ pH� log
½A�	
½HA	 ð12:52Þ

and we have seen how this equation can be applied to calculate the pH of buffers.

Of course, if we wish to prepare a buffer of given pH, we use the equation in an

alternative manner. First a buffer substance is selected according to the criterion

that the desired pH be in the range pKa � 1. Then we use Eq. (12.52) to find the

ratio ½A�	=½HA	 that is needed to deliver this pH. Finally we decide on a total buffer
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concentration c. Then, since we have the sum c ¼ ½HA	 þ ½A�	 and the ratio

½A�	=½HA	, we solve for the individual concentrations ½HA	 and ½A�	, and prepare

the solution to contain these concentrations.

Some mixtures of acids and bases can be quite complex, consisting of polyprotic

acids or bases, or of a weak acid and a weak base (not its conjugate). A complete

analytic description can always be obtained by means of the general scheme

outlined at the beginning of this section, but the solution of the final equation

will usually require approximations of the type we have made use of above.7

12.4. ACID–BASE TITRATIONS

A titration is an experimental operation in which a solution of one reactant (the

titrant), this solution having an accurately known concentration, is added to a solu-

tion of a substance (the sample or analyte) with which it will stoichiometrically and

quantitatively react, until chemically equivalent amounts of titrant and sample have

been mixed. From the stoichiometry of the known reaction between the titrant and

sample substances, and the known concentration of titrant, the amount or

concentration of the sample substance can be calculated. The theoretical point at

which the amounts of titrant and sample are equivalent is called the equivalence

point, and its experimental estimate is the endpoint of the titration. If the titrant

is an acid and the sample a base, or the reverse, the operation is called acid–

base titration. The analytic calculations, which are simple, lie outside our present

concern. Here we are interested in how the pH of the sample solution varies,

throughout the course of the titration, as increasing volumes of titrant solution

are added to it. A plot of this pH [on the vertical axis (ordinate; y axis)] against

the volume of titrant added [on the horizontal axis (abscissa; x axis)] is called an

acid–base titration curve. We will see how it is possible to calculate such a titration

curve, and the information to be derived from it.

Strong Acid–Strong Base Titration. A strong acid is completely dissociated

into Hþ and its anion, which is neutral; a strong base is completely dissociated into

OH� and its cation, which is neutral. Consequently the reaction that occurs in the

sample solution is

Hþ þ OH� Ð H2O

This is the reverse of the autoprotolysis of water, so its equilibrium constant is 1/Kw,

or 1
 1014. The reaction is obviously quantitative; in casual terms, ‘‘it goes com-

pletely to the right.’’ At each stage in the titration the sample solution consists of a

solution of a strong acid or a strong base, so the calculation of the titration curve

involves no new concepts.

Example 12.12. Calculate the titration curve for the titration of 25.0 mL of 0.05 M

HCl with 0.10 M NaOH.
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In this titration HCl is the sample and NaOH is the titrant. Before any titrant has

been added, the solution consists of 0.05 M HCl, so ½Hþ	 ¼ 0:05 M and pH ¼ 1:30.

Now suppose we add 1.0 mL of titrant. We can arrange the work in tabular form:

Initially the sample had ð25Þð0:05Þ ¼ 1:25 mmol Hþ

We have added ð1Þð0:10Þ ¼ 0:10 mmol OH�

---------------------------------------

Remaining in the solution are 1:15 mmol Hþ

This 1.15 mmol of Hþ is contained in 26 mL of solution, so the new concentration

is ½Hþ	 ¼ 1:15 mmol=26 mL ¼ 0:04423 M, and the new pH is 1.35. Obviously the

pH has risen because we have added a strong base to the solution.

This calculation is repeated with increasing volumes of titrant. Here are some

results: at 5 mL of titrant, pH ¼ 1:60; at 8 mL, pH ¼ 1:87; at 10 mL, pH ¼ 2:15;

at 12 mL, pH ¼ 2:87; at 12.2 mL, pH ¼ 3:09; at 12.4 mL, pH ¼ 3:57.

The equivalence point occurs at 12.5 mL of titrant, because at this volume the

number of millimoles (mmol) of NaOH added exactly matches the number of mmol

of HCl initially present; and at this point the foregoing method of calculation gives

an embarrassing result, for it leads to the conclusion that the number of mmol of Hþ

remaining is zero. But of course there always will be hydrogen ions in water. At the

equivalence point we simply have a solution of sodium and chloride ions, and

(neglecting impurities from the atmosphere) the solution is neutral, so pH ¼ 7:00.

Let us continue to add titrant; suppose that 13 mL has been added. All that is

happening is that the titrant is being diluted. Since the first 12.5 mL of titrant

was consumed in the titration reaction, we have added 0.5 mL in excess, or

ð0:5Þð0:1Þ ¼ 0:05 mmol of OH�. This is contained in 38 mL of solution, so

½OH�	 ¼ 0:05=38 ¼ 0:001316 M, pOH ¼ 2:88, and pH ¼ 11:12.

It is left as an exercise to plot the titration curve and to locate the equivalence

point. The calculation of a few more points in the titration, especially after the

equivalence point, may be helpful in defining the shape of the curve.

Weak Acid–Strong Base Titration. We could apply the systematic treatment

outlined at the beginning of Section 12.3 to obtain a general equation applicable

throughout the course of the titration, but it is simpler to recognize that at any stage

in the titration the solution consists of an example of a type that we have already

considered. For the titration of a weak acid HA with a strong base MOH, here are

the four such stages into which we divide the titration:

Stage 1: Before the Titration Begins. The sample solution is simply a solution of a

weak acid, and Eq. (12.48) or (12.49) is applicable.

Stage 2: During Titration. Since some strong base has been added and has con-

verted an equivalent amount of weak acid to its conjugate base according to

HAþ OH� Ð A� þ H2O
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the solution contains appreciable quantities of both HA and A�. It is a buffer

solution throughout much of this stage, and Eq. (12.36) applies.

Stage 3: At the Equivalence Point. Now the weak acid HA has been quantitatively

converted to A�. The sample solution consists of this weak base in water, and

Eq. (12.50) or Eq. (12.51) may be used.

Stage 4: After the Equivalence Point. The solution contains excess strong base

and the weak base A�, whose dissociation is repressed by the common ion

effect of the hydroxide from the strong base. We therefore ignore the con-

tribution of A�, and calculate the concentration of hydroxide exactly as in

Example 12.12.

Example 12.13. Calculate the titration curve for the titration of 10.0 mL of 0.2 M

weak acid (pKa ¼ 5:0) with 0.2 M sodium hydroxide.

Stage 1. We have Ka ¼ 1
 10�5 and c ¼ 0:02, so, from Eq. (12.49),

½Hþ	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1
 10�5Þð0:2Þ

q

¼ 1:41
 10�3

or pH ¼ 2:85.

Stage 2. Let 2.0 ml of titrant be added. This is the situation:

Initially in the sample: ð10:0Þð0:2Þ ¼ 2:00 mmol HA

Strong base added: ð2:0Þð0:2Þ ¼ 0:40 mmol OH�

--------------------------------------

Weak acid remaining 1:60 mmol HA

Using Eq. (12.36), we have

pH ¼ 5:00þ log
0:40

1:60

¼ 4:40

Of course, the logarithmic term is strictly a ratio of concentrations, so we should

have written

pH ¼ 5:00þ log
0:40=12

1:60=12

where 12 mL is the total volume, but these volumes cancel, so we effectively

calculate a ratio of amounts. Using the same calculational method, we obtain

these further results: at 5.0 mL, pH ¼ 5:00; at 7.0 mL, pH ¼ 5:37.
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Stage 3. The equivalence point obviously corresponds to 10.0 mL of titrant added.

Initially we had ð10:0Þð0:2Þ ¼ 2:00 mL of HA, and this has now been converted

to 2.00 mL of A�, which is contained in 20.0 mL of solution. Using Eq. (12.51),

with Kb ¼ 1
 10�9 and c ¼ 0:10 M, we obtain

½OH�	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1
 10�9Þð0:1Þ

p
¼ 1
 10�5 M

so pOH ¼ 5:00, and pH ¼ 9:00. Obviously the solution is basic at the equiva-

lence point, since it contains only a weak base.

Stage 4. Let 12.0 mL of titrant be added. This constitutes an excess of 2.0 mL of

0.2 M strong base in a total volume of 22.0 mL, so ½OH�	 ¼ ð2:0Þð0:2Þ=22 ¼
0:0182 M, giving pOH ¼ 1:74 and pH ¼ 12:26.

Figure 12.5 is a plot of the full titration curve. Three important lessons are to be

learned from this graphical display:

Detectionof theEndpoint. Observe the relatively sharp ‘‘break’’ in the curve corre-

sponding to the equivalence point at 10.0 mL of titrant. The point at which the slope

has its maximum value gives us our experimental estimate of the endpoint. In the

laboratory we make use of this information in either of two ways: (1) if we know

the pH at the endpoint by either calculation or experience, we can titrate to that pH

(usually as detected with a visual indicator); or (2) we can experimentally measure

the pH, plot the curve, and establish the endpoint graphically.

0 2 4 6 8 10 12 14

0 2 4 6 8 10 12 14

2

4

6

8

10

12

14

2

4

6

8

10

12

14

pH

Titrant volume (ml)

Midpoint End point

pKa

Figure 12.5. Calculated curve for the titration of 10.0 mL of 0.2 N weak acid (pKa ¼ 5:00) with
0.2 N strong base. [Reproduced by permission from Connors (1982).]
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Buffer Properties. We have seen that the sample solution throughout much of the

titration is a buffer, and this property is manifested in the slope of the titration

curve, which is seen to be the reciprocal of b, the buffer index [Eq. (12.38)].

Thus the shallower the slope, the greater the buffer capacity. Recall our earlier

claim that buffer capacity is acceptable in the range pH ¼ pKa � 1, and observe

how this range is reflected on the titration curve.8

Determination of pKa. We will subsequently learn how to measure the pH experi-

mentally, so the titration curve can be determined. Writing Eq. (12.37) again

pH ¼ pKa þ log
½conjugate base	
½conjugate acid	

we see that if we know the ratio appearing in the logarithmic term and can measure

the pH of the solution, we can calculate pKa. In particular, consider the point in the

titration corresponding to one-half way to the endpoint, as measured in titrant

volume. At this point (call it the midpoint), one-half of the weak acid has been

converted to its conjugate base, so the ratio ½conjugate base	=½conjugate acid	 ¼
1:00, and pH ¼ pKa. This relationship is shown on Fig. 12.5. (Of course, the pKa

thus determined is not a ‘‘thermodynamic pKa’’ because we have not yet applied

activity coefficient corrections; these are discussed in Chapter 13.) An interesting

capability of this technique is that it allows us to determine the pKa of an acid

whose identity is unknown; we merely need to determine the titration curve,

read off the endpoint volume, and then by interpolation to establish the pH

corresponding to one-half the endpoint volume.

This equality pH ¼ pKa at the titration midpoint is yet another manifestation of a

condition we have encountered before, notably in discussing Eqs. (12.22) and

(12.23), Eqs. (12.24)–(12.26), Table 12.2, and Eq. (12.39).

Calculation of the titration curve for the titration of a weak base with a strong

acid is analogous to the preceding treatment. For such a titration the pH will

initially be on the alkaline side of neutrality and will decrease throughout the

titration. At the endpoint the solution contains the conjugate acid of the sample

base, so the solution is acidic.

The titration curves of polyfunctional acids and bases, if their successive pKa

values differ by about 4 or more units, show a ‘‘break’’ at each endpoint for the

successive titration of the groups (in the order strongest to weakest). If, however,

the successive pKa values are not widely spaced, the successive breaks are less

distinct because the phenomenon seen in Fig. 12.3, in which more than two solute

species coexist at some pH values, intrudes. Such systems can be algebraically

described, and in this manner the experimental data can be fitted to the equation

to extract the pKa values. We will not pursue this analysis.

Acid–Base Indicators. An acid–base indicator is a compound whose conjugate

acid and base forms exhibit different colors. There is no limitation on the charge
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type of the indicator. Indicators are used to detect the endpoint in a titration; the

selection of an indicator is based on the simple principles to be discussed here.

Consider the indicator acid HI. This acid will undergo dissociation in aqueous

solution:

HIÐ Hþ þ I�

The acid dissociation constant has the form of Ka, but it is often symbolized KI:

KI ¼
½Hþ	½I�	
½HI	 ð12:53Þ

The acid form HI is responsible for the acid color of the indicator solution, and

I� shows the base color. The color that our eyes see is related to the relative

concentrations of these two forms of the indicator. Rearranging Eq. (12.53)

gives

½I�	
½HI	 ¼

KI

½Hþ	 ð12:54Þ

Two important conclusions follow from Eq. (12.54). The color is controlled by the

pH of the solution; and the color change during a titration is not abrupt but occurs in

a continuous manner, since the pH changes continuously, as we saw earlier.

It is characteristic of the typical human eye that in order to detect the first devia-

tion from the pure acid color in a solution of the indicator, the ratio ½I�	=½HI	 must

be at least 1
10

; that is, about 10% of the indicator must be in the base form. Similarly,

about 10% of the indicator must be in the acid form to detect any acid color. (These

statements apply to two-color indicators.) In between these limits the eye recog-

nizes that a mixture of colors is present, and that the indicator color change is taking

place if a titration is being carried out. These limits for ½I�	=½HI	 of 0.1 to 10 have

no theoretical chemical significance but are related to the sensitivity of the obser-

ver’s eyes and to the particular indicator used; some colors are more readily

detected than others.

The pH values at which these limits of observable color change occur are easily

calculated. From Eq. (12.54):

pH ¼ pKI þ log
½I�	
½HI	 ð12:55Þ

For the limit on the acid side, ½I�	=½HI	 ¼ 0:1, or pH ¼ pKI � 1. For the limit on

the base side, ½I�	=½HI	 ¼ 10, or pH ¼ pKI þ 1. The pH range within which the

indicator can be observed to be changing color is thus given approximately by

pH ¼ pKI � 1. This is called the transition interval of the indicator, and it clearly
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depends on the pKI of the indicator. This is why indicators of different structure

change color at different pH values.

Table 12.3 gives the colors and transition intervals of some useful acid–base

indicators. Many of the intervals are less than 2 pH units, suggesting that the limits

pKI � 1 are rather conservative. One-color indicators, in which only one of the con-

jugate forms possesses a visible color, will not behave visually in accordance with

the above mentioned treatment, although of course their equilibria will be described

by the same equations. The pKI of an indicator, and therefore its transition interval,

can be affected by the salt concentration of the solution and by organic solvents

incorporated into the aqueous medium.

In order to achieve an accurate visual detection of the endpoint in an acid–base

titration, evidently the pH of the solution must change by about 2 units in the

immediate vicinity (say, �0:2%) of the endpoint. Whether this condition is satisfied

in any given circumstance can be determined by calculating the titration curve.

Figure 12.5 shows the results of such a calculation, indicating that this would be

a feasible titration with visual endpoint detection because of the sharp break in

the region of the theoretical equivalence point. Calculations show that this break

is greater, the more concentrated the solution and the stronger the acid (for titrations

with base).

An indicator should now be chosen such that the pH at the titration equivalence

point falls within the transition interval of the indicator. In the titration of a weak

acid with a strong base, at the endpoint the solution contains the conjugate base of

Table 12.3. Acid–base indicators

Indicator Transition Interval Acid Color Base Color

Methyl violet 0.15–3.2 Yellow Violet

Thymol blue 1.2–2.8 Red Yellow

Quinaldine red 1.4–3.2 Colorless Red

2,4-Dinitrophenol 2.4–4.0 Colorless Yellow

Methyl yellow 2.9–4.0 Red Yellow

Bromphenol blue 3.0–4.6 Yellow Blue

Methyl orange 3.1–4.4 Red Yellow

Bromcresol green 3.8–5.4 Yellow Blue

Methyl red 4.4–6.2 Red Yellow

Bromcresol purple 5.2–6.8 Yellow Purple

4-Nitrophenol 5.6–7.6 Colorless Yellow

Bromothymol blue 6.0–7.6 Yellow Blue

Phenol red 6.4–8.2 Yellow Red

Cresol red 7.2–8.8 Yellow Red

Thymol blue 8.0–9.6 Yellow Blue

Phenolphthalein 8.2–10 Colorless Red

Thymolpthalein 9.3–10.5 Colorless Blue

a-Naphtholbenzein 9.8–11.0 Yellow Blue
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the acid, so its pH is in the alkaline range, as shown in Fig. 12.5. Weak acids there-

fore are usually titrated using thymol blue, phenolphthalein, or thymolphthalein as

indicators. In titrations of weak bases with strong acids the endpoint pH will be

in the acidic range, and methyl red, methyl orange, and bromcresol green are

commonly used indicators.

Without some understanding of the relationship of molecular structure to optical

absorption spectra a full accounting for the color changes of indicators is not

possible, but an approximate treatment is feasible. The essential fact about

acid–base indicators is that the acid and base forms have different colors. All

acid–base indicators in common use are organic compounds. Apparently the reason

for the different colors must be sought in the different structures of the acid and

base forms of the indicator. It is possible to account for the fact of color differences

on this basis; if two forms of the indicator differ markedly in their electronic

distribution, and particularly in their extents of resonance delocalization, two colors

will be observed. Color is associated with the capability of the compound to absorb

visible light, and this capability can be related to the electronic structure. In the

resonance hybrid several factors may contribute, but we can simplify and say

that a change in the length of conjugation path or in extent of electronic delocaliza-

tion will result in absorption of a different color component of white light, with

a resultant color change. For a simple example we take 4-nitrophenol, one of the

indicators in Table 12.3. The acid–base dissociation is

2

OHO2N

3

O−O2NH+

The acid form is colorless, but the base form is yellow. This yellow color can

be correlated with electron delocalization in the base form as indicated in this

conventional depiction of a resonance hybrid:

4

O−O2N

5

OO2N
−

Possibilities for such electron delocalization increase with the size of the molecule,

and most indicators are quite large molecules. Here is the kind of electron distribu-

tion responsible for the color change in methyl orange:

H+

SO3
−NN(CH3)2N

6

Base (yellow)
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H
SO3

−NN(CH3)2N

H
SO3

−NN(CH3)2N

Acid (red)

7

8

12.5. AQUEOUS SOLUBILITY OF WEAK ACIDS AND BASES

Many acidic and basic drugs possess a limited solubility in water, and we have a

practical interest in being able to increase their solubility. We can often accomplish

this by means of pH control. The pH of an aqueous solution can usually be adjusted

independently of the acid–base equilibrium of the solute drug by means of a buffer

solution.

This is the general principle that we apply—the total solubility is limited by

the intrinsic solubility of the uncharged (nonionic) form of the drug. We can assume

that the ionic form has unlimited solubility; this is not strictly true, but the

assumption carries no practical drawbacks. Notice that for the first time in our

consideration of acid–base chemistry we are directing our attention to the charge

types of the species.

The experimental approach is to place enough of the solute in its ionic (charged)

form to achieve the desired total concentration. This is accomplished either by

raising the pH if the drug is an acid (thus deprotonating it) or lowering the pH if

the drug is a base (thus protonating it). We therefore must recognize whether the

drug is an acid or a base, and we require the pKa in order to calculate the needed

pH of the solution.

As noted in the preceding paragraph, we have two cases to consider: (1) a neutral

weak acid, such as a carboxylic acid, to be symbolized HA; and (2) a neutral weak

base, such as an amine, symbolized B. For the present, concentrations will be in

molar units. We make these definitions:

Let s0 be the equilibrium solubility of the neutral (uncharged) form of the drug.

Let St be the total (apparent) solubility of the drug at any given pH of the

solution.

We take it that the pH of the solution is under our control, for example by adding a

buffer. Also note that we are restricting attention to compounds having a single

ionizable group. Then we can write in general

Total concentration ¼ solubility of uncharged formþ concentration of charged form
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We will develop the two cases in parallel:

Neutral Acid, HA Neutral Base, B
—————————————————————————————

St ¼ ½HA	 þ ½A�	 ¼ s0 þ ½A�	 St ¼ ½B	 þ ½BHþ	 ¼ s0 þ ½BHþ	

Ka ¼
½Hþ	½A�	
½HA	 ¼

½Hþ	ðSt � s0Þ
s0

Ka ¼
½Hþ	½B	
½BHþ	 ¼

½Hþ	s0

St � s0

pKa ¼ pH� log
St � s0

s0

ð12:56aÞ pKa ¼ pH� log
s0

St � s0

ð12:56bÞ

Observe that Eqs. (12.56a) and (12.56b) are simply forms of the familiar

Henderson–Hasselbalch equation. The physical interpretation of these equations

is that St is the maximum concentration of drug that can be achieved at the given

pH. An alternative view is that the pH given by the equation is the limit beyond

which precipitation of the uncharged drug will occur at the given St; the pH

directional change that will produce such precipitation depends on the solute; acids

will precipitate as the pH is lowered, bases will precipitate as the pH is raised.

Equations (12.56) contain two parameters (pKa and s0) and two variables (pH and

St). In the most desirable situation pKa and s0 will be available as experimentally

measured quantities; otherwise they must be estimated. Methods for estimating the

solubilities of nonelectrolytes are available (Chapter 10).

Let us examine Eqs. (12.56) more closely. As noted above, these equations

contain the four quantities pKa, pH, St, s0. In most applications we will know

pKa and s0, and will either set a ‘‘target’’ St value and calculate pH, or set a target

pH and calculate St. The concentrations appear as the ratio ðSt � s0Þ=s0 or its

reciprocal, so it makes no difference whether molar units or physical units (such

as mg mL�1) are used, so long as St and s0 are expressed in the same units.

The nonlogarithmic form of Eq. (12.56a) can be arranged to Eq. (12.57):

St ¼ s0 þ
Ka

½Hþ	 s0 ð12:57Þ

When ½Hþ	 �> Ka (i.e., when pH�< pKa), for this neutral acid, Eq. (12.57)

becomes St ¼ s0. Essentially all of the solute is in the conjugate acid form.

When ½Hþ	 �< KaðpH�> pKa), Eq. (12.57) approaches

St ¼
Ka

½Hþ	 s0

which can be written

log St ¼ log s0 þ pH� pKa ð12:58Þ
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Under these conditions the slope of a plot of log St versus pH is unity; that is, for

each unit increase in pH the concentration increases tenfold. At the point where

pH ¼ pKa, log St ¼ log s0 [but this is an extrapolated condition, because Eq. (12.58)

does not hold when pH ¼ pKa]. The reverse pH dependence (slope of the plot of

log St vs. pH is �1.00) will be seen for a neutral base. Figure 12.6 shows this beha-

vior for a hypothetical weak acid having pKa ¼ 5:00 and s0 ¼ 2:10�3 M.

In applying either Eq. (12.56a) or (12.56b) we must first establish whether the

drug is a neutral acid or a neutral base. Consider sodium benzoate, useful as a pre-

servative. We recognize this as the sodium salt of benzoic acid, prepared by reacting

benzoic acid with sodium hydroxide. The solute in this case is a neutral weak acid,

even though we weigh it out and dissolve it as the salt (the charged conjugate base).

Benzoic acid has a limited water solubility whereas sodium benzoate is quite solu-

ble. But we realize that sodium benzoate, in solution, is in equilibrium with benzoic

acid, as the position of equilibrium is determined solely by the pKa of benzoic acid

and the pH of the solution. Despite the high solubility of sodium benzoate, if at the

experimental pH the concentration placed in solution exceeds the St value given by

Eq. (12.56a), free benzoic acid will precipitate until the equation is satisfied. We

reiterate: the original form of the solute is irrelevant; this is an equilibrium situation

entirely controlled by pKa, pH, and s0.
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Figure12.6. Plot of Eq. (12.56a); pKa ¼ 5:0, s0 ¼ 2
 10�3 M.
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We mentioned earlier that the pH is under our control, but this may not always

be so, and in some cases the pH may be established by a complex mixture of buffers

or other formulation components. Calculation of the pH may not be feasible in such

circumstances; instead the pH should be measured. Even pH indicator paper may be

adequate to this purpose.

Example 12.14

(a) Suppose a drug is available as the sodium salt of a carboxylic acid whose

molecular weight is 150, pKa ¼ 5:00, and solubility of the unionized acid

form is 2
 10�3 M. What is the maximum concentration of drug that can be

dissolved at pH 5.00? Applying Eq. (12.56a) with s0 ¼ 2
 10�3 M gives

St ¼ 4
 10�3 M. Compare this with Fig. 12.6, which was calculated with these

same parameters. Note that in this problem pH ¼ pKa, so equal concentrations

of the ionized and unionized forms are present.

(b) Can 0.5% of the sodium salt described in Example 12.14(a) be dissolved at pH

4.00? Using Eq. (12.56a) gives St ¼ 2:2
 10�3 M. The desired concentration is

0:5 g=100 mL ¼ 5 g=L ¼ 3:3
 10�2 M, which far exceeds the calculated St.

All drug exceeding 2:2
 10�3 M will precipitate as the free acid, at pH 4.00.

(c) For the drug of Examples 12.14(a) and 12.14(b), what pH range will permit

0.5% to be dissolved? Now we let St ¼ 3:3
 10�2 M, s0 ¼ 2
 10�3 M, and

pKa ¼ 5:00, applying Eq. (12.56a) to get pH ¼ 6:19. Thus any pH equal to

6.19 or higher will allow 0.5% to be dissolved. (See Fig. 12.6;

log 0:033 ¼ �1:48.)

Example 12.15. In what pH range is it possible to prepare an aqueous solution of

chlordiazepoxide (9) at a concentration of 10 mg/5 mL?

Cl N

N
NHCH3

C6H5 O

9

Chlordiazepoxide, pKa 4.6, MW 299.8,
solubility 1 g/10,000 mL H2O

Chlordiazepoxide is obviously a neutral weak base. It is not obvious to which nitro-

gen atom the pKa should be assigned, but its value is reasonable for an aromatic

amine. The reported aqueous solubility corresponds to 0.01%. (The drug is also

available as the hydrochloride salt, which is quite soluble, but as noted in the earlier

discussion, this is entirely irrelevant to the problem.)

The desired concentration of 10 mg/5 mL is equivalent to 200 mg/100 mL or

0.2%. We can use Eq. (12.56b) with s0 ¼ 0:01 and St ¼ 0:2. The result is

pH ¼ 3:3; that is, at any pH of 3.3 or below (more acidic), this concentration of

drug can be dissolved.

We have emphasized that the form (neutral molecule or its salt) used experimen-

tally is irrelevant, the total achievable concentration depending solely on the
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parameters pKa and s0 and on the assigned pH. This is true when the pH is fixed by

the experimentalist, by means of a buffer. But if control of pH is not important, then

the simplest procedure is merely to dissolve the salt form, which is usually very

soluble, to the desired concentration. The pH will shift to a value determined by

pKa and concentration. [And we know how to calculate this pH by using either

Eq. (12.49) or Eq. (12.51).] But this procedure may be unacceptable if the resulting

pH is outside the desired range. Such a solution, moreover, is unbuffered and is

susceptible to perturbation of its pH by other ingredients.

12.6. NONAQUEOUS ACID–BASE BEHAVIOR

Although water is our most important solvent, in some applications we often make

use of nonaqueous solvents. Acid–base behavior (reaction of acids with bases,

attainment of acid–base equilibrium, acid–base indicator color changes) is widely

observable in nonaqueous media, and here we survey this very large class of

substances. It would be possible to develop quantitative acid–base theories for these

solvents, but the results would be much more complicated than the acid–base theory

of aqueous solutions owing to the lower dielectric constants of organic solvents.

This circumstance leads to the formation of ion pairs (and even of ion triplets

and higher aggregates), whose existence complicates the description, so we will

be satisfied with a qualitative treatment.

Dissociating Solvents. Let us take water as our model of a dissociating solvent.

Omitting the molecule of water that hydrates the hydrogen ion:

H2OÐ Hþ þ OH�

A large number of dissociating solvents fit this pattern. Methanol and other alcohols

give alkoxide ions, analogous to hydroxide in water:

MeOHÐ Hþ þ OMe�

It is important to realize that the symbol Hþ represents a different species in these

two equations; in water it means H3Oþ and in methanol it means MeOHþ2 .

Liquid carboxylic acids, of which glacial acetic acid is the most important, also

are dissociating solvents. Letting Ac represent CH3CO, the acetyl group, we obtain

HOAcÐ Hþ þ OAc�

(glacial acetic acid simply denotes pure acetic acid). In this equation Hþ represents

H2OAcþ. The proton is not a necessary product of solvent dissociation. Here is how

acetic anhydride dissociates:

Ac2OÐ Acþ þ OAc�

The symbol Acþ represents the acetylium ion, CH3COþ.

NONAQUEOUS ACID–BASE BEHAVIOR 189



There are also many nondissociating solvents, such as hydrocarbons, ethers, and

carbon tetrachloride. Actually the distinction between dissociating and nondisso-

ciating solvents is a matter of degree, for with sufficiently sensitive techniques

we might detect some level of dissociation by nearly any solvent. We adopt a

practical viewpoint based on ordinary laboratory experience.

Let us generally represent a dissociating solvent by the symbol CA, where C

is the cationic component and A is the anionic component. Then the solvent

dissociation is

CAÐ Cþ þ A�

and, just as we did for water, we define an ion product, Ks:

Ks ¼ ½Cþ	½A�	 ð12:59Þ

Table 12.4 lists some ion products as pKs ¼ �log Ks.

Here is an interesting consequence of the pKs value. We will compare water and

ethanol. In water, in order to pass from an acidic solution in which pC (i.e., pH) ¼ 1

to an alkaline solution in which pA (i.e., pOH) ¼ 1, a range of acidity correspond-

ing to 12 pH units must be traversed, since pCþ pA ¼ 14 for water. For ethanol,

however, pCþ pA ¼ 19:1, so to go from pC ¼ 1 to pA ¼ 1 requires that 17.1

orders of magnitude be covered. Very roughly we may expect that the smaller is

Ks for a solvent, the greater the range of the acidity scale available for studying

or titrating sample solutes.

Acid–Base Properties. Solvents may be discussed as acids or bases just as are

any other substances. The Bronsted theory forms the basis of the discussion, and the

terms used are given in Table 12.5. Very generally we recognize that protogenic and

amphiprotic solvents are dissociating solvents, whereas protophilic and aprotic

solvents are nondissociating solvents.

A useful analogy may now be made between water, whose acid–base properties

we understand, and several nonaqueous solvents. The dissociating solvent CA

Table 12.4. Properties of some solvents

Solvent pKs Dielectric Constant

Water 14.00 78.5

Methanol 16.70 32.6

Ethanol 19.10 24.3

Acetic acid 14.45 6.19

Formic acid 6.20 58

Acetic anhydride 14.5 21

Acetonitrile 26.5 36.2
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yields the cation Cþ, which is called the lyonium ion, and the anion A�, called the

lyate ion:

Solvent Ð Lyonium ion þ Lyate ion
—————————————————

2 H2O Ð H3Oþ þ OH�

2 MeOH Ð MeOHþ2 þ OMe�

2 HOAc Ð H2OAcþ þ OAc�

Ac2O Ð Acþ þ OAc�

2 NH3 ðliqÞ Ð NHþ4 þ NH�2

With water as the solvent we are accustomed to regarding its lyonium ion, H3Oþ, as

the strongest possible acid, and OH�, the lyate ion, as the strongest possible base.

Let us extend this concept to the other solvents. In glacial acetic acid as a solvent,

we would conclude that the acetate ion OAc� is the strongest possible base. In other

words, sodium acetate (which we recall is a weak base in water) should be a strong

base in glacial acetic acid, just as sodium hydroxide is a strong base in water.

This expectation is borne out by experiment. Similarly we predict that ammonium

chloride should be a strong acid in liquid ammonia. This analogy is a powerful

concept for the design of experiments.

The Leveling and Differentiating Effects. Since solvents can be acids or

bases, an acidic or basic solute reacts with such a solvent to a degree determined

by their relative strengths. We can distinguish two possibilities. Let S represent

a basic solvent and HX a strongly acidic solute. Then one possibility is that the

reaction

HX þ S! SHþ þ X�

goes essentially completely to the right. Thus, the solute is quantitatively

transformed into the lyonium ion of the solvent, which is the strongest acid that

can exist in this solvent. (Any acid stronger than SHþ, such as HX, will be trans-

formed to SHþ; this lowers the free energy of the system.) We say that the solvent S

Table 12.5. Solvent classifications

Class Characteristics Examples

Protogenic Acidic; donate a proton Glacial HOAc; H2SO4

Protophilic Basic; accept a proton Amines; ethers; esters

Amphiprotic Both acidic and basic; Water; alcohols

can donate or accept a proton

Aprotic Neither acidic nor basic. Hydrocarbons, CCl4, CH3CN,

dioxane
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is a leveling solvent for HX, or that HX is leveled by S. If we also had a second very

strong acid HY that was leveled by S, the acids HX and HY would appear to be

of the same strength, because they both have been converted to SHþ. This is

what happens when the familiar strong acids (HCl, HNO3, H2SO4, HClO4) are

dissolved in water; they are levelled to H3Oþ and all appear to be of the same

acid strength. Glacial acetic acid as a solvent, which is fairly acidic, levels many

bases, such as amines, by quantitatively transforming them to its lyate ion:

RNH2 þ HOAc! RNHþ3 þ OAc�

The other possibility, of course, is that the reaction between solvent and solute

does not go to completion. Imagine the acid HA reacting with solvent S:

HA þ SÐ SHþ þ A�

If the reaction does not go completely to the right, we can measure an equilibrium

constant for it, and this constant is a quantitative measure of the extent of reaction.

Now if we take a second comparable acid HB and measure its equilibrium constant,

we can compare the acid strengths of HA and HB with respect to the reference base

S. We call S a differentiating solvent for HA and HB. This is just what we do in

water when we measure Ka values for weak acids and bases.

Figure 12.7 is a schematic representation of these ideas. Here we have supposed

that there exists for every solute an innate absolute acidity or basicity (which is not

true, but is a reasonable practical approximation), and as solutes we have taken,

in order of decreasing acidity and increasing basicity, HClO4, HOAc, ArOH (a

phenol), H2O, ArNH2 (an aromatic amine), RNH2 (an aliphatic amine), NaOH.

These are spread out on scales, which may be taken as proportional to pH or pKa.

The key idea is that the pure solvent is taken as the neutral point of the scale.

Thus in the upper scale, showing H2O as the solvent, H2O is the neutral point. Any

Acidity

Acidity

 HClO4  HOAc ArOH  H2O  ArNH2 RNH2 NaOH

 H2O as solvent

 HClO4  HOAc ArOH  H2O  ArNH2 RNH2 NaOH

HOAc as 

( Neutral )

( Neutral )

Basicity

Basicity

Figure12.7. Illustrating acidity/basicity relative to the solvent, and the leveling and differentiating

effects.
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solute, acid or base, lying very far from this point, will be leveled by water, because

the difference in their acid-base properties is great. Those solutes not falling very

distant from the neutral point are differentiated by water, as we know that HOAc,

ArOH, ArNH2, and RNH2 are differentiated, because we can measure their Ka

values.

Now turn to the scale for glacial acetic acid as solvent. Acetic acid now becomes

our neutral point, and we may question whether even such a strong acid as perchlo-

ric acid (HClO4) is leveled by acetic acid. On the other hand, we readily accept that

aliphatic amines are leveled, because they lie distant from the neutral point.

These considerations of acid–base strength are somewhat complicated by the

concomitant phenomenon of limited dissociation as a result of the low dielectric

constant of some nonaqueous solvents, but as a qualitative guide they are useful.

The role of dielectric constant and the distinction between ionization and dissocia-

tion was treated earlier, in Chapter 8.

12.7. ACID–BASE STRUCTURE AND STRENGTH

Principles. We should be able to look at a molecular structure and to make

reasonable, even though approximate, estimates of the acid or base strengths of

functional groups. The ability to do this from fundamental theoretical principles

is almost nonexistent at present, and need not be considered. Quite sophisticated

yet practical empirical techniques are available, but they are beyond our present

requirements (Perrin et al. 1981). Our treatment will be very brief.

We begin with Eq. (12.16), repeated here

pKw ¼ pKa þ pKb

and the insight provided by the Bronsted theory that acid and base strength, for a

conjugate pair, are reciprocally related, that is, Ka ¼ Kw=Kb or Kb ¼ Kw=Ka. Now,

it is the essence of the acid–base definitions that we can make these statements:

1. As Ka increases, pKa decreases, and acid strength increases.

2. As Kb increases, pKb decreases, and base strength increases.

For a conjugate pair, a smaller pKa (stronger acid) must be accompanied by a larger

pKb (weaker base); this is the reciprocal effect. Observe in Table 12.6, these pairs of

pKa and pKb values for (hypothetical) conjugate acid-base pairs.

It is obvious that pKa is a reasonable quantitative measure of acid strength. What

is not so obvious is that it has become conventional to use the pKa of the conjugate

acid to specify base strength! And Table 12.6 shows that a stronger base is

associated with a larger pKa (of its conjugate acid—but this parenthetical addition

is seldom stated). So our chemical problem is twofold: (1) we must be able to

recognize, by examination of the molecular structure, whether a functional group

is acidic or basic and (2) we must estimate its pKa value. Alternatively, if the pKa is
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known, we must examine the structure to determine whether the pKa describes an

acid or a base.

Table 12.7 gives data for some important acid–base pairs. Thus we see that

acetic acid is a stronger acid than is dihydrogen phosphate, which is stronger

than ammonium ion. It follows inevitably that ammonia is a stronger base than

monohydrogen phosphate, which is stronger than acetate ion. To find this set of

data in the literature, one looks for the pKa of acetic acid; the second pKa (pK2)

of phosphoric acid, H3PO4; and the pKa of ammonia.

A very simplified view of pKa prediction is often adequate. First we note that

these commonly seen functional groups can be considered to have essentially no

acidic or basic character in aqueous solution:

Alcohols and sugars, ROH

Amides, RCONH2

Ethers, ROR0

Esters, RCOOR0

Carbonyls, RCOR0; RCHO

Table 12.8 gives pKa ranges that will include many of the commonly encountered

acidic and basic functional groups. Recall that an aromatic amine has the nitrogen

Table 12.6. Measures of acid and base strength for
hypothetical conjugate pairs

Conjugate Acid, Conjugate Base,

pKa pKb

3 11

4 10

5 9

6 8

7 7

8 6

S
tr

o
n

g
er

ac
id
!

9 5

S
tro

n
g

er
b

ase
!

10 4

11 3

Table 12.7. pKa and pKb of some acids and bases

Conjugate Acid pKa Conjugate Base pKb

CH3COOH 4.76 CH3COO� 9.24

H2PO�4 7.21 HPO2�
4 6.79

NHþ4 9.25 NH3 4.75
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either as part of the ring system (as in pyridine) or directly attached to an aromatic

ring (aniline).

It is valuable to memorize, (or otherwise keep readily available) a few typical

pKa values to serve as reference points. Here are some examples:

Acetic acid, CH3COOH pKa 4.76

Benzoic acid, C6H5COOH pKa 4.20

Phenol, C6H5OH pKa 10.00

4-Nitrophenol, O2N-C6H4OH pKa 7.14

Triethylamine, Et3N pKa 10.78

Aniline, C6H5NH2 pKa 4.69

Bearing in mind the definitions of acid (proton donor) and base (proton acceptor), it

is clear that a structural change that increases the electron density at a functional

group will weaken an acid (raise its pKa) by making it more difficult for the proton to

leave; and will strengthen a base (raise its pKa) by more avidly attracting the proton,

and vice versa for electron withdrawal from the functional group. This is why 4-

nitrophenol is a much stronger acid than is phenol. With the few pKa values given

here and the ranges of Table 12.8, quite useful estimates can be made by analogy.

Structural Effects. We have seen that electron-withdrawing structural features

are acid-strengthening and base-weakening, whereas electron-donating structural

features are acid-weakening and base strengthening. Discrete charges display these

effects very clearly. Compare these data:

Hþ3 N��CH2COOH Ð Hþ3 N��CH2COO� þ Hþ pKa ¼ 2:31

H3C��CH2COOH Ð H3C��CH2COO� þ Hþ pKa ¼ 4:88

�O2C��CH2COOH Ð �O2C��CH2COO� þ Hþ pKa ¼ 5:69

Table 12.8. pK a Ranges of Acids and Bases

Type pKa

Acids

Carboxylic acids, RCOOH 2–6 (3–5 typical)

Sulfonic acids, RSO3H �1 to 1

Phenols, ArOH 7–11

Thiols, RSH 7–10

Imides��CONHCO�� 8–11

Bases

Aliphatic amines 8–11

Aromatic amines 4–7

Guanidines, (RNH)2C����NH 11–14
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Taking propionic acid as our reference, the pKa of the positively substituted acid

lies as expected, because a simple electrostatic argument states that like charge

repulsion will facilitate the departure of the proton, thus enhancing acid strength.

Just the opposite effect is seen with the negative substituent, which through unlike

charge attraction inhibits the dissociation of the proton, weakening the acid. This is

why pK2 of a diprotic acid is always larger than pK1.

More subtle effects are seen with substituents capable of exerting electron

release or electron withdrawal by inductive or resonance mechanisms. The aromatic

ring provides good examples of such effects, and in fact much of our information on

the electronic effects of substituents has come from pKa measurements. Table 12.9

lists pKa values for monosubstituted benzoic acids.

Some of the effects are easy to rationalize. For example, the nitro group is

electron-withdrawing from any position. (The ortho substituent often is atypical

because steric as well as electronic effects operate.) Similarly the amino group is

electron-releasing from every position. But some of the results may seem anoma-

lous. Thus methoxy is acid-weakening in the para position but acid-strengthening in

the meta position. How can this be explained?

Recall that both the inductive and resonance effects are present. The inductive

effect (a through-bond displacement of electron density) is governed mainly by the

electronegativity difference of the bonded atoms. The resonance effect is an

electron delocalization resulting from molecular orbital overlap. These two effects

may operate in the same directions, thus largely adding their effects; or they may

oppose each other. In the methoxy case such opposition occurs; the methoxy group

is electron-releasing by the resonance effect but electron-withdrawing by the

inductive effect. In the para position the resonance effect dominates, but in the

meta position resonance is largely ineffective, and the inductive effect dominates.

Table 12.10 gives pKa values for phenols. The substituent effects on phenolic

pKa values are more marked than those on the benzoic acid series because the

Table 12.9. pKa values of benzoic acids at 25�C

Position

—————————————————————————

Substituent Ortho Meta Para

��H 4.20 4.20 4.20

��NO2 2.17 3.45 3.44

��Cl 2.94 3.83 3.99

��OCH3 4.09 4.09 4.47

��CH3 3.91 4.24 4.34

��C(CH3)3 3.46 4.28 4.40

��COOH 2.95 3.54 3.51

��COO� 5.41 4.60 4.82

��OH 2.98 4.08 4.58

��NH2 4.98 4.79 4.92
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phenolic group can enter into direct conjugation with the substituent (as we saw in

describing 4-nitrophenol as an acid-base indicator).

Table 12.11 lists a few pKa values of amines. These display the range of pKa

values typically seen with this class of compound, although even more dramatic

substituent effects may be encountered; for example, pKa ¼ 1.11 for 4-nitroaniline.

Comparison of the aromatic amine aniline 10 with its saturated analog cyclohexy-

lamine 11 shows that the aromatic ring decreases base strength by a millionfold

(�pKa ¼ 6:06):

10

NH2

11

NH2

Table 12.10. pKa values for monosubstituted phenols in water

Position

————————————————————————

Substituent Ortho Meta Para

��H 10.00 10.00 10.00

��NO2 7.23 8.35 7.14

��Cl 8.48 9.02 9.35

��OCH3 9.93 9.65 10.20

��CH3 10.28 10.08 10.19

��NH2 9.71 9.87 10.30

Table 12.11. Amine pKa values

Amine pKa

Ammonia, NH3 9.25

Methylamine 10.64

Ethylamine 10.67

Dimethylamine 10.73

Ethanolamine, HOCH2CH2NH2 9.50

Hydroxylamine, HONH2 5.96

Hydrazine, H2NNH2 8.12

Aniline 4.58
�
�pKa ¼ 6:06

Cyclohexylamine 10.64

Pyridine 5.17
�

�pKa ¼ 5:96
Piperidine 11.13
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The same effect is seen with the pair pyridine and piperidine:

12

N

13

H
N

Although it may seem counterintuitive, the only conclusion that can be drawn is

that the aromatic ring is responsible for reducing the electron density on the nitro-

gen, and therefore must be functioning as an electron-withdrawing substituent

(Brown et al. 1955). This is a resonance delocalization effect.

The appearance of the imide structure as an acid in Table 12.8 may be surprising,

so let us view an imide as a product of successive acylations of ammonia:

NH3 NH2CH3C

O

NCH3C

O

CCH3

O
H

Basic

14 15 16

Neutral Acidic

It follows that the acyl group is electron-withdrawing, reducing the electron density

on nitrogen to such an extent that the basic ammonia molecule is converted to the

neutral acetamide, with a second acetyl group producing an imide, which has an

ionizable hydrogen. Many drug molecules, including the barbituric acid derivatives

and the hydantoins, include the imide group. The sulfonamide drugs contain the

functional group

Ar S NHR

17

O

O

which bears some relationship to the imide group, and is likewise acidic.

Assignment of pKa Values. To this point we have been considering the

problem of predicting, to a semiquantitative level, the pKa of a molecule from

knowledge of its molecular structure, the method being based on analogy with

pKa values of model compounds. Now we face a related but distinctly different

problem. Suppose a compound of known structure is studied experimentally and

its pKa value or values are measured. The problem is to associate these pKa values

with the functional groups responsible for them. This is called assigning the pKa

values.

If only a single pKa is measurable, the problem is usually trivial, because there

will be only a single reasonable choice of functional group to associate with the

experimental value.9 We therefore turn to the more interesting case of a diprotic
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acid, which we symbolize HABH. In general the two ionizable hydrogens are asso-

ciated with chemically different functional groups, so we must expand our descrip-

tion of the acid-base equilibria to accommodate two possible pathways:

HAB−

−ABH

HABH AB2−

k1

k2

k3

k4

ð12:60Þ

Here HAB� and �ABH represent the two possible monoprotic species. The

constants are called microscopic dissociation constants and are obviously defined

as follows:

k1 ¼
½HAB��
½HABH�

k2 ¼
½�ABH�
½HABH�

k3 ¼
½AB2��
½HAB��

k4 ¼
½AB2��
½�ABH�

ð12:61Þ

The observed stepwise acid dissociation constants are given by

K1 ¼
½Hþ�ð½HAB�� þ ½�ABH�Þ

½HABH� ð12:62Þ

K2 ¼
½Hþ�½AB2��

½HAB�� þ ½�ABH� ð12:63Þ

Algebraic combination of Eqs. (12.61)–(12.63) gives

K1 ¼ k1 þ k2 ð12:64Þ
1

K2

¼ 1

k3

þ 1

k4

ð12:65Þ

From Eqs. (12.61) we find

k1k3 ¼ k2k4 ð12:66Þ
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showing that only three of the four microscopic constants are independent. We

might even define a fifth microscopic constant according to

HAB� Ð
kiso �ABH

and further manipulation results in

kiso ¼
k2

k1

¼ k3

k4

ð12:67Þ

Before continuing with this general case, let us pause to analyze the special case

in which the two ionizable groups are chemically identical and are independent of

each other. The fact that they are identical means that k1 ¼ k2 and that k3 ¼ k4. The

fact that they are independent means that k1 ¼ k3 and k2 ¼ k4. Inserting these spe-

cial conditions into Eqs. (12.64) and (12.65) gives K1 ¼ 2k and 1=K2 ¼ 2=k, or,

combining these

K1

K2

¼ 4 ð12:68Þ

This result is usually described as a statistical effect. Equation (12.68) is not closely

obeyed by long-chain dicarboxylic acids because of the superimposed electrostatic

effects of the anionic charges (Brown et al. 1955); in other words, the two groups,

although identical, are not independent.

We now return to the general case in which the two functional groups are

different. From Eqs. (12.64), (12.65), and (12.67) we get

K1 ¼ k1ð1þ kisoÞ ð12:69Þ

K2 ¼
k3

1þ kiso

ð12:70Þ

Now suppose that kiso is very much smaller than one. From Eq. (12.67), this means

that k2 �< k1 and k3 �< k4, or from Eqs. (12.69)–(12.70)

K1 ¼ k1 ð12:71Þ

K2 ¼ k3 ð12:72Þ

In this case the observed Ka values can be equated to microscopic constants.

Chemically this means that essentially only the uppermost pathway in Eq. (12.60)

is followed, and the only monoprotic species is HAB�. The condition kiso �< 1 (or

the reverse, kiso 
> 1), which leads to a single ionization pathway, is satisfied if the

observed pKa values are widely spaced.
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We now turn to specific chemical compounds. In making pKa assignments, begin

by writing the compound in its fully protonated form, whether this is uncharged or

cationic. First consider 4-hydroxybenzoic acid. We place this in the center, with its

measured pK1 and pK2 values, and flank it with very obvious model compounds and

their pKa values:

COOH

4.2

18

COOH

4.6; 9.3

19

OH

OH

10.0

20

It is reasonable and even obvious to assign pK1 to the carboxylic acid and pK2 to the

phenolic group. Moreover, since K1 
> K2, we can expect that only a single

pathway is followed, and that the only monoprotic species present in significant

concentration is the carboxylate. Thus for this compound the ionization pathway is

COOH COO−

OH

COO−

OH O−

K1 K2

ð12:73Þ

Incidentally, the differences between 4.6 and 4.2, and 9.3 and 10.0, are to be

ascribed to electronic substituent effects.

Next consider 3-aminophenol:

NH3 OH OH

NH3

4.9 4.4; 9.8 10.0

21 22 23

By analogy we assign the pK1 to the amine and pK2 to the phenol. Again the two

dissociation constants are widely spaced, and this is the sequence:

OH OH O−

NH2NH3

K1 K2

NH2

ð12:74Þ
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Finally consider glycine, 25:

CH3NHþ3 Hþ3 NCH2COOH CH3COOH

10:7 2:4; 9:8 4:8

24 25 26

Once again by using model compounds as guides we make our assignment, this

time of pK1 to ionization of the carboxylic acid and pK2 to the amine function.

The ionization sequence is therefore

Hþ3 NCH2COOH Ð
K1

Hþ3 NCH2COO� Ð
K2

H2NCH2COO� ð12:75Þ

The intermediate species, carrying both a positive charge and a negative charge, is

called a zwitterion.

What is the difference between 3-aminophenol (which does not yield a zwitter-

ion) and glycine? Representing both molecules in this scheme

H3 N OH

H2N OH

H3 N O−

H2N O−

k1

k2

k3

k4

we see that 3-aminophenol follows the k1 ! k3 pathway, because the protonated

amine, which is the conjugate acid of an aromatic amine, is a stronger acid than

is the phenol. For glycine, on the other hand, the carboxylic acid is stronger than

is the protonated amine (which in this compound is the conjugate acid of an alipha-

tic amine), so the k2 ! k4 route predominates.

If K1 and K2 are not widely separated, then both ionization routes are followed,

and both monoprotic species may be present in the solution in significant concen-

tration. Unique assignment of the pK1 and pK2 values then is not possible, and the

interesting problem, which we will not pursue here, is to determine the values of the

microscopic constants.

PROBLEMS

12.1. Calculate the pH of each of these aqueous solutions at 25�C.

(a) 2:50� 10�4 M HCl

(b) 2:50� 10�4 M H2SO4

(c) 0.04 M ammonia

(d) 0.04 M ammonium chloride

(e) 3:0� 10�3 M KOH
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12.2. A buffer was prepared by mixing 25.0 mL of 0.10 M acetic acid and

15.0 mL of 0.075 M KOH, and diluting to 50.0 mL with water. Calculate

its pH (pKa ¼ 4:76).

12.3. Give directions for the preparation of 500 mL of 0.10 M pH 8.35 tris buffer,

starting with pure tris and 0.10 M HCl. (See Example 12.7 for needed

information.)

12.4. Sorensen buffer solutions are prepared by mixing appropriate volumes of

these stock solutions:

Stock solution A. 9.91 g of NaH2PO4 �H2O (MW 138.0) is dissolved in

water to make 1 L.

Stock solution B. 9.47 g of Na2HPO4 (MW 142.0) is dissolved in water to

make 1 L.

(a) Calculate the molar concentrations of stock solutions A and B.

(b) Calculate the pH of a Sorensen’s buffer prepared by mixing 40 mL of A

and 60 mL of B. Use pK2 ¼ 6:80 as the effective pK2 of phosphoric

acid.

12.5. Calculate the titration curve for the titration of 24.0 mL of 0.20 M

n-butylamine (pKa ¼ 10:60) with 0.30 M HCl when the following volumes

of titrant have been added: 0 mL, 2 mL, 5 mL, 8 mL, 12 mL, 16 mL, 18 mL.

Suggest a suitable indicator for the titration.

12.6. Calculate and plot the species distribution curves for these solutes.

(a) Phenol, pKa ¼ 10:00.

(b) Hydroxylamine, pKa ¼ 5:96.

(c) Phthalic acid, pK1 ¼ 2:95, pK2 ¼ 5:41.

(d) Citric acid, pK1 ¼ 3:06, pK2 ¼ 4:74, pK3 ¼ 5:40.

(e) Is there any pH range within which significant concentrations of the

uncharged forms of phenol and hydroxylamine can coexist in solution?

12.7. Give numerical values for the equilibrium constants of these reactions.

ðaÞ C6H5COOHþ CH3NH2 Ð C6H5COO� þ CH3NHþ3
ðbÞ C6H5OHþ OH� Ð C6H5O� þ H2O

12.8. Assign the pKa values of these compounds. (Look up the structures as

necessary.)

(a) Salicylic acid; pK1 ¼ 2:98, pK2 ¼ 13:00.

(b) Arginine; pK1 ¼ 2:17, pK2 ¼ 9:04, pK3 ¼ 12:48.

(c) Quinine; pK1 ¼ 6:66, pK2 ¼ 9:48.

(d) Theophylline; pKa ¼ 8:77.
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12.9. For the titration of weak acid HA with strong base MOH, let b ¼ ½Mþ� and

c ¼ ½HA� þ ½A��. Derive an exact equation relating ½Hþ�, Ka, Kw, b, and c

throughout the entire titration. (Hint: Apply the systematic procedure

outlined at the beginning of Section 12.3.)

12.10. Write the electroneutrality equation for aqueous solutions of each of these

solutes.

(a) Ammonium chloride.

(b) The triprotic neutral acid H3A.

(c) A pH 7 phosphate buffer (assume sodium ion is the counterion).

12.11. What is the pH of a 2.00% solution of ephedrine hydrochloride (MW 211.7,

pKa 9.60)?

12.12. Given: 5.444 g of KH2PO4 (MW 136.1) was dissolved in 100.0 mL of

0.300 M KOH and the solution was diluted to 1000 mL. Calculate the pH

(pK1 ¼ 2:23; pK2 ¼ 7:21; pK3 ¼ 12:32).

12.13. Given: 50.0 mL of an aqueous solution of ammonia (pKa 9.25) titrated with

0.100 M HCl, 9.50 mL of titrant being required.

(a) What was the pH of the solution when 4.75 mL of titrant had been added?

(b) What was the pH of the solution at the endpoint?

12.14. Calculate the standard free-energy change at 25�C for the dissociation of

phenol in water (pKa ¼ 10:00).

12.15. What weight of anhydrous sodium acetate (MW 82.0) must be added to

1.00 L of pH 3.75 acetate buffer containing a total buffer concentration of

0.055 M in order to change the pH to 3.90 (pKa ¼ 4:75)?

12.16. Show how a fraction and a ratio are related; in particular, how are the

fraction F ¼ ½HA�=c and the ratio R ¼ ½HA�=½A�� related (c is the total

concentration)?

12.17. What is the concentration of benzoate ion in a solution prepared to be

0.10 M in acetic acid, 0.10 M in potassium acetate, and 5� 10�4 M in

(total) benzoic acid (pKa ¼ 4:75 for acetic acid; pKa ¼ 4:20 for benzoic

acid)?

12.18. Suppose that the pH of a solution of a diprotic weak acid H2A is adjusted to

be equal to ðpK1 þ pK2Þ=2.

(a) Will the concentration of the monoanion HA� increase or decrease

when some HCl is added?

(b) Will the concentration of the monoanion HA� increase or decrease

when some KOH is added?

12.19. What is the pH at the midpoint of the titration of 15.0 mL of 0.050 M HCl

with 0.10 M NaOH?
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12.20. You wish to prepare 1.00 L of pH 7.00 phosphate buffer containing a

total phosphate concentration of 0.100 M. You have available crystalline

NaH2PO4 �H2O (MW 138.0) and Na2HPO4 (MW 142.0). For phosphoric

acid, pK1 ¼ 2:23, pK2 ¼ 7:21, pK3 ¼ 12:32. Neglecting activity coefficient

effects, what weights of the two solutes must be taken?

12.21. What is the standard free energy change of this reaction at 25�C?

Hþ þ OH� Ð H2O

NOTES

1. G. N. Lewis, also in 1923, proposed an even more general acid–based theory. Just as Bronsted

improved on the Arrhenius theory by eliminating the hydroxide ion as a defining feature, so

Lewis generalized the Bronsted theory by eliminating the proton. Lewis defined an acid as an

electron pair acceptor, and a base as an electron pairdonor. Thus every Bronsted base is also

a Lewis base, but the Lewis acid concept greatly expands our ideas of acid character. In the

reaction

BF3 þ NH3 Ð F3B : NH3

boron trifluoride is a Lewis acid.

2. Proton transfer reactions are extremely fast, so as soon as the solution has been made

macroscopically homogeneous by mixing, the system is at equilibrium.

3. It is important to appreciate a critical difference in the meanings of Eq. (12.16),

pKw ¼ pKa þ pKb; and of Eq. (12.18), pKw ¼ pHþ pOH. Equation (12.16) refers to a

conjugate acid–base pair; pKa and pKb are constants, although mutually dependent.

Equation (12.18) refers to a solution; pH and pOH are variables, although mutually

dependent.

4. Of course, these are equilibria, and all species are, strictly speaking, present in all solutions.

From the practical point of view, however, we are often justified in neglecting the presence of

a species if it is experimentally undetectable or exhibits no detectable influence.

5. Buffers are commonly described in an abbreviated terminology that must be understood. For

example, a 0.10 M pH 5.00 acetate buffers means that the total buffer concentration c is

0.10 M and the pH is 5.00; obviously the solution contains both acetate and acetic acid, in

concentrations that can be worked out from the Henderson–Hasselbalch equation. Similarly,

a 0.05 M pH 7.0 phosphate buffer contains both dihydrogen phosphate (H2PO�4 ) and

monohydrogen phosphate (HPO2�
4 ), usually taken as their salts.

6. The chloride ion is neutral, as may be deduced by noting that HCl is a strong acid; that is, its

‘‘conjugate base’’ Cl� is so weak that it is completely ineffectual at capturing the proton.

7. The exact equation obtained by applying this general scheme will be a polynomial in ½Hþ�,
whose highest power will be equal to the number of dissociation constants (including Kw)

plus one.

8. Figure 12.5 also shows that fairly high concentrations of a strong base (seen well beyond the

endpoint in Fig. 12.5) constitute good buffers. The same is true of strong acids.

9. The choice is not always obvious, however, as is illustrated by the data in Example 12.15 for

chlordiazepoxide.
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13

ELECTRICAL WORK

13.1. INTRODUCTION

In Chapter 1 we saw that work can be expressed as the product of an intensive

property and an extensive property

Work ðenergyÞ ¼ intensity factor� capacity factor

and these four examples were given:

Mechanical work ¼ mechanical force� distance

Work of expansion ¼ pressure� volume change

Surface work ¼ surface tension� area change

Electrical work ¼ electric potential � charge

Mechanical work is dealt with in classical mechanics. In earlier chapters we treated

expansion work and surface work. The present section develops the idea of electri-

cal work. Recall from Chapter 3 that the Gibbs free-energy change in a reversible

process when carried out reversibly is equal to the maximum work obtainable from

the system (exclusive of work of expansion). One kind of useful work measured

by the free-energy change is electrical work. We routinely exploit this application

of thermodynamics when we use batteries.

The essential phenomenon that we will study consists of a transfer of charge

between an electrolyte solution and another phase (usually a solid). There are

two ways in which this charge can be transferred: by electron-transfer (the subject

of Sections 13.2–13.4) and by ion transfer (Section 13.5), commonly called ion

exchange.
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13.2. OXIDATION–REDUCTION REACTIONS

Inorganic Redox Reactions. We saw in Chapter 12 that acid–base reactions

are manifested as proton transfers from one conjugate acid–base pair to another.

Now we encounter a formal analogy in the phenomenon of electron transfer. First

we define an oxidation–reduction (redox) half-reaction:

Red
oxidation

reduction
Oxþ nðeÞ ð13:1Þ

where ‘‘Red’’ is the reduced form of the reacting species (also known as the

reductant or reducing agent), ‘‘Ox’’ is the oxidized form (the oxidant or oxidizing

agent), ‘‘e’’ is the electron, and n is the number of electrons in the balanced half-

reaction. Of course, in ordinary chemical systems we do not observe the half-

reaction; instead two half-reactions are coupled, and the net process consists of

one or more electrons being transferred from one redox pair to another:

Redð1Þ Ð Oxð1Þ þ nðeÞ

nðeÞ þ Oxð2Þ Ð Redð2Þ
————————————————

Net: Redð1Þ þ Oxð2Þ Ð Oxð1Þ þ Redð2Þ

Equation (13.1) shows that oxidation is the process in which a substance loses

electrons and reduction is the process in which a substance gains electrons. Here

are some simple examples of redox half-reactions.

H2 Ð 2Hþ þ 2e

NaÐ Naþ þ e

Fe2þ Ð Fe3þ þ e

2Cl� Ð Cl2 þ 2e

As in other types of chemical processes, redox reactions must be written in

balanced form in order to express the experimental stoichiometry and to define

equilibrium constants. For the simple examples shown above, it is easy to combine

half-reactions into balanced net reactions, such as

H2 þ 2Naþ Ð 2Hþ þ 2Na

2Fe2þ þ Cl2 Ð 2Fe3þ þ 2Cl�

Observe that a balanced redox reaction (whether a half-reaction or a net reaction) is

balanced both chemically and electrically.

Some inorganic redox species take part in more complicated processes, and the

balancing of their reactions is not intuitively obvious. For example, Cr2O2�
7 is
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reduced to Cr3þ. There is a systematic balancing procedure that serves to generate

balanced redox reactions in all instances.

Step 1. Balance each half-reaction both chemically and electrically, using water

and hydrogen ions where necessary. (We assume that the solvent is water.)

Step 2. Equate the electron yield in the oxidation to the electron consumption in the

reduction.

Step 3. Add the balanced half-reactions, thus canceling electrons.

Step 4. If necessary, reduce stoichiometric coefficients to whole numbers, and, if

desired, express the balanced equation in molecular rather than ionic form.

Example 13.1. Balance the reaction in which potassium dichromate oxidizes

ferrous ion. The unbalanced dichromate half-reaction is Cr2O2�
7 Ð Cr3þ.

6eþ Cr2O2�
7 þ 14Hþ Ð 2Cr3þ þ 7H2O

Fe2þ Ð Fe3þ þ e
ðStep 1Þ

In balancing the dichromate half-reaction, two Cr3þ are placed on the right side.

Then 7H2O are added to make up the oxygens in dichromate, and 14Hþ are added

to the left side to balance the water. Finally the 6 electrons balance the half-reaction

electronically.

6eþ Cr2O2�
7 þ 14Hþ Ð 2Cr3þ þ 7H2O

6Fe2þ Ð 6Fe3þ þ 6e
ðStep 2Þ

Cr2O2�
7 þ 6Fe2þ þ 14Hþ Ð 2Cr3þ þ 6Fe3þ þ 7H2O ðStep 3Þ

K2Cr2O7 þ 6FeCl2 þ 14HClÐ 2CrCl3 þ 6FeCl3 þ 7H2Oþ 2KCl ðStep 4Þ

Very effective analytic methods have been based on redox reactions. In redox

titrations a reductant is titrated with an oxidant (or vice versa). The endpoint can

be detected with a redox indicator, which is a substance whose oxidized and

reduced forms exhibit different colors. Alternatively an instrumental method of

detection, to be described in Section 13.3, may be applied.

Organic Redox Reactions. The oxidation of organic compounds can be extre-

mely complicated, and many of these reactions are not effectively reversible.

Nevertheless, this kind of reaction is important pharmaceutically because many

drug molecules undergo degradative oxidation (Connors et al. 1986), and a brief

discussion is appropriate. The essential concept is that the oxidation state of a car-

bon atom is a result of the number of bonds from carbon to oxygen; the more car-

bon–oxygen bonds, the more highly oxidized the carbon atom is.1 The simplest

example of this concept is provided by these one-carbon compounds:
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C

H

H

H

H C

H

H

H

OH C O
H

H
CH

OH

O
C OO

oxidation

reduction

Now, if oxidation is the addition of oxygen, then the reverse reaction must be

reduction. This leads to the identification of reduction with the addition of

hydrogen. Let us broaden this idea to consider the addition of hydrogen to an olefin:

H2 þ RCH����CHR
oxidation

reduction

RCH2CH2R

Since the hydrogenation reaction is a reduction, the reverse of this, a dehydrogena-

tion, must be an oxidation. And now we see that we have an organic oxidation

process that does not involve oxygen. We can apply the same idea to other reac-

tions, as in the formal conversion of a sulfhydryl (mercaptan) group to a disulfide:

2RSH
oxidation

reduction
RSSRþ H2

In the presence of oxygen (as the oxidizing agent) this reaction proceeds according

to

2RSHþ 1
2

O2 Ð RSSRþ H2O

The mechanisms of organic redox reactions are seldom simple. Mechanisms (the

detailed pathways from the initial to the final states) are investigated by the methods

of kinetics, and do not form part of the field of classical thermodynamics.

We have now seen oxidation described as an electron loss, as an addition of

oxygen, or as a loss of hydrogen, with reduction as the reverse process. Here is a

yet broader context. We noted that a reducing agent is a substance that yields

electrons, and, from Chapter 12, that a base is a substance that donates an electron

pair. More generally we label as a nucleophile (‘‘nucleus lover’’) a substance

that furnishes electrons; thus reducing agents and bases are special cases of

nucleophiles. Similarly, the class of electrophiles (‘‘electron lovers’’) includes

oxidizing agents and Lewis acids.

13.3. ELECTROCHEMICAL CELLS

Electrodes. In the present context, an electrode is a conductor of electricity

immersed in an electrolyte solution. A transfer of charge may take place at the
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interface between the electrode surface and the solution. This charge transfer may

result from the transfer either of electrons or of ions across the interface. Our pre-

sent concern is with electron transfer, which arises from the occurrence of oxida-

tion–reduction reactions.

Suppose that we assemble a system consisting of two electrodes, one each of two

different redox half-reactions. One of these might be a piece of zinc metal partly

immersed in a solution of zinc sulfate, with the other a piece of copper metal partly

immersed in a solution of cupric sulfate. Assume that the solutions are in electrical

contact but prevented from mixing and the metal electrodes are connected

externally by a conductor, such as a length of copper wire. This assembly is an

example of an electrochemical cell, this particular example being known as the

Daniell cell. Figure 13.1 shows the Daniell cell.

If we prepare the solutions each to be about 1 M, the redox half-reactions that

take place in this cell will be

ZnÐ Zn2þ þ 2e

2eþ Cu2þ Ð Cu

Thus, oxidation occurs at the zinc electrode (removing metal from the solid zinc)

and reduction occurs at the copper electrode (plating copper metal onto the solid

copper). We will shortly learn how the direction of reaction can be predicted. On

atomic and subatomic scales, electrons are being released at the zinc electrode, they

flow through the external conductor, constituting an electric current, and are

V

Cu

Cu2+

Zn

Zn2+

Salt Bridge

Figure 13.1. The Daniell cell. The salt bridge is a gel containing an electrolyte; it permits the

passage of current, but prevents mixing of the solutions. [Reproduced by permission from
Connors (1982).]
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consumed at the copper electrode by reduction of cupric ions. If a voltmeter is

introduced to the external circuit, it will indicate a voltage difference between

the electrodes. The electric potential between the electrodes is the source of this

measured voltage. [Electric potential is also called electromotive force (emf).]

Electric potential is a consequence of a difference in charge between two points;

it is the electrical analog of the chemical potential.

There are two ways to operate an electrochemical cell:

1. If we simply connect the external leads, thus creating a closed circuit, the

redox reactions at the electrodes occur as we have described, and the cell

generates an emf, which we can use to do work. In fact, the cell is a battery.

In this mode of operation the cell half-reactions are occurring spontaneously.

The cell is called a galvanic or voltaic cell when it is operating spontaneously.

The essential thermodynamic phenomenon taking place is that chemical

energy is being transformed to electrical energy.

2. The second mode of operation of a cell opposes the cell potential with a

greater external potential, thus reversing the cell reactions. Now we are

converting electrical energy to chemical energy. This is how we recharge a

battery. In this type of operation the cell is called an electrolytic cell. The cell

reactions are occurring nonspontaneously, provided with energy from an

external source to drive them in reverse.

Whether an electrochemical cell is operating as a galvanic cell (spontaneously) or

as an electrolytic cell (nonspontaneously), the electrode at which oxidation occurs

is called the anode and the electrode at which reduction occurs is called the

cathode. In the Daniell cell of Fig. 13.1, for example, when operating sponta-

neously the zinc electrode is the anode and the copper electrode is the cathode,

whereas in the nonspontaneous mode the copper electrode is the anode and the

zinc electrode is the cathode.

All electrochemistry takes place at interfaces between phases. This is explicitly

indicated in a shorthand notation for describing electrochemical cells. The physical

state (gas, liquid, solid) may be shown if not obvious, and solution activities or

concentrations or gas pressure may be indicated. Here is the designation of the

cell in Fig. 13.1:

Zn jZnSO4ð1 MÞ jjCuSO4ð1 MÞ jCu

A single vertical line represents an interface across which a potential difference

exists. This potential difference is called an electrode potential. The potential of

the cell as a whole, which is what we measure, is the sum of the two electrode

potentials (we cannot measure a single electrode potential because a single elec-

trode does not constitute a closed electric circuit). The double vertical line signifies

a salt bridge, which is an electrolyte solution (usually in a viscous medium like agar

or gelatin) that establishes electrical contact between the electrode solutions while

keeping them physically separated. The existence of the salt bridge introduces a
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complication, for at each end of the salt bridge there is another interface, and across

these interfaces there are compositional differences. This means that charge differ-

ences must exist across each solution/salt bridge interface, and therefore electric

potentials must exist. This liquid junction potential is small but is measurable,

and it is difficult to account for theoretically in a rigorous and accurate way, so

an experimental approach is taken to render it negligible. Since the source of the

liquid junction potential is known to be the different mobilities of cations

and anions, salt bridges are constructed with high concentrations of KCl as the

electrolyte, because Kþ and Cl� have nearly the same mobility; thus the bulk of

the current is carried by these ions, and the liquid junction potential is minimized.

In extremely accurate work cells without liquid junctions may be used, but in usual

laboratory situations our cells possess liquid junctions. We will not need to take the

liquid junction potential into account.

The Nernst Equation. Consider the generalized chemical reaction

aAþ bBÐ mM þ nN

In Chapter 4, Section 4.3 we derived Eq. (13.2) for this system

�G ¼ �G	 þ RT ln
am

Man
N

aa
Aab

B

ð13:2Þ

where ai represents the activity of substance i, �G is the free-energy change (per

mole), and �G	 is the standard free-energy change. It is important to realize that

the activities in Eq. (13.2) do not necessarily represent the values at equilibrium. If,

however, we now impose the equilibrium condition, meaning that �G ¼ 0,

we obtain the important relationship (which we have used frequently in earlier

developments)

�G	 ¼ �RT ln K ð13:3Þ

where K is the equilibrium constant:

K ¼
ðan

MÞeqðan
NÞeq

ðaa
AÞeqðab

BÞeq

ð13:4Þ

All the foregoing is familiar. We now make a connection to the electrochemical

cell, in which the reaction is an oxidation–reduction reaction, and the chemical

process results in electron transfer across the electrode–solution interfaces. The

key idea is that if the cell operates reversibly (in the thermodynamic meaning of

this term), the electrical work produced will be the free energy change for the

process, which is the maximum work (not counting work of expansion) that the

system can perform. The cell will operate reversibly if an infinitesimal amount
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of reaction occurs, and this condition requires that zero or an infinitesimal amount

of current flow through the external circuit. This is accomplished by opposing the

cell potential with an external potential such that zero current flows. The measured

potential is then the cell potential at zero current.

From Section 13.1, electrical work is the product of potential and charge. Let E

represent the cell potential [measured in volts (V)] and F the charge of one mole of

electrons [measured in coulombs (C)], so that F ¼ eNA ¼ 96,485 C mol�1. The

quantity F is called the Faraday. Then for a redox reaction in which n electrons

per molecule are transferred,

�G ¼ �nFE ð13:5Þ

where the negative sign is inserted so as to achieve agreement between the sign

conventions applying to free-energy changes and cell potentials, as we will later

see. By analogy with Eq. (13.5) we also write

�G	 ¼ �nFE	 ð13:6Þ

where E	, called the standard cell potential, is the value of the cell potential when

reactants and products are in their standard states. For convenience let us define

L ¼ am
Man

N

aa
Aab

B

ð13:7Þ

where the activities need not be equilibrium activities. Now combining Eqs. (13.2),

and (13.5)–(13.7) we get

E ¼ E	 � RT

nF
ln L ð13:8Þ

This is the Nernst equation, which relates the cell potential at zero current, E, to the

activities (or concentrations, when activity coefficients are essentially unity) of the

reactant and product species of the electrochemical cell reaction.

Equations (13.3) and (13.6) combined give

E	 ¼ RT

nF
ln K ð13:9Þ

where K is the equilibrium constant of the cell reaction.

At 25	C the Nernst equation takes the form

E ¼ E	 � 0:059

n
log L ð13:10Þ

where the final term is now expressed in base 10 logarithms.2 According to

Eq. (13.10), a change in L by a factor of 10 results in a change in the cell potential
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of 59/n mV. This result is said to be a ‘‘Nernstian response,’’ and is evidence that

the electrochemical system is well defined and is operating reversibly.

The foregoing equations allow us to make these associations:

1. If �G is negative, E is positive. The cell reaction is spontaneous; that is,

with the reactant and product concentrations as specified, the reaction

spontaneously proceeds from left to right.

2. If �G is positive, E is negative, and the reaction is nonspontaneous; it

proceeds from right to left.

3. If the system is at equilibrium, then L ¼ K, �G ¼ 0, E ¼ 0. The cell can do

no work.

4. If K > 1, E	 is positive; if K < 1, E	 is negative.

It is important to keep in mind that we have the experimental ability to arrange the

reactant and product concentrations at levels far from equilibrium, and to maintain

them in such a state by means of the salt bridge separation shown in Fig. 13.1, or an

equivalent device; moreover, by holding the system in the zero-current condition,

we achieve thermodynamic reversibility. However, if we allow current to flow,

the available electrical work is less than the maximum work as measured or as

calculated under conditions of reversibility.

Standard Potentials and Sign Conventions. We have seen that a function-

ing electrochemical cell requires a complete circuit, which means that it must pos-

sess two electrodes. We measure the cell potential. Although we cannot measure

individual electrode potentials (because we would then have an open circuit), the

concept of an electrode potential is so attractive that we adopt the view that a

cell potential can be expressed as the sum of its electrode potentials. Consider again

the Daniell cell:

Zn jZnSO4 jjCuSO4 jCu

According to this concept we write

Ecell ¼ EZn;Zn2þ þ ECu2þ;Cu ð13:11Þ

Observe how the order of the subscripts tells which half-reaction is an oxidation and

which is a reduction.3 An analogous equation relates the standard cell potential to

the standard electrode potentials:

E	cell ¼ E	
Zn;Zn2þ þ E	

Cu2þ;Cu
ð13:12Þ

Strictly speaking, the term standard electrode potential should be used only for the

quantity describing the half-reaction as a reduction (IUPAC 1993, p. 61), but we
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will relax this nomenclature, using the direction of the subscripts to make fully

explicit whether the half-reaction is an oxidation or a reduction.

We must now consider the sign conventions relating to potentials. Two different

concepts are involved, and some confusion is possible because historically we have

used the words positive and negative to denote both a mathematical sign and a

physical characteristic (Anson 1959).

Concept 1: The Potential of the Physical Electrode. We have seen that it would

be convenient to have available values of individual electrode potentials, but we

have also seen that we can only measure cell potentials. This difficulty is overcome

by means of the universal agreement that the standard hydrogen electrode,

diagrammed as

Pt;H2ð1 atmÞ jHþða ¼ 1Þ

is to be assigned an electrode potential of zero volts at all temperatures. The

electrode reaction is

H2 Ð 2Hþ þ 2e ðE	H2;H
þ ¼ 0:00 VÞ

Now, if we form a cell of the standard hydrogen electrode with any other electrode,

the measured cell potential is to be assigned to the second electrode. But besides its

magnitude, this potential has a sign, which is determined by whether the second

electrode has an excess or a deficiency of electrons relative to the hydrogen

electrode. Suppose that we construct the following cell:

Pt;H2ð1 atmÞ jHþða ¼ 1Þ jjZn2þða ¼ 1Þ jZn

We write the cell reaction with the left-hand electrode expressed as an oxidation

and the right-hand electrode as a reduction:

H2 þ Zn2þ Ð 2Hþ þ Zn

Of course, it is irrelevant to the physical system how we choose to write the

reaction, and in the laboratory it is observed that, in this cell, the zinc electrode

is negative relative to the hydrogen electrode; that is, oxidation occurs at the zinc

electrode, releasing electrons. This is the physical characteristic alluded to earlier; it

is a convention that we assign a negative charge to the electron, but it is a physical

fact that in this cell oxidation occurs at the zinc electrode. The measured potential

(at 25	C) is �0:76 V, and since we can write

E	cell ¼ E	H2;H
þ þ E	

Zn2þ;Zn
¼ �0:76 V
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we can state that E	
Zn2þ;Zn

¼ �0:76 V. This is how standard electrode potentials are

measured. Table 13.1 lists some standard electrode potentials. From the Nernst

equation, Eq. (13.10), which can be written for either an electrode or a cell, the

standard potential is equal to the potential when L ¼ 1, and this condition is met

when all reactant and product species are in their standard states. When determining

standard potentials, the hydrogen electrode is always written on the left (as an

oxidation) (IUPAC 1993, p. 61).

If a cell, or indeed a reaction mixture, is constituted of any two half-reactions

listed in Table 13.1, all species being in their standard states of unit activity, then

the more negative E	 value will represent the oxidation. Another way to say this is

that the more positive the electrode potential, the greater its oxidizing power. Thus

we can predict that permanganate (MnO�4 ) will oxidize Fe2þ to Fe3þ, and that

iodine (as the triiodide ion I�3 ) will oxidize (i.e., will be reduced by) thiosulfate,

S2O2�
3 . This argument is made more systematic in Example 13.5 to follow.

Concept 2: The Potential of a Half-Reaction. From Eq. (13.5), �G ¼ �nFE, and

from the thermodynamic result that a spontaneous reaction has a negative free

energy change, we conclude that a spontaneous reaction has a positive potential.

But we know that the reverse reaction is nonspontaneous, so its free-energy change

Table 13.1. Standard electrode potentials at 25	C

Reduction Half-reaction E	/V

Naþ þ e ¼ Na �2:71

Zn2þ þ 2e ¼ Zn �0:76

Fe2þ þ 2e ¼ Fe �0:44

Ni2þ þ 2e ¼ Ni �0:25

AgIðsÞ þ e ¼ Agþ I� �0:15

Sn2þ þ 2e ¼ Sn �0:14

Pb2þ þ 2e ¼ Pb �0:13

2Hþ þ 2e ¼ H2 ð0:00Þ
AgBrðsÞ þ e ¼ Agþ Br� 0:07

S4O2�
6 þ 2e ¼ 2S2O2�

3 0:08

Sn4þ þ 2e ¼ Sn2þ 0:15

AgClðsÞ þ e ¼ Agþ Cl� 0:22

Hg2Cl2ðsÞ þ 2e ¼ 2Hgþ 2Cl� 0:27

Cu2þ þ 2e ¼ Cu 0:34

Cuþ þ e ¼ Cu 0:52

I�3 þ 2e ¼ 3I� 0:55

Fe3þ þ e ¼ Fe2þ 0:77

Agþ þ e ¼ Ag 0:80

Cu2þ þ I� þ e ¼ CuI 0:86

Cl2 þ 2e ¼ 2Cl� 1:36

MnO�4 þ 8Hþ þ 5e ¼ Mn2þ þ 4H2O 1:51

H2O2 þ 2Hþ þ 2e ¼ 2H2O 1:77

216 ELECTRICAL WORK



is positive; hence its potential is negative. Therefore, in complete harmony with our

practice in altering the sign of a thermodynamic quantity when we reverse the di-

rection of the reaction, we also alter the sign of a potential when we reverse the

direction of the reaction. Thus since E	
Zn2þ;Zn

¼ �0:76 V for the half-reaction Zn2þþ
2e ¼ Zn, we can write E	

Zn;Zn2þ ¼ þ0:76 V for the half-reaction Zn ¼ Zn2þ þ 2e.

From Eq. (13.9), this sign change convention is equivalent to converting an

equilibrium constant to its reciprocal when a reaction is written in the reverse

direction.

Applications of Electrode Potentials. Electrochemical calculations are not

routinely necessary in the solution of pharmaceutical problems, so our treatment

will be brief; but there are two reasons to include some level of discussion. The first

is that these calculations offer a perfect example of the power of thermodynamics to

predict the direction of chemical change. The second reason is to provide a sound

basis for the discussions in Sections 13.4 and 13.5.

We begin with the Nernst equation

E ¼ E	 � 0:059

n
log L ð13:13Þ

where

L ¼
Q

an
pQ

an
r

ð13:14Þ

In Equation (13.14),
Q

signifies ‘‘the product of,’’ ap represents activity of

product(s), ar is the activity of reactant(s), and n specifies the power to which

each activity is raised; n is the appropriate stoichiometric coefficient in the balanced

cell reaction. The Nernst equation bears a formal resemblance to the Henderson–

Hasselbalch equation, Eq. (12.36), and it is used in much the same way. The

equation relates the three quantities E;E	; L, and if we know two of these, we

can calculate the third. The methods will be illustrated with numerical examples.

Example 13.2. Calculate the potential of this cell at 25	C and predict the direction

of the reaction. That is, will ferrous ion be oxidized or will ferric ion be reduced

under these conditions?

Pt j Fe2þð1� 10�6 MÞ; Fe3þð0:05 MÞ jjKIð0:001 MÞ jAgI;Ag

The Pt is inert and serves only to make electrical contact between the solution and

the external conductor (as in the hydrogen electrode).

Always begin by writing the balanced cell reaction, treating the left-hand

electrode as the anode (where oxidation takes place). For this cell

AgIþ Fe2þ Ð Fe3þ þ Agþ I�
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We now set up the Nernst equation:

Ecell ¼ E	cell � 0:059 log
aFe3þaI�aAg

aAgIaFe2þ

The standard electrode potentials are found in Table 13.1:

E	cell ¼ E	
Fe2þ;Fe3þ þ E	AgI;Ag

¼ �0:77� 0:15 ¼ �0:92 V

Since Ag and AgI are solids, they are in their standard states of unit activity, and

activities of solutes will be approximated by concentrations:

Ecell ¼ �0:92� 0:059 log
ð0:05Þð1� 10�3Þ
ð1� 10�6Þ

¼ �0:92� 0:059 log 50

¼ �0:82 V

Since the calculated cell potential is negative, the reaction as it has been written is

nonspontaneous. Therefore, at these concentrations, ferric ion will be reduced to

ferrous ion and silver will be oxidized to Agþ (which precipitates as AgI).

Example 13.3. What is the solubility product of silver bromide?

This may seem a peculiar question in the present context, because the solubility

product (Chapter 10) does not describe a redox reaction.

AgBrðsÞ Ð Agþ þ Br�

Ksp ¼ aAgþaBr�

However, we can ‘‘compose’’ this reaction from two redox half-reactions as follows:

AgBrðsÞ þ eÐ Agþ Br�

AgÐ Agþ þ e

-----------------------------------------------------------

AgBrðsÞ Ð Agþ þ Br�

From Table 13.1 we find

E	cell ¼ E	AgBr;Ag þ E	Ag;Agþ

¼ 0:07� 0:80

¼ �0:73 V
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We now apply Eq. (13.9) at 25	C, with n ¼ 1, or

Log Ksp ¼
E	cell

0:059

¼ �12:37

or Ksp ¼ 4:3� 10�12. It is often more accurate to determine such equilibrium con-

stants from potential measurements than by direct chemical analysis.

Example 13.4. Calculate the potential of this Daniell cell:

Zn jZn2þð0:35 MÞ jjCu2þð0:001 MÞ jCu

The cell reaction is

Znþ Cu2þ Ð Zn2þ þ Cu

The Nernst equation for this cell is

Ecell ¼ E	cell�
0:59

n
log

aZn2þaCu

aCu2þaZn

where n ¼ 2. We find the standard electrode potentials in Table 13.1:

E	cell ¼ E	
Zn;Zn2þ þ E	

Cu2þ;Cu

¼ 0:76þ 0:34

¼ þ1:10 V

Potentials are intensive quantities, so they are independent of the amount of

reaction. From the equation �G ¼ �nFE we see that E ¼ ��G=nF; a larger n

value gives a correspondingly larger �G, but E is unaffected. This holds because

the amount of oxidation is exactly balanced by the amount of reduction. Continuing

with the calculation, we have

Ecell ¼ þ1:10� 0:059

2
log

0:35

0:001

¼ þ1:02 V

The cell reaction is spontaneous as written.

Example 13.5. Predict what will happen in this cell:

Ag;AgCl jCl�ð1 MÞ;Cl2ðp ¼ 1 atmÞ j Pt

ELECTROCHEMICAL CELLS 219



The cell reaction is balanced as follows:

2Agþ 2Cl� Ð 2AgClþ 2e

Cl2 þ 2eÐ 2Cl�

---------------------------------------------------------------

2Agþ Cl2 Ð 2AgCl

We recognize that all species are in their standard states, so L ¼ 1 and Ecell ¼ E	cell.

From Table 13.1

E	cell ¼ E	Ag;AgCl þ E	Cl2;Cl�

¼ �0:22þ 1:36

¼ þ1:14 V

The reaction is spontaneous as written; that is, Cl2 oxidizes Ag. Note that in the

silver–silver chloride electrode the chloride ion does not undergo a redox process,

whereas in the chlorine electrode Cl� is a product of a reduction.

Example 13.5 places on a formal basis the predictions made earlier when

discussing standard potentials; these are seen to constitute a special case (the

case L ¼ 1) of the Nernst equation.

Example 13.6. What is the potential of this cell at 25	C?

Cu jCu2þð0:25 MÞ jjCu2þð0:01 MÞ jCu

Obviously the two electrodes are identical except for the ion concentrations. We

proceed in the usual manner:

Left electrode: CuÐ Cu2þð0:25 MÞ þ 2e

Right electrode: 2eþ Cu2þð0:01 MÞ Ð Cu

Overall reaction: Cu2þð0:01 MÞ Ð Cu2þð0:25 MÞ

This is called a concentration cell. The Nernst equation applied to this cell is

Ecell ¼ E	cell �
0:059

2
log

0:25

0:01

where E	cell ¼ E	
Cu;Cu2þ þ E	

Cu2þ;Cu
¼ 0. Thus we find Ecell ¼ �0:041 V. The cell

reaction is nonspontaneous, which accords with expectation; the spontaneous

direction of diffusion is from higher to lower concentration (actually chemical

potential).
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The experimental measurement of electric potential is called potentiometry.

When a redox titration is carried out with measurement of the potential as a

function of titrant volume, the plot of potential E against titrant volume has the

appearance of the acid–base titration curves that we studied in Chapter 12, and

the endpoint is determined from the break in this potentiometric titration curve.

By applying the Nernst equation at successive stages in the titration, it is possible

to calculate such a curve.

13.4. pH MEASUREMENT

pH and the Hydrogen Electrode. The potential of certain electrochemical

cells depends on the pH of the cell solution, and this dependence offers a means

for the potentiometric measurement of pH. The hydrogen electrode is the classic

type of a pH responsive electrode. Let us consider the following electrochemical

cell

Pt;H2ðp ¼ 1 atmÞ jHþðaHþÞ j reference electrode

where the reference electrode need not be specified at present except to require that

its potential not be affected by the pH of the cell solution. The hydrogen electrode

consists of hydrogen gas bubbled through the aqueous solution; electrical contact is

made through platinum metal, which is unreactive. Proceeding to describe this cell

quantitatively, we write

Ecell ¼ EH2;H
þ þ Eref

The potential of the hydrogen electrode is expanded by means of the Nernst

equation; the electrode reaction is

H2 Ð 2Hþ þ 2e

The result is (at 25	C)

Ecell ¼ E	H2;H
þ �

0:059

2
log

a2
Hþ

pH2

þ Eref

We combine this equation with the convention E	
H2;H

þ ¼ 0 and the definition

pH ¼ �log aHþ , obtaining

Ecell ¼ 0:059 pHþ Eref ð13:15Þ

This last equation says that the cell potential is linearly related to the pH of the cell

solution. The slope of the line is dEcell=dpH ¼ 0:059 V, or 59 mV per pH unit. This
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is the theoretical response of a pH responsive electrode at 25	C. (In general, the

response is 2.303 RT/F V per pH unit.) This means that in order to measure pH

to within 0.01 pH unit, we must be able to measure the cell emf to within 0.00059 V.

Practical Electrodes for pH Measurement. First we consider the reference

electrode whose potential appears in Eq. (13.15). The most widely used reference

electrode for practical pH measurements is the saturated calomel electrode (SCE).

The SCE is composed of a saturated solution of potassium chloride that is also

saturated with mercurous chloride (calomel). The solution is in contact with

mercury metal, through which electrical contact is made with the external circuit.

The SCE half-reaction is

Hg2Cl2 þ 2eÐ 2Hgþ 2Cl�

and its potential, which is unaffected by pH, is þ0:244 V. A salt bridge must be

placed between the SCE and the ‘‘test solution’’ whose pH is to be measured so

that the SCE saturated solution is not diluted. Then a complete cell consisting of

a hydrogen electrode and the SCE looks like this:

Pt;H2ðp ¼ 1 atmÞ jHþðaHþÞ jjKClðsatÞ;Hg2Cl2ðsatÞ jHg

Its cell potential is given as follows, by an argument identical to the preceding one:

Ecell ¼ 0:059 pHþ ðESCE þ EljÞ ð13:16Þ

where Elj is the liquid junction potential.

Since Elj is unknown, we are unable to apply Eq. (13.16) directly to calculate pH

from a measured value of Ecell. We therefore proceed by, in effect, measuring

differences in pH between two solutions. Let E represent the cell potential when

the cell solution has a certain pH, and similarly let ES be the cell potential when

the cell solution has the value pHS. Then writing Eq. (13.16) for both solutions and

subtracting one equation from the other gives

pH ¼ pHS þ
E � ES

0:059
ð13:17Þ

at 25	C, or, in general

pH ¼ pHS þ
E � ES

2:303 RT=F
ð13:18Þ

The success of this procedure depends on the liquid junction potential remaining

essentially constant as the pH is changed from pH to pHS. This assumption is

reasonable if pH and pHS are not greatly different. Although Eq. (13.18) is not

thermodynamically exact because of this assumption of the constancy of Elj, it
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constitutes the operational definition of pH for practical laboratory work. If we

know the value pHS of a standard solution and measure its corresponding ES,

then replacement of the standard solution by the unknown test solution and

measurement of E permits us to calculate the unknown pH by Eq. (13.18). Actually

the calculation is automatically carried out by the electronic potentiometer (called a

pH meter) used to measure the cell potential. The cell is ‘‘calibrated’’ by setting the

pH meter to the known pHS value with the standard solution in the cell. Then the

standard solution is replaced with the test solution and the meter gives the unknown

pH value. An adjustment on the meter calculates the value of 2.303 RT=F for the

experimental temperature.

Obviously the accuracy of this pH measurement procedure depends on the

accuracy with which pHS values are known. For all pH measurement in aqueous

solutions the pHS values given in Table 13.2 will suffice. These pHS values were

determined on cells without liquid junctions by Bates and coworkers (Bates

1962; Staples and Bates 1969). (Ordinary laboratory work yields pH measurements

accurate at best to 
0:01pH unit.) Table 13.3 gives the compositions of these stan-

dard pH buffer solutions.

We have seen that the cell should be standardized with a standard buffer whose

pHS is close to the anticipated pH of the test solution in order to minimize variation

in the liquid junction potential. It is also good experimental practice to measure the

pH of a second standard buffer after standardization against the first one; this

Table 13.2. Standard pHs values

Phosphate Phosphate

t (	C) Tartrate Citrate Phthalate (1 : 1) (1 : 3.5) Borax Carbonate

0 — 3.864 4.003 6.984 7.534 9.464 10.321

5 — 3.839 3.999 6.951 7.500 9.395 10.243

10 — 3.819 3.998 6.923 7.472 9.332 10.178

15 — 3.802 3.999 6.900 7.448 9.276 10.116

20 — 3.788 4.002 6.881 7.429 9.225 10.060

25 3.557 3.776 4.008 6.865 7.413 9.180 10.012

30 3.552 3.767 4.015 6.853 7.400 9.139 9.968

35 3.549 3.759 4.024 6.844 7.389 9.102 9.928

38 3.548 — 4.030 6.840 7.384 9.081 —

40 3.547 3.754 4.035 6.838 7.380 9.068 9.892

45 3.547 3.750 4.047 6.834 7.373 9.038 9.856

50 3.549 3.749 4.060 6.833 7.367 9.011 9.825

55 3.554 — 4.075 6.834 — 8.985 —

60 3.560 — 4.091 6.836 — 8.962 —

70 3.580 — 4.126 6.845 — 8.921 —

80 3.609 — 4.164 6.859 — 8.885 —

90 3.650 — 4.205 6.877 — 8.850 —

95 3.674 — 4.227 6.886 — 8.833 —
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step checks the correct operation of the electrode system, the pH meter, and the

standardization of the cell.

To this point we have treated the hydrogen electrode as the pH responsive

electrode. The hydrogen electrode, though thermodynamically well defined, is

not very practical for routine use, so alternatives have been sought, and in all prac-

tical laboratory and field measurements the pH responsive electrode is a device

known as the glass electrode. This electrode possesses a very thin glass membrane

separating the test solution from a solution of fixed pH. A potential is developed

across this glass membrane that is related to the pH difference on the two sides

of the glass. (This is an ion-transfer effect, not a redox phenomenon; it is treated

in Section 13.5.) A practical cell for pH measurement then has this form:

Ag jAg ClðsatÞ;HCl j glass j test solution jj SCE

The silver–silver chloride electrode serves to make electrical connection between

the glass membrane and the external circuit. The pH response of this electrode is

Nernstian, so the measurement of pH with a glass–SCE cell follows Eq. (13.16).

pKa Determination. Accurate values of pKa can be measured with a glass–SCE

cell if appropriate attention is paid to temperature control and standardization of the

electrodes. For weak acid HA the thermodynamic constant Ka is defined as

Ka ¼
aHþaA�

aHA

ð13:19Þ

The quantity we actually measure in the laboratory, however, is called the apparent

constant, K 0a, defined by

K 0a ¼
aHþ ½A�

½HA
 ð13:20Þ

Table 13.3. Compositions of standard buffer solutions a

Solution m Substance Weight (g) b pHs at 25	C

Tartrate �0.034 KHC4H4O6 Saturated at 25	C 3.557

Citrate 0.05 KH2C6H5O7 11.41 3.776

Phthalate 0.05 KHC8H4O4 10.12 4.008

Phosphate
�

0.025 KH2PO4 3.39
�

(1 : 1) 0.025 Na2HPO4 3.53
6.865

Phosphate
�

0.008695 KH2PO4 1.179
�

(1 : 3.5) 0.03043 Na2HPO4 4.30
7.413

Borax 0.01 Na2B4O7 �10H2O 3.80 9.180

Carbonate

�
0.025 NaHCO3 2.092

�
0.025 Na2CO3 2.640

10.012

a Bates 1962; Staples and Bates 1969.
b Weight of substance (in air near sea level) per liter of solution, prepared with carbonate-free distilled

water.
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This is because the glass–SCE cell gives a pH value defined by

pH ¼ �log aHþ ð13:21Þ

and because we prepare solutions to have known concentrations of A� and HA.4

Our first problem is to measure pK 0a; next we must correct pK 0a to pKa.

From Eq. (13.20), we obtain

pK 0a ¼ pH� log
½A�

½HA
 ð13:22Þ

and from Eqs. (12.33) and (12.34), we have

pK 0a ¼ pH� log
bþ ½Hþ
 � ½OH�

a� ½Hþ
 þ ½OH�
 ð13:23Þ

where b is the concentration of the counterion to A� and aþ b is the total solute

concentration: aþ b ¼ ½HA
 þ ½A�
. Since we know a and b from the manner in

which the solution was prepared, and we measure pH, we can calculate pK 0a.5 A

series of solutions can efficiently be prepared, each solution having varied values

of b such that the pH of all solutions will be within about 1 unit of pK 0a (so as to

ensure good buffer capacity). The pH values of the solutions are measured, and pK 0a
is calculated for each solution. If pH is in the approximate range of 4–10, the ½Hþ

and ½OH�
 quantities in Eq. (13.23) will usually be negligible.

It will be seen that this procedure is essentially a titration of the weak acid HA

with the strong base MOH, where b ¼ ½Mþ
. If the pKa of a weak base B is to be

measured, the usual procedure is to titrate B with strong acid HX in an analogous

manner. Now aþ b ¼ ½BHþ
 þ ½B
 and a ¼ ½X�
. Equation (13.23) is again

applicable.

The same value for pK 0a should be obtained whether we start with the conjugate

acid (e.g., acetic acid) and titrate with strong base, or start with its conjugate base

(e.g., sodium acetate) and titrate with strong acid, provided the ionic strength is

substantially identical in the two titrations.

With the apparent constant pK 0a at hand, we turn to the problem of finding the

thermodynamic constant pKa. For reasons discussed in Chapter 8, pK 0a varies with

the ionic strength of the solution, so it is not a true constant. On the other hand, pKa

is defined to be a constant (at fixed temperature and pressure); in other words, pKa

is that unique value of pK 0a in the reference state of the solute, where activity coeffi-

cients are unity. We can correct a pK 0a value for nonideal behavior by applying the

Debye–Hückel theory (Section 8.3).

Consider the uncharged acid HA, whose apparent constant K 0a is defined in

Eq. (13.20). We may take it that at low to moderate values of ionic strength the

activity of the uncharged form HA is equal to its concentration. The activity of

the ion A�, however, is given by

aA� ¼ gA� ½A�
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where gA� is the mean ionic activity coefficient. With these identities, Eqs. (13.19)

and (13.20) become

Ka ¼
aHþgA� ½A�


aHA

and

K 0a ¼
aHþ ½A�


aHA

or, combining these equations

Ka ¼ gA�K 0a

which in logarithmic form becomes

pKa ¼ pK 0a � log gA� ð13:24Þ

Now we use the Debye–Hückel equation, Eq. (8.26), in Eq. (13.24):

pKa ¼ pK 0a þ
0:509

ffiffi
I
p

1þ
ffiffi
I
p ð13:25Þ

The ionic strength I is calculated with

I ¼ 1

2

X
ciz

2
i ð13:26Þ

where c represents the concentration of species i and zi is its charge; the summation

includes all the ions in the solution. Equation (13.25) corrects pK 0a to pKa for

uncharged acids.

For a positively charged acid such as BHþ, the ionic activity coefficient appears

in the denominator of Ka, with the result that Eq. (13.24) takes the form

pKa ¼ pK 0a þ log gBHþ ð13:27Þ

leading to

pKa ¼ pK 0a �
0:509

ffiffi
I
p

1þ
ffiffi
I
p ð13:28Þ

Equations (13.25) and (13.28) apply at 25	C.
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Example 13.7. Suppose that 10.0 mL of a solution 0.10 M with respect to

both acetic acid and sodium chloride was mixed with 10.0 mL of 0.05 M sodium

hydroxide at 25	C. The pH of this solution was 4.64. What is the thermodynamic

pKa of acetic acid?

The total solute concentration (i.e., acetic acid plus acetate ion) is 0.05 M; this is

equal to aþ b in the symbolism of Eq. (13.23). The quantity b is given by

ð10:0Þð0:05Þ=20:0 ¼ 0:025 M. From Eq. (13.23), we obtain pK 0a ¼ 4:64, because

the quantity ½Hþ
 is negligible.

The ionic strength receives contributions from both the sodium chloride

(0.05 M) and the sodium acetate (0.025 M); from Eq. (13.26), I ¼ 0:075 M. Finally,

Eq. (13.25) gives

pKa ¼ 4:64þ ð0:509Þð0:274Þ
1:274

¼ 4:75

Example 13.8. Given: 0.0541 g of 4-cresol (MW 108.1) dissolved in 47.5 mL of

water at 20	C. After 1.0 mL of 0.10 M KOH was added, the pH was 9.55; after

the addition of 3.0 mL of 0.10 M KOH, the pH was 10.29. Calculate the apparent

constant and the thermodynamic constant.

Calculate that 0:0541=108:1 ¼ 5:00� 10�4 mol of solute, or 0.5 mmol, was

taken. When 1.0 mL of strong base titrant had been added, the volume was

48.5 mL, so the total solute concentration was 0:5=48:5 ¼ 0:01031 M; this is the

quantity aþ b. The value of b is ð1:0Þð0:10Þ=48:5 ¼ 0:002062. Since the pH is quite

high, let us apply the correction for ½OH�
. At 20	C, pKw ¼ 14:17 (Table 12.1), so

pOH ¼ 4:62 and ½OH�
 ¼ 2:4� 10�5. Equation (13.23) gives

pK 0a ¼ 9:55� log
0:002062� 0:000024

0:00825 þ 0:000024

¼ 10:16

The ionic strength of this solution is (neglecting the hydroxide) equal to b, or

0.00206 M. Applying Eq. (13.25) gives pKa ¼ 10:16þ 0:02 ¼ 10:18.

After the addition of 3.0 mL of titrant, we calculate these quantities:

aþ b ¼ 0:00990 M; b ¼ 0:00594 M; ½OH�
 ¼ 1:3� 10�4, and Eq. (13.23) gives

pK 0a ¼ 10:29� log
0:00594� 0:00013

0:00396þ 0:00013

¼ 10:14

The ionic strength is now 0.00607 M, and Eq. (13.25) gives pKa ¼ 10:14þ 0:04 ¼
10:18.

The data in Example 13.8 are from Albert and Serjeant (1984), who give much use-

ful information on pKa determination. These numerical examples are helpful
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in showing typical magnitudes of the activity coefficient corrections, which in

Example 13.8 appear to be only slightly greater than the usual experimental

uncertainty in the pH measurement.

An alternative approach to estimating pKa from measurements of pK 0a is to note

that Eq. (13.25) can be written in the form

pK 0a ¼ pKa �
0:509

ffiffi
I
p

1þ
ffiffi
I
p ð13:29Þ

which suggests that if pK 0a is measured as a function of ionic strength, a plot of pK 0a
against

ffiffi
I
p

=ð1þ
ffiffi
I
p
Þ will be a straight line, which can be extrapolated to yield pKa

as the intercept. Figure 13.2 is a plot of Eq. (13.29) for b-naphthol (Albert and

Serjeant 1984). The line extrapolates to pKa ¼ 9:63; its slope is �0:505.

13.5. ION-SELECTIVE MEMBRANE ELECTRODES

Except for our brief discussion of the pH-sensitive glass electrode, all the preceding

treatment of electrical phenomena has been based on electron transfer across the

electrode–solution interface. We now turn to the ion transfer mechanism as the

basis of an electrochemical cell.

Theory of the Electrode Response. Before we examine the physical nature of

the electrode substance, we will simply designate it as a ‘‘membrane’’; it is the site

0.0 0.1 0.2
9.48

9.52

9.56

9.60

9.64
pK

a'
pKa

I

1 + I

Figure13.2. Plot according to Eq. (13.29) for b-naphthol at 20	C (Albert and Serjeant 1984).
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of ion-exchange with the electrolyte solution. A schematic representation of an

electrochemical cell incorporating such a membrane electrode is

Internal reference electrode j aint jmembrane j aext jj external reference electrode

The activities refer to the ion for which the membrane serves as an ion exchanger;

aint is the internal (fixed) ion activity and aext is the sample solution ion activity. The

reference electrodes are connected to the external circuit. The potential of this cell

is given by

Ecell ¼ Eint ref þ Eext ref þ Elj þ Emembrane ð13:30Þ

Although we anticipate that the membrane response is a consequence of ion

exchange between the membrane and the solution, we can model this formally as

the result of two redox half-reactions. Suppose the ion in question is the cation

Mnþ. Then

Left ðoxidationÞ: Mint Ð Mnþ
int þ nðeÞ

Right ðreductionÞ: nðeÞ þMnþ
ext Ð Mext

---------------------------------------------------

Overall reaction: Mnþ
ext Ð Mnþ

int

Note that, in the usual manner, we write the oxidation at the left electrode. (We do

not include Mint and Mext in the overall reaction because, as pure metal, they are in

the standard state of unit activity.) Comparison of the development to this point

with Example 13.6 reveals that the membrane electrode is formally part of a

concentration cell. The Nernst equation gives

Emembrane ¼ �
RT

nF
ln

aint

aext

which can be combined with Eq. (13.30) to yield

Ecell ¼ constant þ RT

nF
ln aext

or, at 25	C

Ecell ¼ constantþ 0:059

n
log aext ð13:31Þ

Thus we predict Nernstian behavior of this cell.
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Suppose that the exchangeable ion is an anion. Then the development is based

on these redox reactions:

Left ðoxidationÞ: 2X�int Ð ðX2Þint þ 2e

Right ðreductionÞ: 2eþ ðX2Þext Ð 2X�ext

-----------------------------------------------------

Overall reaction: X�int Ð X�ext

The membrane potential is given by

Emembrane ¼ �
RT

nF
ln

aext

aint

and the analog to Eq. (13.31) becomes

Ecell ¼ constant � 0:059

n
log aext ð13:32Þ

Summing this up, we anticipate an electrode response following the form

Ecell ¼ constant 
 0:059

n
log aext ð13:33Þ

with theþ sign applying to cations and the � sign to anions.

We next turn to the mechanisms for ion-exchange between the membrane and

the solution.

Glass Electrodes. A typical glass is composed of Na2O and SiO2, and its

surface layers possess exchangeable cations. An ion exchange equilibrium is set

up between the glass surface and an electrolyte solution according to

��SiO�Na� þ Hþ Ð ��SiO�Hþ þ Naþ

ðglassÞ ðsolutionÞ ðglassÞ ðsolutionÞ

When a pH-responsive glass electrode is first placed in water this process occurs,

and when equilibrium has been reached the electrode is said to be hydrated and is

ready for use. The full thickness of a glass membrane is typically 0.03–0.1 mm, and

the thickness of the hydrated layers (internal and external) is only about 10�4 mm

(Evans 1987).

Now, when this hydrated glass electrode is placed in a sample solution, in

general the hydrogen ion activities in the external hydrated glass layer and in the

sample solution will be different. This difference gives rise to the potential

described by Eq. (13.31). In practice there can be some complicating factors.

The hydrogen ion activities of the internal and external hydrated layers are seldom

exactly equal, and this difference gives rise to an asymmetry potential, which is
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compensated for in the calibration process. Another complication occurs when the

pH is being measured in solutions containing high sodium ion concentrations. In

this case a potential difference may develop based on the different activities

of sodium ion in the glass and in the solution; in effect, the electrode (or the experi-

mentalist) is fooled into thinking that the sample solution hydrogen ion activity is

higher than it really is. Since the usual source of high sodium ion concentrations is

NaOH, this experimental artifact is called the glass electrode alkaline error. Newer

glasses replace some of the sodium content with lithium and so are less susceptible

to the alkaline error.

The foregoing description of the sodium ion error of the glass electrode is

suggestive of an opportunity to modify the glass composition and in this way to

develop glass electrodes with enhanced selectivity for ions other than Hþ. This

approach has been successful. Glasses are described in a shorthand manner by

the symbol NAS X��Y, meaning that this glass contains X% of Na2O, Y%

of Al2O3, and 100� ðXþ YÞ% of SiO2. The conventional pH glass electrode

has little Al2O3, and its sensitivity pattern is

Hþ �> Naþ > Kþ;Rbþ;Csþ;� Ca2þ

NAS 11–18 glass has this sensitivity sequence:

Agþ > Hþ > Naþ � Kþ;Liþ; > Ca2þ

This glass has been used as a sodium ion-selective electrode. Obviously Agþ must

be absent and Hþ must be fixed, but its advantage is its high sensitivity to Naþ

relative to Kþ or Liþ. Many of the newer glasses, especially the lithium glasses,

possess analytically useful selectivity profiles. Glass membrane electrodes are

particularly valuable because, although they are physically delicate, they are

chemically quite robust.

Solid Membrane Electrodes. A sparingly soluble crystalline solid can serve as

an ion-exchange electrode. Usually crystals of the substance are dispersed in a

polymer matrix. Suppose we wish to design a halide ion ðX�Þ-sensitive electrode.

We can form such an electrode with the slightly soluble AgX salt. The membrane

sets up this solubility equilibrium with the solution:

AgXmembraneÐ
Ksp

Agþsoln þ X�soln

where Ksp is the solubility product (Chapter 10).

Presuming that the sample solution (into which the electrode is introduced)

initially contains no Agþ but a relatively high concentration of X�, the common

ion effect of X� will depress the solubility of AgX, and the concentration (activity)

of the silver ion will be determined by that of X�:

aAgþ ¼
Ksp

aX�
ð13:34Þ
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From Eq. (13.31), therefore

Ecell ¼ constant þ 0:059 log aAgþ ð13:35Þ

or, making use of Eq. (13.34)

Ecell ¼ ðconstantÞ0 � 0:059 log aX� ð13:36Þ

where aX� refers to the total activity of X� in the solution. This has an interesting

consequence. Reverting to concentrations for convenience, we can write

½X�
total ¼ ½X�
initial þ ½X�
dissolved

where ½X�
initial is the quantity sought from the measurement and ½X�
dissolved is the

concentration contributed by dissolution of the electrode substance. Because of the

stoichiometry of the dissolution process, ½X�
dissolved ¼ ½Agþ
, so we find

½Agþ
 ¼ ½X�
total � ½X�
initial

Restating Eq. (13.34), we also have

½Agþ
 ¼ Ksp

½X�
total

Combining these gives a quadratic in ½X�
total whose solution is

½X�
total ¼
½X�
initial 
 ð½X�


2
initial þ 4KspÞ

1=2

2
ð13:37Þ

There are two extreme cases to consider. If ½X�
2initial �> 4Ksp, then we find that

½X�
total ¼ ½X�
initial. This means that the dissolved anion makes a negligible

contribution to the total, and that in this region of behavior a tenfold increase in

½X�
initial results in a 59 mV change in cell potential [Eq. (13.36)]. At the other

extreme of behavior, where ½X�
initial <� 4Ksp, Eq. (13.37) yields ½X�
total ¼ffiffiffiffiffiffiffi
Ksp

p
¼ ½X�
dissolved; here the initial concentration of anion is so low that it makes

no sensible contribution, and from Eq. (13.36) we find that the potential is indepen-

dent of ½X�
initial. At intermediate conditions the dependence is more complicated,

as shown in Fig. 13.3. The sensitivity of the system may be defined as the slope

of the response curve in Fig. 13.3; thus the electrode is considered to lose useful

sensitivity below the lower limit of detection.

Solid-state electrodes are quite rugged. Their sensitivity limits are, as we have

seen, controlled by the Ksp value of the solid. Mixed solids also have been used. For

example, an electrode composed of CuS and Ag2S can respond to Agþ, S2�, or

Cu2þ; the solubility products of both salts must be simultaneously satisfied.
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Some lower limits of detection of solid-state electrodes are, for Cl�, 10�5 M, for I�,

10�8 M, for Cu2þ, 10�9 M, for Bi3þ, 10�11 M. These are very high sensitivities.

Liquid Membrane Electrodes. We are not accustomed to picturing liquid

membranes, but the term simply implies a thin liquid phase. As the sample solution

is aqueous, the liquid membrane phase will be an organic liquid that is immiscible

with water. Hence the liquid membrane is very hydrophobic. By making the

membrane phase quite thin, a faster response is achieved. Figure 13.4 shows

some simple designs of liquid membrane electrodes. The electrode design of

Fig. 13.4a will produce a slow response because of the considerable distance

between the inner and outer interfaces, whereas Fig. 13.4b shows a faster respon-

ding electrode.

The basic idea is that an equilibrium is established within the membrane phase

between the sample ion of interest and some hydrophobic molecule with which the

ion forms a noncovalently bound complex. The sample ion thus is capable of

exchanging between the membrane phase and the external aqueous sample solution.

This ion exchange process is responsible for developing the potential at the

interface as we have described earlier.

In one general type of electrode, a hydrophobic anion is dissolved in a

hydrophobic solvent. The anion is selected so that it will form a strong complex

with the exchangeable cation of interest. Since the anion is hydrophobic, it is

constrained to remain in the membrane phase, but the cation can exchange between

the membrane and the aqueous sample solution. A calcium-selective electrode is

based on this principle. The complexing agent is bis(di-n-decyl)phosphate, and

Lower limit of detection

Nernstian
response
region

log [x-] initial

E
ce

ll

Figure 13.3. Electrode response curve of a solid membrane electrode.
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this is the equilibrium within the membrane phase

Ca2+ 2R2P

O

OH
(R2PO2)2Ca+ + 2H +

where R is CH3ðCH2Þ9. Clearly this electrode will suffer interference from hydro-

gen ions, and it is found to be usable in the pH range 5.5–11. (Above pH 11 calcium

hydroxide precipitates.)

The alternative version of this electrode design makes use of a hydrophobic

cation, chosen to form a complex with an exchangeable anion. Thus a nitrate

ion-selective electrode is based on the ion pair formation of NO�3 with the

tridodecylhexadecylammonium ion; we can represent this equilibrium as

NO�3 þ R4Nþ Ð R4NþNO�3

The second general type of liquid membrane electrode is based on an

uncharged complexing agent. A potassium ion electrode uses the antibiotic valino-

mycin as a selective complexing agent. Much synthetic organic research is leading

to the availability of macrocyclic compounds capable of complex formation with a

wide variety of smaller species, and many of these compounds may be suitable

as complexes in liquid membrane electrodes. An especially attractive possibility

is to develop electrodes specific for drug molecules. Since most drugs are acids

Internal 
reference
electrode

Liquid
ion-exchange

membrane
phase

Cellulose film Porous filter disk

(a) (b)

Figure 13.4. Schematic diagrams of liquid ion-selective membrane electrodes. [Reproduced by

permission from Connors (1982).]
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or bases, they are easily transformed into ions by pH control, and then their

electrochemical detection becomes possible if a complexing agent can be identified

that will selectively bind the ionic drug. Many such electrodes have been

developed.

PROBLEMS

13.1. Balance these equations:

(a) ClO�3 þ Sn2þ ¼ Cl� þ Sn4þ

(b) PbO2 þ I� ¼ I2 þ Pb2þ

(c) OCl� þ NH3 ¼ Cl� þ N2

(d) MnO�4 þ H2O2 ¼ Mn2þ þ O2

(e) MnO�4 þ CuI ¼ MnO2 þ Cu2þ

(f) S2O2�
8 þ 2Fe2þ ¼ 2SO2þ

4 þ 2Fe3þ

(g) NH2OHþ Ce4þ ¼ N2Oþ Ce3þ

(h) RSHþ I2 ¼ RSSRþ I�

13.2. Calculate the ionic strength of a phosphate buffer prepared to be 0.025 M in

NaH2PO4, 0.025 M in K2HPO4, and 0.050 M in NaCl.

13.3. Calculate the change in cell potential when a glass electrode-SCE pair is

moved from 0.010 M HCl to 0.010 M KOH. (Assume that activities are equal

to concentrations.)

13.4. Given this electrochemical cell, where ‘‘tris’’ is tris(hydroxymethyl)amino-

methane, and trisHþ is protonated tris:

Pt;H2ðp ¼ 1 atmÞ j trisð0:05 MÞ; trisHð0:05 MÞ jj SCE

The potential of the SCE is þ0:244 V and the measured cell potential was

þ 0:717 V at 25	C. What is the pK 0a of trisHþ?

13.5. A cell consisting of a calcium ion-sensitive membrane electrode and a

reference electrode gave the following cell potentials at 25	C with solutions

having the listed Ca2þ activities:

Ca2þ Activity Ecell ðVÞ
——————————————

0:000135 þ0:136

0:00541 þ0:183

0:0382 þ0:208

(a) Determine whether the cell response is Nernstian.

(b) Predict the cell potential if the Ca2þ activity is 1:00� 10�3.
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13.6. (a) What is the ionic strength of a solution 0:01 M in KCl and 0:01 M in

Na2SO4?

(b) Calculate the mean ionic activity coefficient of sulfate ion in this

solution.

13.7. (a) Calculate the cell potential at 25	C of this electrochemical cell:

Pt j Fe2þð0:001 MÞ; Fe3þð0:01 MÞ jjCu2þð0:01 MÞ jCu

(b) Will copper metal be plated out or will it be dissolved in this cell?

13.8. (a) Calculate the potential of this cell at 25	C:

Zn jZnðNO3Þ2ð0:01 MÞ;AgNO3ð0:001 MÞ jAg

(b) Will this cell produce zinc-plated silver or silver-plated zinc?

13.9. What is the equilibrium constant of this reaction at 25	C?

AgClþ Br� Ð AgBrþ Cl�

13.10. Standard potentials are given in parentheses for the following reactions:

MgðOHÞ2 þ 2eÐ Mgþ 2OH� ðE	MgðOHÞ2;Mg ¼ �2:69 VÞ
Mg2þ þ 2eÐ Mg ðE	

Mg2þ;Mg
¼ �2:37 VÞ

Calculate the solubility product of magnesium hydroxide.

NOTES

1. This concept is really the genesis of the term oxidation as it is also applied to inorganic

reactions. Compare FeO (ferrous oxide) and Fe2O3 (ferric oxide). The conceptual

transformation from oxygen gain to electron loss is very broadening, but it obscures

the historical basis. The term reduction originally arose in the processing of ores, when it can

be said that an ore is reduced to the pure metal, the term referring to both a typical process

(also historically called revivification) and a diminution in volume.

2. One joule¼ 1 volt coulomb, so R ¼ 8:314 J K�1 mol�1 ¼ 8:314 V � C K�1 mol�1. This

provides E with the unit V.

3. Some authors represent all electrode potentials as reductions, and then Eq. (13.11) will

appear as

Ecell ¼ ECu2þ ;Cu � EZn2þ ;Zn

This sign change is discussed later in the text.

4. For any practical purpose Eq. (13.21) is an adequate interpretation, but we must recall that

this cell possesses a liquid junction. Moreover, Eq. (13.21) implies that we can measure the

activity of a single ionic species, whereas we have seen in Chapter 8 that we can measure only

a mean ionic activity.

5. There is a subtlety here. From the pH measurement we know the activity of Hþ, but

Eq. (13.23) calls for the concentrations of Hþ and OH�. Activity coefficient corrections can

be applied, but this will seldom be necessary.
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14

NONCOVALENT
BINDING EQUILIBRIA

14.1. INTRODUCTION

The principles of thermodynamics apply to all physical and chemical equilibria,

and the purpose of the present section is to concentrate attention on yet another

class of chemical equilibria, namely, those processes in which the noncovalent

forces of interaction are operative. The distinction between covalent (‘‘chemical’’)

bonds and noncovalent (‘‘physical’’) interactions is not clearcut, and is based in part

on theory and in part on an empirical criterion. Theoretically, using the language of

molecular orbital theory, a covalent bond is a consequence of the formation

of molecular orbitals from atomic orbitals; the bond usually consists of one or

more electron pairs shared between the bound atoms, and is highly directional in

character. Noncovalent interactions, on the other hand, are electrostatic in nature

and are not highly directional. The empirical criterion is energetic; covalent bonds

tend to be strong whereas noncovalent interactions are weak. Obviously this is not

an absolute criterion. The single, double, and triple bonds familiar from organic

chemistry are perfect examples of covalent bonds. The interactions that are respon-

sible for the existence of condensed phases (solids and liquids) are noncovalent.

Notice that we refrain from speaking of noncovalent ‘‘bonds’’; this restraint is a

reflection of the weakness of these interactions as well as their nondirectional

nature. Most noncovalent interactions exhibit energies of �10 kcal mol�1 or less

(�H� values), whereas covalent bond energies largely lie in the range 20–

200 kcal mol�1.1

The noncovalent interactions occur between two or more molecules or ions. The

manner in which we designate these interactants is arbitrary and may be determined

for our convenience. We choose to call one of the interactants the substrate S and
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the other interactant the ligand L. Usually some chemical or physical property of

the substrate, a property that is altered on interaction with the ligand, is observed

by the experimenter. The product of the interaction between the substrate and the

ligand is generally called a complex. Complexes may form between two (or more)

small molecules or ions; or small molecules may bind to a macromolecule, as when

a drug–protein complex is formed. Noncovalent complex formation is an essential

step in many biological processes, such as antigen–antibody interaction, transport

of ions across membranes, control of metabolic pathways, signal transduction, oxy-

gen transport, and the regulation of gene expression.

14.2. THE NONCOVALENT INTERACTIONS

Potential Energy Functions. The detailed nature of the noncovalent interaction

forces is not the concern of thermodynamics, but some understanding of these

phenomena will be helpful in picturing the molecular processes being studied.

Although we commonly speak of the forces of interaction, it is actually the energies

of interaction that are of primary interest. The force F is related to the potential

energy V by

F ¼ � dV

dr

where r is the distance between two interacting particles. Physical theory has elu-

cidated the potential energy functions of the noncovalent interactions (Hirschfelder

et al. 1954; Israelachvili 1985). The interacting species may be ions or molecules,

and the molecules may be nonpolar or may possess permanent dipole moments.

Table 14.1 gives the noncovalent potential energy functions, which are seen to

fall into three classes. The Table 14.1 functions are written for interactions between

species S and L in vacuo, that is, in the absence of a solvent. These are the three

classes of noncovalent interactions:

1. Electrostatic Interactions. These take place between ions (C) or dipoles (m).

The magnitude of a charge is to be accompanied by its sign, and a negative

value of energy is attractive, a positive value repulsive. (The charge–charge

interaction term is Coulomb’s law, which we encountered in Chapter 8.)

Observe that charges and dipole moments appear as squared quantities.

2. Induction (Polarization) Interactions. These are a result of an ion or a dipole

inducing a temporary dipole in an adjacent molecule. The interaction then

consists of the electrostatic interaction between the temporary dipole and the

permanent dipole or the ion. The quantity a in the expressions is the polariz-

ability of the molecule, a measure of the ease with which the molecule’s

electron cloud can be deformed in the presence of an electric field.

3. Dispersion (London) Interaction. This is a quantum-mechanical phenom-

enon, although we can give a reasonable classical interpretation. Any
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molecule, including a nonpolar molecule, may develop a momentary dipole as

a result of transitory electron density displacements. This momentary dipole

can induce a dipole in a neighboring molecule, and these two temporary

dipoles then interact. The dispersion interaction takes place between all species;

its effectiveness is dependent on their polarizabilities.

Note that, for uncharged molecules, each class of interaction includes an r�6 depen-

dence on the internuclear separation distance r. For such interacting species the

combined effect of these r�6 terms constitutes the noncovalent interactions.2 Under

the attractive influence of these terms two molecules approach until they experience

an opposing repulsive force, which initially is a result of electron–electron repul-

sion and, at even closer distances, of nucleus–nucleus repulsion. The net effect of

these forces of attraction and repulsion is reasonably expressed in Eq. (14.1), an

empirical function called the Lennard-Jones 6–12 potential.

V ¼ 4 Vmin
r0

r

� �12

� r0

r

� �6
� �

ð14:1Þ

In Eq. (14.1), which is shown graphically as Fig. 14.1, V is the potential energy of

interaction between two uncharged particles separated by distance r. Vmin is the

value of V at the equilibrium separation req, which is the value of r when the attrac-

tive and repulsive forces exactly balance each other; r0 is the value of r when

Table 14.1 Potential energy functions for noncovalent
interactionsa

Type of Interaction Potential Energy Function

Electrostatic

Charge–charge þCSCL

r

Charge–dipole � 1

3kT
� C

2
S � m2

L

r4

Dipole–dipole � 2

3kT
� m

2
S � m2

L

r6

Induction

Charge-induced dipole �C2
S � aL

2r4

Dipole-induced dipole � m2
S � aL

r6

Dispersion

Induced dipole–induced dipole � 3

4

ES � EL

ES þ EL

� �
aS � aL

r6

a C is the charge on an ion, m is permanent dipole moment, a is polari-

zability, r is intermolecular distance, E is a specific energy term, T is

absolute temperature, and k is Boltzmann’s constant, where k ¼ R=NA.
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V ¼ 0. The r�12 term empirically expresses the repulsive energy. Observe the r�6

term, which is attractive and embodies the r�6 terms in Table 14.1.

The potential energy functions in Table 14.1 are written for interactions in vacuo,

that is, without a solvent present. But we are interested in condensed phase systems,

most commonly consisting of substrate S and ligand L dissolved in a solvent. In

such real systems the noncovalent interactions will be moderated to a degree

expressed by the dielectric constant of the solvent, in the manner made explicit

in our treatment of the Coulomb interaction (Chapter 8).

Chemical Interpretations. The noncovalent interactions of Table 14.1 consti-

tute all of the forces that we need to consider3, yet we are accustomed to invoke

phenomena that may appear to be additional forces. But these phenomena are really

just the noncovalent forces (perhaps with some covalent bonding mixed in)

masquerading in chemically useful forms. One of these forms is hydrogen-bonding.

A hydrogen bond (H bond) is represented by the dots in the reaction

A��Hþ BÐ A��H : : :B

0 req r

-Vmin

0

V

Figure 14.1. Potential energy dependence on intermolecular distance according to the Lennard-

Jones potential function.
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The A��H bond in the H-bond donor AH is largely covalent; the H : : :B bond to the

H-bond acceptor B is largely a dipole–dipole interaction. Though exceptions to the

following are known, H bonding is most effective when the A��H : : :B angle is 180�

and when the atoms A and B are nitrogen or oxygen. The protein a-helix and the

folded conformations of proteins are largely maintained by H-bonding, as is the

DNA double helix. Carboxylic acids in the vapor state and in nonpolar solvents

form H-bonded dimers as in

CR
O

O H O
C

H O
R

27

The rather surprising pKa values of salicylic acid (pK1 ¼ 2:98, pK2 ¼ 13:00; for 4-

hydroxybenzoic acid pK1 ¼ 4:58, pK2 ¼ 9:39) are ascribed to stabilization of the

monoanion by H bonding:

28

C

O

O O
H

It is interesting that intramolecular H bonding can be effective in aqueous solution,

whereas intermolecular H bonding is relatively ineffective because of the over-

whelming competition from the solvent, itself a good H bond donor and acceptor.

The structure of water as a medium is a result of its H-bonding properties.

Another chemical phenomenon is charge transfer (CT) complexing, also known

as electron donor–acceptor (EDA) complexing. This seems to be a combination of

covalent and noncovalent effects. Apparently an electron is partly or wholly trans-

ferred from an orbital on the donor molecule to one on the acceptor molecule, so the

interaction has some covalent character and it results in definite and detectable

changes in electron configuration; however, the noncovalent forces also are in-

volved. Although some covalent electron-sharing takes place, CT complexes often

are very weak.

Finally we must take notice of the solvent. We can do this by treating the solvent

as a structureless continuum, as when we introduce the dielectric constant as a mea-

sure of the ability of the solvent to separate charges; or more realistically we can

recognize that the solvent is itself composed of molecules, which undergo the same

kinds of intermolecular interactions as do the solute species. We are then led to

the view that the formation of a complex SL through the reaction of S with L in

the presence of solvent (medium) M is a competition among three pairwise types

of interactions: solute–solute (SL), solute–solvent (SM, LM, and SL-M), and

solvent–solvent (MM). Thus we can write

�G�net ¼ �G�solute--solute þ�G�solvation þ�G�solvent--solvent
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Each term on the right is the result of noncovalent interactions. The solute–solute

interaction term is complex-stabilizing. The solvation term could be complex-

stabilizing if the SL-M interaction (solvation of the complex) is stronger than the

sum of the substrate-solvent plus the ligand–solvent terms, but this is unlikely, so

solvation usually destabilizes the complex. The role of the solvent–solvent interac-

tion term depends greatly on the nature of the solvent and the solute species.

Suppose, for example, that we wish to study H bonding between phenol (H-bond

donor) and pyridine (H-bond acceptor). If we attempt this in water as the solvent we

are unlikely to be successful because the solvation term (arising from the phenol–

water and pyridine–water solvation interaction) will be complex-destabilizing. On

the other hand, if carbon tetrachloride, with no H-bonding capability of its own, is

the solvent we will be able to detect the phenol–pyridine interaction.

There is a particularly important kind of solvent effect observed with nonpolar

solutes in aqueous solution. Since water is both an H-bond donor and an H-bond

acceptor, the solvent–solvent interaction term �G�MM is appreciable and may

even be overwhelming. Water molecules form an H-bonded network having definite

structural features. Now, when a nonpolar solute molecule (such as a saturated

hydrocarbon) dissolves in water, no H bonds from the solute to the surrounding

water molecules will form, because the solute is neither a donor nor an acceptor.

The water structure in the immediate vicinity of the solute re-forms to compensate

for the broken water–water H-bonds. The result is that the number of possible

orientations of water molecules is reduced by the presence of the nonpolar solute;

this means that the configurational entropy of the system is reduced. From this point

of view, the very low aqueous solubility of nonpolar substances is caused by this

unfavorable entropy change in the dissolution process. This is called the hydropho-

bic effect.

Now if two such dissolved nonpolar solute molecules come into contact, some of

the ‘‘structured water’’ in their vicinity is released, increasing the system entropy,

and resulting in a negative free-energy change. This is the driving force for associa-

tion of nonpolar species in aqueous solution. This phenomenon is termed hydropho-

bic interaction. Observe that complex formation driven by this hydrophobic

phenomenon owes little or nothing to solute–solute interaction (which is simply

a result of the ever-present dispersion force); rather, it is essentially completely dri-

ven by solvent–solvent interaction. In a sense the solute is ‘‘squeezed out’’ of the

water. This water-structure interpretation of the hydrophobic interaction applies

strictly only to nonpolar solutes. Many solutes, however, including most drug

molecules, possess both nonpolar and polar groups (we can call such molecules

‘‘semipolar’’), and although the hydrophobic interaction may play a role in their

complex formation, the driving force may appear as either a favorable entropy

change or a favorable enthalpy change.

An alternative description of the hydrophobic effect and hydrophobic interaction

adopts a thermodynamic viewpoint. The solvent is pictured as a structureless con-

tinuum. In order to dissolve a molecule in this medium, a molecule-sized cavity

must be created; then the solute molecule is inserted into the cavity, and finally

solute–solvent interaction take place. Creation of a cavity having surface area A
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requires an expenditure of free energy equal to Ag, where g is the solvent surface

tension. We have seen (Chapter 11) that the surface tension of water is unusually

high (this itself is a result of the strong water–water interaction).

On this basis alone all solutes might be expected to show low aqueous solubili-

ties. However, recall the step in the dissolution process in which solute–solvent

interactions may occur. In this step the energy expended in creating the cavity

may be recovered provided the solute structure is such as to permit strong

solute–solvent interactions. Semipolar solutes do lead to such interactions, but non-

polar solutes do not. Hence this thermodynamic approach accounts for the hydro-

phobic effect.

When two dissolved solute molecules come into contact, the total cavity surface

area is reduced as the two separate cavities coalesce into a single cavity. The free

energy change for this process is therefore g�A, where �A, a negative quantity, is

the change in cavity surface area. This is the driving force for the hydrophobic

interaction. Quantitative theories of this phenomenon have been developed.

If the hydrophobic interaction is substantially responsible for the strength of a

given complex in aqueous solution, we can predict that incorporation of an organic

solvent into the aqueous medium will result in a weakening of the complex

(observed as a decrease in the equilibrium constant for its formation). We often

turn the argument around, and use the complex-weakening effect of organic

solvents as a diagnostic criterion for the operation of the hydrophobic interaction.

14.3. BINDING MODELS

General. We can write any complex formation equilibrium as

mSþ nLÐ SmLn

and define the overall binding constant

bmn ¼
½SmLn�
½S�m½L�n ð14:2Þ

where we assume that activities are equal to concentrations. The simultaneous

collision of m molecules of S and n molecules of L to produce the complex

SmLn is so improbable (unless m ¼ 1 and n ¼ 1) that it can be neglected, and so

a more realistic view of what happens is that complex SmLn is built up by

successive bimolecular collisions. For example, the complex SL2 forms in these

successive steps:

Sþ LÐ SL

SLþ LÐ SL2
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For each such step we define a stepwise binding constant:

K11 ¼
½SL�
½S�½L� ð14:3Þ

K12 ¼
½SL2�
½SL�½L� ð14:4Þ

Algebraic substitution shows that b12 ¼ K11K12. Observe how the subscripts denote

the stoichiometry of the complex.

Usually reactant concentrations are expressed in mol L�1 (molarity, M); conse-

quently, all stepwise binding constants have the unit M�1. Binding constants are

also known as stability constants, association constants, or formation constants.

In some fields of study it is traditional to write the reaction in the opposite direction,

and then the corresponding equilibrium constant is the reciprocal of the binding

constant and is called a dissociation constant.

The experimental recognition of the existence of a complex requires that some

property of the complex be quantitatively different from that property as possessed

by the two interactants giving rise to the complex; in the following section we will

see examples of such properties. Our first experimental goal is to establish the stoi-

chiometry of the complex or complexes; our second goal is to evaluate the stepwise

binding constants. The most general way to accomplish both goals is to postulate a

reasonable stoichiometry, to derive a quantitative description of the expected

experimental outcomes based on this stoichiometry, and then to test this model

(hypothesis) with experimental data. The usual criterion is that the binding constant

evaluated in such a test should be constant over a wide range of system concentra-

tions. This somewhat abstract account will be made more explicit by considering

several important stoichiometric models. More extensive treatments are available

(Connors 1987; Wyman and Gill 1990).

The 1 : 1 Stoichiometric Model. This, the simplest of stoichiometric models,

also happens to be applicable to many real systems, and its description is funda-

mental for understanding chemical equilibria. The complex formation reaction is

Sþ L Ð
K11

SL

with K11 defined by Eq. (14.3). Let us define f11 as the fraction of substrate present

in the complexed (bound) form, or

f11 ¼
½SL�
St

ð14:5Þ

where St is the total substrate concentration:

St ¼ ½S� þ ½SL� ð14:6Þ

244 NONCOVALENT BINDING EQUILIBRIA



Algebraic substitution of Eqs. (14.3) and (14.5) into Eq. (14.6) gives the quantita-

tive 1 : 1 stoichiometric model:

f11 ¼
K11½L�

1þ K11½L�
ð14:7Þ

This equation is the 1 : 1 binding isotherm. Its functional form is known as a rec-

tangular hyperbola. We can easily gain a sense of how f11 depends on [L] by mak-

ing a calculation for a hypothetical system; this has been done in Table 14.2 by

assuming that K11 ¼ 50 M�1 and using Eq. (14.7) to calculate f11 for assigned

values of [L]. The results are plotted in Fig. 14.2. The shape of this curve is very

[L]/M

0.0 0.1 0.2 0.3 0.4
0.0

0.2
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f11

Figure14.2. Plot of Eq. (14.7), the 1 : 1 binding isotherm, for K11 ¼ 50 M�1 (see Table 14.2).

Table 14.2 Hypothetical 1 : 1 binding isotherm
calculated with Eq. (14.7) and the value K11 ¼ 50 M�1

[L] (M) f11

0 0

0.005 0.200

0.01 0.333

0.02 0.500

0.04 0.667

0.06 0.750

0.08 0.800

0.10 0.833

0.15 0.882

0.20 0.909

0.30 0.938

0.40 0.952
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characteristic; at low values of [L], where K11½L� � 1; f11 is nearly a linear function

of [L], as can be seen from Eq. (14.7), whereas at high values of [L], where

K11½L� 
 1; f11 becomes nearly independent of [L]. This region in which f11 shows

little dependence on [L] is called the saturation effect; the physical interpretation

is that nearly all the S molecules are already bound to L, so the addition of more L

has little effect on increasing f11, which increases asymptotically to a value of unity.

Notice that K ¼ 1=½L� when f11 ¼ 0:5.4

The chemical interpretation of 1 : 1 binding is that the substrate S possesses a

single ‘‘binding site,’’ as does the ligand L, and when the complex SL forms no

further sites are available for the binding of additional species.

A quantitative test of the 1 : 1 model may be made by rearranging Eq. (14.7) into

a linear plotting form. Several linear plots have been used. Since f11 is the fraction

complexed (also known as the fraction bound), then 1� f11 is the fraction uncom-

plexed (fraction free), or 1� f11 ¼ 1=ð1þ K11½L�Þ. Thus f11=ð1� f11Þ ¼ K11½L�; or

log
f11

1� f11

� �
¼ log ½L� � log K11 ð14:8Þ

A log–log plot should be linear with a slope of unity if the stoichiometry is 1 : 1.

This is called a Hill plot. More simply, Eq. (14.7) can be rearranged to three non-

logarithmic linear plotting forms. The following equation (14.9) is used by plotting

1/f11 against 1/[L], so it is called the double-reciprocal plot:

1

f11

¼ 1

K11½L�
þ 1 ð14:9Þ

When spectrophotometry is the experimental method of study, the double-recipro-

cal plot is called the Benesi–Hildebrand plot.

Equation (14.10) is another plotting form of Eq. (14.7); a plot of [L]/f11 against

[L] is expected to be linear:

½L�
f11

¼ ½L� þ 1

K11

ð14:10Þ

Finally Eq. (14.11) is a third plotting form:

f11

½L� ¼ �K11f11 þ K11 ð14:11Þ

This plot of f11/[L] against f11 is sometimes called a Scatchard plot.

Linearity in these plots is a necessary condition if the 1 : 1 model is valid, and

from the parameters of the equation K11 can be evaluated. Actually we seldom mea-

sure f11 directly, but rather some experimental quantity that is related to f11, so the

interpretation of the plots depends on the particular experimental method, as will be

shown in Section 14.4.
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A very interesting version of the 1 : 1 model arises in the study of many small

molecule–protein binding systems. In these systems we may consider that n

small molecules, which will play the role of ligand L, may bind to a single protein

molecule, which we will call the substrate S. As a measure of the extent of binding

we define the quantity

�i ¼ Lt � ½L�
St

ð14:12Þ

where Lt and St refer respectively to the total ligand and substrate concentrations; �i
can be interpreted as the average number of ligand molecules bound per molecule

of substrate.

Now, if we impose the rather stringent conditions that all n binding sites on the

protein are identical and independent, it is possible to derive the following isotherm

�i ¼ nk½L�
1þ k½L� ð14:13Þ

where k is the constant for binding to a single site. According to this equation, this

rather complicated system follows the hyperbolic function characteristic of simple

1 : 1 binding. Usually n and k are evaluated from a Scatchard plot.

The 1 : 1þ1 : 2 Model. This stoichiometric model will serve as an example of the

treatment of multiple complexes. The complex stoichiometries are SL and SL2, and

the stepwise binding constants are defined in Eqs. (14.3) and (14.4). Obviously both

of these equations must be simultaneously satisfied.

The existence of the SL2 complex means that there must be two binding sites on

S. If these two sites are chemically different, there may exist two different 1 : 1

complexes. All of these possibilities can be related by the scheme

K

XY X′Y′

X

X′Y X′Y′

X′Y′
XY′

′Y

XY′

K K

K

*

**

where XY represents the uncomplexed substrate, and X and Y are the two different

binding sites. A superscript prime indicates that the site is complexed to an L mole-

cule, so X0Y and XY0 are the two possible isomeric 1 : 1 complexes and X0Y0 is the

1 : 2 complex. The equilibrium constants shown are microscopic binding constants.

We experimentally measure K11 and K12. These are related (Connors 1987) to

the microscopic constants by

K11 ¼ KX0Y þ KXY0 ð14:14Þ
K11K12 ¼ aXYKX0YKXY0 ð14:15Þ

BINDING MODELS 247



where aXY ¼ K�X0Y0=KXY0 ¼ K��X0Y0=KX0Y. Since these two equations constitute two

independent equations with three unknowns, we are in general unable to evaluate

the microscopic constants. Two special cases are of interest, however. First, suppose

that the two binding sites are identical. This means that KX0Y ¼ KXY0 , so

K11 ¼ 2KX0Y, and Eq. (14.15) becomes K11 ¼ 4K12=aXY. The second special case

occurs if the two sites are identical and are also independent. This last condition

means that aXY ¼ 1, and we then find that K11 ¼ 4K12.

Perhaps this treatment of the 1 : 1þ 1 : 2 model has seemed somewhat familiar.

In fact, it is merely a rephrasing of the arguments used in Section 12.7 when dis-

cussing the assignment of pKa values of diprotic acids. The only difference in the

treatments is that for acids we defined Ka values as dissociation constants whereas

for complex formation our equilibrium constants are association constants. In the

acid–base system the proton plays the role of the ligand.

14.4. MEASUREMENT OF BINDING CONSTANTS

In this section we describe a few experimental techniques for the determination of

complex binding constants; many more techniques are available (Connors 1987). It

is obviously essential that the temperature be controlled and that the system be

at equilibrium; this latter condition is easy to achieve because most noncovalent

interactions take place very rapidly.

Spectrophotometry. A basic knowledge of absorption spectroscopy is assumed.

We will treat the 1 : 1 stoichiometric model, assuming that Beer’s law is obeyed by

all species. The method requires that the free substrate S and the complex SL pos-

sess significantly different absorption spectra. A wavelength is chosen at which ES

and E11 are different. (Subscripts refer to the species; 11 indicates the complex SL.)

St and Lt represent total substrate and ligand concentrations.

In the absence of ligand we can write

A0 ¼ ESbSt ð14:16Þ

In the presence of ligand at fixed St value, the solution absorbance is given by

AL ¼ ESb½S� þ ELb½L� þ E11b½SL�

which is combined with the mass balances Lt ¼ ½L� þ ½SL� and St ¼ ½S� þ ½SL� to

give

AL ¼ ESbSt þ ELbLt þ�E11b½SL�

where �E11 ¼ E11 � ES � EL. If the solution absorbance is measured against a

reference containing Lt mol L�1 of ligand, the absorbance actually measured is

A ¼ ESbSt þ�E11b½SL� ð14:17Þ
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Now subtract Eq. (14.16) from (14.17) and incorporate the definition of K11

[Eq. (14.3)], obtaining

�A ¼ K11�E11b½S�½L� ð14:18Þ

where �A ¼ A� A0. From the mass balance St ¼ ½S� þ ½SL� and the expression for

K11 we find St ¼ ½S�ð1þ K11½L�Þ, which is used in Eq. (14.18):

�A

b
¼ StK11�E11½L�

1þ K11½L�
ð14:19Þ

This equation is the 1 : 1 binding isotherm expressed for spectrophotometric obser-

vation. Note that the functional dependence of the dependent variable �A=b on [L]

is identical with that in Eq. (14.7).

There is a subtlety in the application of Eq. (14.19), for in this equation [L] is the

free (uncomplexed) concentration of ligand, which we do not (yet) know. What we

know is Lt, the total ligand concentration, for we prepare the solutions with a known

constant value of St and varying but known values of Lt; then we measure �A=b in

these solutions. The answer to this problem is to start with the mass balance

Lt ¼ ½L� þ ½SL�, incorporating the expression for K11 to yield

Lt ¼ ½L� þ
StK11½L�

1þ K11½L�
ð14:20Þ

Equations (14.19) and (14.20) together provide a complete description of the sys-

tem. Often it is possible to design the experiment such that Lt 
 St; then Eq. (14.20)

shows that Lt � ½L�, and Eq. (14.19) can be analyzed with this approximation. More

generally an iterative method is required; with a preliminary estimate of K11,

Eq. (14.20) is solved to give the [L] value corresponding to each Lt. These [L]

values are used in Eq. (14.19) to obtain an improved estimate of K11, and this pro-

cess is repeated until the K11 estimates reach a constant value. The solution of

Eq. (14.19) can be carried out graphically as described earlier; for example, the

double-reciprocal form (the Benesi–Hildebrand plot) is

b

�A
¼ 1

StK11�E11½L�
þ 1

St�E11

ð14:21Þ

According to this equation, a plot of b=�A against 1=[L] will be linear if the

stoichiometry is 1 : 1. The value of K11 is found from

K11 ¼
intercept on vertical axis

slope
ð14:22Þ

The parameter �E11 may be evaluated from the intercept value.
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Table 14.3 lists experimental data from a study of the complex between

cinnamic acid anion (the substrate S) and theophylline (the ligand L) (Kramer

and Connors 1969). Figure 14.3 is the plot of these data according to Eq. (14.21).

From this plot the value K11 ¼ 10:5 M�1 was evaluated.

This absorption spectrophotometric method can be applied throughout the ultra-

violet, visible, and infrared regions of the spectrum. Moreover, the same approach

is applicable to fluorescence data and to nuclear magnetic resonance chemical

shifts.
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Figure14.3. Plot of spectral data for the sodium cinnamate (S)-theophylline (L) system; pH 6.5; at

25�C; K11 ¼ 10:5 M�1. Values of ordinates are an arithmetic average of five determinations.
[Reproduced by permission from Kramer and Connors (1969).]

Table 14.3 Complexing of sodium cinnamate and
theophylline at pH 6.5 and 25�C

102 Lt (M) Aa

0.00 0.530

1.11 0.791

1.25 0.826

1.43 0.858

1.67 0.906

2.00 0.965

2.50 1.053

a Pathlength b ¼ 1 cm; wavelength ¼ 315 nm; St ¼ 0:001 M.
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Solubility. When a complex is formed, the total (apparent) solubility of an inter-

actant is increased, and this change in apparent solubility can be analyzed to derive

the binding constant. The experiment consists of the addition of an identical weight

(in considerable excess of its intrinsic solubility) of substrate S to each of numerous

vials. Increasing amounts of soluble ligand L are added to successive vials, and

solvent is added to make an identical volume of solution in each vial. Now the vials

are agitated at constant temperature until solubility equilibrium is achieved

(typically about 24 h). Then the solution phase of each vial is analyzed for its total

dissolved concentration of substrate, St. A solubility phase diagram is constructed

by plotting St (vertical axis) against Lt.

We will carry out the interpretation of the phase diagram for the case of 1 : 1

stoichiometry. The mass balance expressions are

St ¼ ½S� þ ½SL�
Lt ¼ ½L� þ ½SL�

as we have often written. The manner in which the experiment was carried out

ensured that pure solid S remained in each vial at equilibrium, which means that

the chemical potential, and therefore the activity, of uncomplexed substrate S was

the same in each vial; we can therefore reasonably conclude that the concentration

of free S, namely [S], was the same in each vial, including the vial containing no

ligand at all. This quantity is therefore the intrinsic solubility s0 of substrate. The

mass balance on substrate can therefore be written

St ¼ s0 þ ½SL� ð14:23Þ

Combining Eq. (14.23) with the mass balance on ligand and the definition of K11

gives

St ¼ s0 þ
K11s0Lt

1þ K11s0
ð14:24Þ

as the solubility binding isotherm. Equation (14.24) predicts that St will be a linear

function of Lt; the intercept will be s0, and the binding constant can be calculated

from

K11 ¼
slope

s0ð1� slopeÞ ð14:25Þ

Table 14.4 gives solubility data for a study of the complexing between theophylline

(the substrate) and sodium salicylate (the ligand) (Cohen and Connors 1967).

Figure 14.4 is the plot according to Eq. (14.25). From this phase diagram the value

K11 ¼ 21:5 M�1 was evaluated.5

The solubility method can be extended to the study of multiple complexes.
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Potentiometry. We saw in Chapter 13 that it may be possible to design an

electrochemical cell such that an ion activity is related to cell potential by the

Nernst equation:

E ¼ constant � RT

nF
ln a

If the activity of this ion changes in the process of complex formation, then

potentiometry offers a means for studying the complex. This is what we do when

we measure pKa values of weak acids. The principle can be extended to study the

formation of complexes between metal ions and bases. These complexes, which can

be exceedingly strong, are the result of covalent bonding and lie somewhat outside

our present concern, but they can be studied in the same way (Connors 2000).
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Figure 14.4. Phase solubility diagram for the theophylline (S)-sodium salicylate (L) system at

25�C. [Reproduced by permission from Cohen and Connors (1967).]

Table 14.4 Solubility data for the theophylline
(S)-sodium salicylate (L) systema

102Lt (M) 102St (M)

0 3.87

2.52 5.17

5.04 6.22

10.09 8.60

12.61 9.46

15.14 10.94

20.18 12.88

a At 25�C in pH 6.5 phosphate buffer.

252 NONCOVALENT BINDING EQUILIBRIA



We will develop the potentiometric method for the formation of complexes

between a weak acid–base conjugate pair (the substrate) and a neutral ligand.

The hydrogen ion activity changes as the ligand concentration is altered, so that

the ion we monitor, Hþ, is a measure of the extent of complex formation but is

not itself the substrate or ligand. In general both the acid form of the substrate,

HA, and its conjugate base A�, can complex with the ligand L, so we write

HAþ L Ð
K11a

HAL

A� þ L Ð
K11b

AL�

We also have the usual acid–base equilibrium

HA Ð
Ka

Hþ þ A�

and there also exists this acid–base equilibrium:

HAL Ð
Ka11

Hþ þ AL�

Defining and manipulating these four equilibrium constants gives

Ka

Ka11

¼ K11a

K11b

ð14:26Þ

Thus only three of these four quantities are independent; that is, we need measure

and discuss only three of them to give a full description of this 1 : 1 stoichiometric

system. We will choose Ka, K11a, and K11b.

The experiment consists of measuring the apparent pKa of HA as a function

of added ligand. We start the analysis by defining the apparent acid dissociation

constant by

K 0a ¼
½HAþ�ð½A�� þ ½AL��Þ
½HA� þ ½HAL� ð14:27Þ

Then the expressions for Ka, K11a, and K11b are combined with Eq. (14.27), yielding

K 0a ¼ Ka
ð1þ K11b½L�Þ
ð1þ K11a½L�Þ

ð14:28Þ

Defining �pK 0a ¼ pK 0a � pKa allows us to write Eq. (14.28) as

�pK 0a ¼ log
ð1þ K11a½L�Þ
ð1þ K11b½L�Þ

ð14:29Þ
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Further defining the quantity C by

C ¼ 1þ K11a½L�
1þ K11b½L�

ð14:30Þ

we have �pK 0a ¼ log C. Equation (14.30) is the 1 : 1 binding isotherm. We measure

pK 0a as a function of Lt, where pKa is the value of pK 0a when Lt ¼ 0. Then C is found

from �pK 0a. A separate mass balance relates [L] to Lt. Equation (14.30) is a rectan-

gular hyperbola, and the usual three linear plotting forms can be used to extract

values of K11a and K11b. Equation (14.31) shows the form corresponding to

Eq. (14.11), the Scatchard plot:

C � 1

½L� ¼ K11a � K11bC ð14:31Þ

Table 14.5 gives �pK 0avalues for two complexing systems; in both of these

a-cyclodextrin, a macrocyclic natural product formed of six residues of glucose,

is the ligand. The substrates are benzoic acid and 4-cyanophenol (Connors et al.

1982; Lin and Connors 1983). The first interesting feature of these data is the

very substantial values of �pK 0a that may occur. The second point is that �pK 0a
may be either positive or negative. [If �pK 0a is negative, it can be redefined as

Table 14.5 �pK 0a values at 25�C for the complexing of
benzoic acid and of 4-cyanophenol with a-cyclodextrin

�pK 0a
————————————————

Lt (M) Benzoic Acid 4-Cyanophenol

0.0017 0.24 —

0.0020 — �0.16

0.0030 — �0.21

0.0045 — �0.28

0.0057 0.61 —

0.0075 — �0.38

0.01 0.84 �0.42

0.02 1.10 �0.52

0.03 1.25 �0.56

0.04 1.34 �0.58

0.05 — �0.58

0.06 1.45 �0.59

0.07 1.48 �0.58

0.08 1.51 �0.59

0.09 1.54 �0.59

0.10 1.55 �0.58
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�pK 0a ¼ pKa � pK 0a in order to generate a positive number; alternatively, define

C0 ¼ 1=C and use C0 instead of C in Eqs. (14.30) and (14.31).] Referring to

Eq. (14.30) shows that a positive �pK 0a, which signifies that C > 1, means that

K11a > K11b; the conjugate acid binds to the ligand more strongly than does the con-

jugate base. Similarly, a negative �pK 0a means that K11b > K11a. If K11a ¼ K11b,

pK 0a ¼ pKa so �pK 0a ¼ 0, and the method is inapplicable; this circumstance is

rare, however, because the conjugate acid and base differ electronically very

profoundly, so their noncovalent interaction possibilities differ as a consequence.

From plots of Eq. (14.31), the values K11a ¼ 722 M�1 and K11b ¼ 11:2 M�1 were

found for the benzoic acid–a-cyclodextrin complexes. The 4-cyanophenol

complexes gave K11a ¼ 158 M�1 and K11b ¼ 662 M�1.

Dialysis. This interesting method is applicable to the study of the binding of small

molecules to macromolecules, and it has been widely applied to drug–protein

binding. The experimental method requires that two solution compartments be

separated by a semipermeable membrane, that is, a membrane through which

the small molecule can freely pass but the macromolecule cannot. Let us call the

macromolecule the substrate S and the small molecule the ligand L. We label the

compartments 1 and 2.

The substrate, at known total concentration St, is placed in compartment 1,

where it is constrained to remain because of its size. The small ligand is placed

in compartment 2. The system is allowed to come to equilibrium at constant

temperature.

At equilibrium the chemical potentials of free L, the diffusible ligand, in the two

compartments are equal. We may therefore (usually) infer that the concentrations of

L are equal. Using subscripts to identify the compartments, we write this equality as

½L�1 ¼ ½L�2 ð14:32Þ

The solutions in the two compartments are analyzed to determine their total ligand

concentrations, ðLtÞ1 and ðLtÞ2. We can now state, for compartment 1

ðLtÞ1 ¼ ½L�1 þ ½bound L�1 ð14:33Þ

and for compartment 2

ðLtÞ2 ¼ ½L�2 ð14:34Þ

We therefore have all the information required to calculate the quantity �i
[Eq. (14.12)], rewritten here explicitly for compartment 1:

�i ¼ ðLtÞ1 � ½L�1
ðStÞ1

ð14:35Þ

This experiment is repeated over a range of ligand concentrations, and then binding

isotherm (14.13) is applied to the data to determine the parameters n and k.
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Strengths of Complexes. We might express the strength of a complex in terms

of either its binding constant or (what is equivalent) its standard free energy change

�G�, or as its standard enthalpy change �H�. These may parallel each other for

comparable systems, but they may diverge markedly because of the thermodynamic

relationship �G� ¼ �H� � T �S�. Let us make some simple calculations to

develop a sense of the magnitudes to be expected.

We recall from an earlier discussion that the net free-energy change may be divided

into contributions from solute–solute (i.e., substrate–ligand) interactions, from

solute–solvent (solvation) interactions, and from solvent–solvent interactions, or

�G� ¼ �G�SL þ�G�solvation þ�G�MM ð14:36Þ

Let us first consider an H-bond complex formation reaction in vacuo or in a

very nonpolar solvent, so that essentially only the solute–solute interaction makes

a contribution; thus �G� ¼ �G�SL. Suppose that �H� for the reaction is �3 kcal

mol�1, a typical value for a noncovalent interaction. We also need an estimate for

�S�, which we will obtain with the following (oversimplified) argument. In the pro-

cess of the two species S and L interacting to form the complex C, some modes of

molecular motion are lost. Even supposing that all internal modes (vibrational and

rotational) of S and L are preserved in C, three translational modes will be lost.

Applying the statistical mechanical definition of entropy [Chapter 2, Eqs. (2.1)

and (2.2)] to the reaction Sþ LÐ C, we obtain �S� ¼ �R ln 3 ¼ �9:1 J K�1

mol�1 or �2:2 cal K�1 mol�1. For our hypothetical system we therefore

calculate �G� ¼ �3000þ ð298Þð2:2Þ ¼ �2350 cal mol�1. With the basic equation

�G� ¼ �RT ln K11, we calculate K11 ¼ 53 M�1 at 25�C.

Now let us consider the quite different system of two nonpolar molecules in aqu-

eous solution. The solute–solvent and solute–solute interactions will be negligible

or will largely offset each other, so in this case we can write �G� ¼ �G�MM. To

estimate �G�MM we draw on the cavity theory of the hydrophobic interaction,

according to which the change in free energy is equal to the product g�A, where

g is the solvent surface tension and �A is the change in nonpolar surface area in

contact with the solvent. Suppose �A ¼ �50 Å2; this is about the cross-sectional

area of an aromatic ring. For water g ¼ �71:8 erg cm�2. Thus

�G� ¼ 71:8
erg

cm2

� � 1 J

107 erg

� �
�50

2
� � 10�8 cm

1

 !2

¼ �3:6� 10�20 J

This is the free-energy change per complex; we multiply by NA to put it on a molar

basis, finding �G� ¼ �21:7 kJ mol�1 or �5:2 kcal mol�1. Converting to K11 gives

K11 ¼ 6:5� 103 M�1.

These calculations illustrate the magnitudes of binding constants that may be

expected, although the range is even larger than indicated by these numbers. Values

of K11 smaller than 1 M�1 have been reported, although such results should be

interpreted with caution. Very large values are not unusual. Consider the pKa of

Å
Å
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phenol, which is 10.00 at 25�C. Ka is a dissociation constant. Its reciprocal,

1=Ka ¼ K11, is a binding constant; this is obviously 1� 1010 M�1.

As was pointed out for acids and bases in Table 12.8, values of equilibrium

constants for closely related reactants tend to fall into characteristic ranges. This

behavior provides a coarse level of predictability. There is some evidence that

for each identifiable ‘‘population’’ or class of complex equilibria the log K11 values

are normally distributed (Connors 1995; Burnette and Connors 2000), and that the

standard deviation of all such populations is about one log K11 unit (Connors 1997).

PROBLEMS

14.1. Define overall and stepwise binding constants for the formation of complex

S2L3, and show how these constants are related.

14.2. Construct plots according to Eqs. (14.9)–(14.11) of the simulated data in

Table 14.2.

14.3. Equation (14.19) describes the binding curve for the spectrophotometric

study of 1 : 1 complex formation. What is the value of the initial slope (i.e.,

the slope when ½L� ¼ 0) of the plot of �A=b versus [L]?

14.4. (a) From Eq. (14.19) derive the Scatchard linear plotting form (correspond-

ing to Eq. 14.11).

(b) Plot the data in Table 14.3 to evaluate K11 and �E11. Assume Lt ¼ ½L�.

14.5. What is the value of the initial slope of a plot of C against [L] according to

Eq. (14.30)?

NOTES

1. The classic treatment of covalent bonding is Linus Pauling’s The Nature of the Chemical

Bond (1960). Of course, more recent sources must be consulted for later theoretical and

experimental findings.

2. Some authors refer collectively to these r�6 terms (r�7 in the forces) as van der Waals

interactions, but there is some ambiguity in this term, as certain authors seem to mean only

the London force by the designation van der Waals.

3. This statement is not strictly correct, as certain molecules possessing quadrupolar moments

can undergo additional forces, but these can usually be neglected.

4. We have seen earlier manifestations of Eq. (14.7). The Langmuir adsorption isotherm

(Chapter 11) and Eq. (12.22) have this form. The identity K ¼ 1=½L�when f11 ¼ 0:500 is the

same as the condition pKa ¼ pH at the midpoint of an acid–base titration.

5. Earlier 1 : 1 binding isotherms [Eqs. (14.7) and (14.19)] have been hyperbolic functions of

[L], whereas Eq. (14.25) is a linear function of Lt. This distinction arises because of the

unusual feature of the solubility experiment in which [S] is maintained constant while St

varies; in the other methods St is held constant and [S] varies.

NOTES 257



APPENDIXES

Thermodynamics of Pharmaceutical Systems: An Introduction for Students of Pharmacy.
Kenneth A. Connors

Copyright  2002 John Wiley & Sons, Inc.
ISBN: 0-471-20241-X



APPENDIX A
PHYSICAL CONSTANTS

Quantity Symbol Value

Avogadro’s number NA 6:023� 1023 mol�1

Gas constant R 8:314 J K�1 mol�1

1:987 cal K�1 mol�1

0:08206 L atm K�1 mol�1

Boltzmann constant k 1:380� 10�23 J K�1

Faraday F 9:6487� 104 C mol�1

Elementary charge e 1:602� 10�19 C

Planck’s constant h 6:626� 10�34 J s

Speed of light in vacuum c 2:9979� 108 m s�1
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APPENDIX B
REVIEW OF MATHEMATICS

B.1. INTRODUCTION

The extent of mathematics required in order to master the material in the

professional pharmacy curriculum is really quite modest, comprising the basic

operations of arithmetic and algebra; some fundamentals of plane geometry,

analytic geometry, and calculus; and ideas from mathematical statistics. Nearly

everything mathematical that you will need to know as a pharmacy student you

have presumably already mastered in high school or college courses, except

perhaps for the mathematical statistics content and the concept of partial differen-

tiation (which will be treated in the following pages). You already know, or you

once knew, about 95% of the material in this review (exclusive of the statistics

section), which therefore should not present a difficult intellectual challenge.

Although our immediate concern is to provide a basis for the mathematical needs

of thermodynamics, this review goes beyond thermodynamics to include the

mathematical methods useful in other parts of the curriculum.

Mathematics is treated by scientists as a tool or a language, and it is this attitude

that you should adopt. Your goal in reviewing this material is to develop such a

familiarity with the mathematical operations that you need not worry about them

or even give much conscious thought to them. Such a capability will allow you

to concentrate your attention on the new ideas being presented in your courses,

whether they are physical chemical, pharmacokinetic, or biological. Not every bit

of mathematics that you may encounter in your future studies will be treated here,

but nearly all of it will be found here.

As a first step in developing this review of essential mathematics as the language

of science, Table B.1 lists some standard mathematical symbols. As you read

the following pages, keep in mind that this is a review, not a logical development
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of the subject. Results are usually presented without derivation; you have already

seen the derivations in your mathematics courses. Examples will draw on chemical

concepts that, in many instances, will already be familiar to you, but a few ideas

may appear that are new.

B.2. LOGARITHMS AND EXPONENTS

Definition and Properties. Suppose we have the power function of Eq. (B.1).

a ¼ bx ðB:1Þ

We define1 the logarithm of a to the base b by

Logb a ¼ x ðB:2Þ

There are only two logarithmic bases (values of b) in common use, namely, b ¼ 10

(giving Briggsian logarithms) and b ¼ e (giving natural logarithms). Briggsian

logarithms are denoted log, whereas natural logarithms are denoted ln. An impor-

tant property2 of all logarithms is stated by Eq. (B.3).

Logb b ¼ 1 ðB:3Þ

Table B.1. Common mathematical symbols

Symbol Meaning

¼ Equals; is equal to

� Is equivalent to

� or � or ffi Is approximately equal to

6¼ Is not equal to

/ Is proportional to

< Is less than


 Is less than or equal to

> Is greater than

� Is greater than or equal to

þ Plus


 Minus

� or � Times

� or = Divided by

� Plus or minusffip
The square root of

; Therefore

jj The absolute value of
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It follows that

Log 10 ¼ 1 ðB:4Þ
ln e ¼ 1 ðB:5Þ

Another property3 is given by Eqs. (B.6) and (B.7):

Log 1 ¼ 0 ðB:6Þ
ln 1 ¼ 0 ðB:7Þ

The number e is extremely important in mathematics and science. It has the value

2.718 � � � .
At one time Briggsian logarithms were widely used to carry out arithmetic

operations, but with electronic calculators and computers this use is obsolete.

However, the base ten log function continues to be indispensable in the sciences,

for two reasons: (1) some important physicochemical concepts (such as pH) are

defined in terms of Briggsian logarithms and (2) logarithms to the base 10 have

the convenient property of revealing order-of-magnitude changes or differences

at a glance. For example, log 102 ¼ 2:00, log 103 ¼ 3:00, and so on.

Let us obtain a relationship by means of which we can interconvert Briggsian

and natural logarithms of the same number. Let a be the number, and write

ln a ¼ c log a ðB:8Þ

where we want to find the conversion factor c. Suppose for convenience (any

number would do) that we set a ¼ 10. From Eq. (B.8), we obtain

c ¼ ln 10

log 10
¼ 2:303 � � �

1
ðB:9Þ

where the numerator is found by means of an electronic calculator, and the denomi-

nator from Eq. (B.4). Therefore we can interconvert ln and log values by Eq. (B.10):

ln a ¼ 2:303 log a ðB:10Þ

Operations with Logarithms. Suppose that we have both Eqs. (B.11) and

(B.12):

a ¼ bx ðB:11Þ
c ¼ by ðB:12Þ

We know from Eq. (B.2) that

Logb a ¼ x

Logb c ¼ y
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But we can also write from Eqs. (B.11) and (B.12):

ac ¼ bx � by ¼ bxþy

It follows that

Logb ac ¼ logb aþ logb c ðB:13Þ

Thus, the logarithm of a product of two numbers is equal to the sum of the loga-

rithms of the individual numbers. This very valuable result permits several other

relationships to be derived; these are stated as Eqs. (B.14)–(B.17). Although these

are written in terms of log, exactly analogous equations can be given for ln:

Log pq ¼ log pþ log q ðB:14Þ

Log
p

q
¼ log p
 log q ðB:15Þ

Log
1

q
¼ 
log q ðB:16Þ

Log pn ¼ n log p ðB:17Þ

Example B.1. It is convenient to define, as a measure of the acidity of an aqueous

solution, the pH by

pH ¼ 
log ½Hþ�

where ½Hþ� is the hydrogen ion concentration in mol L
1. This means that

pH ¼ log
1

½Hþ�

(a) Calculate the pH if ½Hþ� ¼ 5:00� 10
3 M.

pH ¼ 
log 5:00� 10
3

¼ 
ðlog 5:00þ log 10
3Þ
¼ 
ð0:70
 3:00Þ
¼ 2:30

The pH is a positive number provided that ½Hþ� < 1 M. Seldom is it

justifiable to express pH values beyond the second decimal place (i.e.,

0.01 pH unit).
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(b) What is the hydrogen ion concentration if pH ¼ 8:67?

pH ¼ 8:67


log ½Hþ� ¼ 8:67

log ½Hþ� ¼ 
8:67 ¼ 
9:00þ 0:33

½Hþ� ¼ 2:14� 10
9 M

This last step is called ‘‘taking the antilogarithm.’’ It is the reverse of taking the

logarithm, and is easily accomplished on the electronic calculator. A useful check

on the calculation is to convert the [Hþ] back to pH. Another check is to be sure that

the order of magnitude is reasonable; this means that the answer is as expected at

least to within a factor of 10.

Operations with Exponents. The following identities follow from the proper-

ties of logarithms [actually we used Eq. (B.20) in order to derive Eq. (B.13)]:

a0 ¼ 1 ðB:18Þ
a1 ¼ a ðB:19Þ

au � av ¼ auþv ðB:20Þ

a
u ¼ 1

au
ðB:21Þ

ðauÞv ¼ auv ðB:22Þ
ðabÞu ¼ aubu ðB:23Þ

Scientific Notation. Many quantities in theoretical and experimental science are

either extremely large or extremely small, so an exponential form of expressing

them is convenient. Nearly always these are written as an integral power of 10,

as shown in these examples:

51,000 � 5:1� 104 � 51� 103

0:00000417 � 4:17� 10
6

As seen in Example B.1, this is a very convenient way in which to express a number

whose logarithm is to be taken, because [as seen in Eq. (B.13)] the logarithm of a

product is equal to the sum of the logs, and because log 10n ¼ n log 10 ¼ n. Thus

Log 4:17� 10
6 ¼ ðlog 4:17Þ 
 6 ¼ 
5:38

B.3. ALGEBRAIC AND GRAPHICAL ANALYSIS

Setting up Proportions. It often happens that we know three related items of

information and seek a fourth member of the set. In order to solve for this fourth,

unknown, item, we write an equation. One way to do this is to express the
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relationships in terms of sentences, by means of which we can more readily detect

analogous patterns. Then we replace the English words with mathematical symbols.

Example B.2. How many moles of sodium chloride are contained in 5.00 g of

NaCl?

The first of the following statements gives two pieces of known information; the

second analogous statement contains the unknown.

58:45 g of NaCl corresponds to 1 mol

so

5:00 g of NaCl corresponds to how many mol?

Now we replace the words with symbols (and notice how the units cancel):

58:45

5:00
¼ 1

x

x ¼ 5:00

58:45
¼ 0:0855

Generalizing this equation gives these important formulas:

mol ¼ W ðgÞ
MW

ðB:24Þ

mmol ¼ W ðmgÞ
MW

ðB:25Þ

Eq. (B.25) is obtained from Eq. (B.24) by multiplying both sides by 103. A milli-

mole (mmol) is one-thousandth of a mole.

Example B.3. A sample of aspirin weighing 305 mg was found by analysis to

contain 294 mg of aspirin. What is its percent purity?

If the sample contained 305 mg, it would be 100% pure. Actually it contains

294 mg, so it is x% pure. Therefore

305

294
¼ 100

x

or 96.4% pure. Generalizing this result, we obtain

% purity ¼ Wfound

Wtaken

� 100 ðB:26Þ
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In a later section we will treat the conversion of physical units. Here we see that

setting up a proportion is one way to handle this problem.

Example B.4. Convert 75 min to hours.

If 60 min is equivalent to 1 h, then 75 min is equivalent to x h?

60

75
¼ 1

x

x ¼ 1:25 h:

Ratios and Fractions. We are going to consider this subject in the context of

chemistry rather than of pure mathematics. To clarify the distinction between a ratio

and a fraction, consider the dissociation of a weak acid (like a carboxylic acid) in

water:

HAÐ Hþ þ A


Here we let HA represent any neutral weak acid, where A
 is the anion resulting

from the dissociation. We define the ratio of anion to neutral acid by

½A
�
½HA� ¼ ratio of anion to acid ¼ RA


where square brackets signify molar concentrations. Similarly we have

½HA�
½A
� ¼ ratio of acid to anion ¼ RHA

These ratios play an important role in describing chemical equilibria.

There can also be situations in which we wish to define the fraction of anion in

the mixture of A
 and HA. This fraction, which we will label FA
 , is defined as

½A
�
½HA� þ ½A
� ¼ FA
 ¼ fraction of anion

Similarly the fraction present as the neutral acid is given by

½HA�
½HA� þ ½A
� ¼ FHA ¼ fraction of acid

By substitution it is easily found that

FA
 þ FHA ¼ 1
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This is a general property of fractions as defined in this way; they sum to unity. As a

consequence, if the whole is divided into n fractions, only n
 1 of these are inde-

pendent (i.e., capable of independent variation).

Example B.5. A solution made up to contain a total concentration (also called

an analytical concentration) of weak acid 3:50� 10
3 M is found to have an anion

concentration of 8:95� 10
4 M. Calculate the fractions of solute in the anion and

neutral forms.

We are told that the total concentration is 3:50� 10
3 M. This is the sum

½HA� þ ½A
�, since the solute can exist in either or both forms, and no other. Hence

FA
 ¼
½A
�

½HA� þ ½A
� ¼
0:895� 10
3

3:50� 10
3
¼ 0:256

From the identity FA
 þ FHA ¼ 1, we immediately obtain FHA ¼ 1
 0:256 ¼
0:744.

A fraction can be converted to a percentage through multiplication by 100,

Eq. (B.27); see also Eq. (B.26).

Percent ¼ 100� fraction ðB:27Þ

Thus in this example 25.6% is in the form of the anion and 74.4% is in the form of

the neutral acid.

Example B.6. For the system in Example B.5, calculate the ratios ½A
�=½HA� and

½HA�=½A
�.
We know that ½A
� ¼ 0:895� 10
3 M and ½HA� þ ½A
� ¼ 3:50� 10
3 M, so

we find that ½HA� ¼ 2:605� 10
3 M. Therefore

½A
�
½HA� ¼

0:895

2:605
¼ 0:344

The reciprocal gives us the other ratio:

½HA�
½A
� ¼

1

0:344
¼ 2:91

Fractions must be less than (or equal to) unity, but a ratio can be greater than unity.

Ratios and fractions (in this context) are dimensionless.

Students sometimes wonder why, in calculations like this (the dissociation of

HA according to HAÐ Hþ þ A
) we were able to ignore the Hþ produced in

the reaction. The answer is that we are counting molecules or moles, not grams;

each molecule of HA that dissociates yields one Hþ ion and one A
 ion. If we

counted both ions, we would be double-counting, with the result that we would

appear to be creating matter, which we know is impossible.
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Solving Simultaneous Equations. From algebra we know that if we have n

simultaneous independent equations in n unknowns, we can solve the equations

to find all n unknowns. Usually, of course, we encounter the simplest case in which

we have one equation and one unknown. It is more interesting when we have two or

more unknowns.

Let us continue to discuss our earlier example of the dissociation of weak acid

HA to yield anion A
. Often it happens that we know the total concentration and

can measure the ratio of concentrations. From this information we seek the

individual concentrations [HA] and [A
].

We have two unknowns, so we hope that we can write two independent

equations. We begin by setting in equation form that which we know. We write

½A
�
½HA� ¼ RA
 ðB:28Þ

½HA� þ ½A
� ¼ ct ðB:29Þ

where we know (have numerical values for) RA
 and ct. Equations (B.28) and

(B.29) are two independent equations in two unknowns.

There are several ways to solve simultaneous equations; the simplest is by

algebraic substitution. Solve Eq. (B.28) for ½A
� and substitute this into

Eq. (B.29). From Eq. (B.28), ½A
� ¼ RA
 ½HA�, so we get from Eq. (B.29),

½HA� þ RA
 ½HA� ¼ ct

We have reduced two equations with two unknowns to one equation with one

unknown, for which we solve

½HA� ¼ ct

1þ RA


Having found [HA], we can use Eq. (B.28) or (B.29) to find [A
].

The requirement that the equations be independent means that there is no

possible way to obtain (to derive) one of them from the others; that is, each equation

must contribute some additional information to the problem. For example, in the

preceding case suppose that we only know ct. There is no way from this knowledge

alone that we could deduce the value of RA
 , so we could not calculate individual

values of [HA] and ½A
�; we would have a single equation [Eq. (B.29)] and two

unknowns.

The solution of simultaneous equations is usually easy. The difficult tasks are to

analyze the problem so as to identify and write down the equations, and to collect

the necessary information so they can be solved numerically.

Solution of Quadratic Equations. Everyone learns in high school algebra how

to solve a quadratic equation, that is, an equation in which the unknown quantity
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appears to the second power. In its ‘‘standard’’ form a quadratic equation can be

written

ax2 þ bxþ c ¼ 0 ðB:30Þ

where x is the unknown quantity and a, b, c are known quantities; a, b, and c can be

viewed as constants in the particular situation. The solution of Eq. (B.30) is given

by Eq. (B.31).

x ¼ 
b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 
 4ac
p

2a
ðB:31Þ

This equation should be memorized. It shows that there are two solutions to

Eq. (B.30), corresponding to the use of either the plus or the minus sign in

Eq. (B.31). Usually only one of these solutions has physical significance; the other

solution can be ignored. By ‘‘physical significance’’ we mean that it makes sense in

the context of the physical situation. For example, if x is a concentration, obviously

a negative value has no physical significance. The capability of some theories or

mathematical operations to generate solutions lacking physical significance is

known as ‘‘formal surplus structure.’’

Example B.7. We will continue to use our example of the dissociation of weak

acid HA according to

HAÐ Hþ þ A


Let us define an equilibrium constant by

Ka ¼
½Hþ�½A
�
½HA� ðB:32Þ

We also have the equation giving the total solute concentration:

ct ¼ ½HA� þ ½A
� ðB:33Þ

We now observe that each molecule of HA that dissociates yields one Hþ and one

A
, suggesting (this is not quite true, but is nearly always a very good approxima-

tion) that we can write

½A
� ¼ ½Hþ�

Making this substitution in Eq. (B.32) gives

Ka ¼
½Hþ�2

ct 
 ½Hþ�
ðB:34Þ
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This is a quadratic equation. First we rearrange it to place it in the standard form,

obtaining

½Hþ�2 þ Ka½Hþ� 
 Kact ¼ 0 ðB:35Þ

Comparing Eqs. (B.30) and (B.35) gives these identities:

a ¼ 1

b ¼ Ka

c ¼ 
Ka ct

x ¼ ½Hþ�

The solution is accordingly

½Hþ� ¼ 
Ka �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

a þ 4Kact

p
2

ðB:36Þ

Example B.8. Calculate the pH in a solution that is 0.010 M with respect to a weak

acid if Ka ¼ 1:00� 10
5.

We use Eq. (B.36):

½Hþ� ¼

1:0� 10
5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0� 10
10 þ ð4� 10
5Þð1� 10
2Þ

q
2

¼ 
1:0� 10
5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 10
10 þ 4� 10
7

p
2

¼ 
1:0� 10
5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01� 10
8 þ 40� 10
8

p
2

¼ 
1:0� 10
5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40:01� 10
8
p

2

¼ 
1:0� 10
5 � 6:325� 10
4

2

¼ 
1:0� 10
5 � 63:25� 10
5

2

¼ 31:125� 10
5 ¼ 3:11� 10
4

So pH ¼ 
log ½Hþ� ¼ 3:51. Note that the solution employing the negative sign has

been rejected.4

Approximations. Scientists, unlike mathematicians, are often satisfied with

approximate rather than exact solutions. The level of approximation that is

272 REVIEW OF MATHEMATICS



acceptable is determined by practical criteria and is not completely arbitrary. If we

cannot experimentally detect or measure an effect, we may feel justified in neglect-

ing it. Or how we use the result may determine the acceptable level of approxima-

tion; for example, if we are to measure the pH of Lake Mendota water, we may be

satisfied with a result accurate �0.1 pH unit (for various practical reasons), whereas

if we are measuring the equilibrium constant of a weak acid, we will surely hope for

measurements accurate to �0.01 pH unit. This kind of thinking is then extended to

the equations that enable us to describe and interpret the measurements. If we make

an approximation in an equation it is no longer exact in a mathematical sense,5 but

it may be acceptably accurate in a scientific sense.

Example B.9. Calculate the pH in a solution that is 0.010 M with respect to a weak

acid if Ka ¼ 1:00� 10
5.

This is the same problem for which we obtained an accurate solution in Example

B.8. In that calculation we used the equation

Ka ¼
½Hþ�2

ct 
 ½Hþ�
ðB:37Þ

Now suppose that the hydrogen ion concentration is much smaller than is the total

concentration ct. Then we can reasonably make this approximation:

ct 
 ½Hþ� � ct

Making this substitution in Eq. (B.37) gives

Ka �
½Hþ�2

ct

or

½Hþ� �
ffiffiffiffiffiffiffiffiffi
Kact

p
ðB:38Þ

Applying Eq. (B.38) to our problem, we get

½Hþ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 10
5Þð1� 10
2Þ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 10
7

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 10
8

p
¼ 3:16� 10
4 M

or pH ¼ 3:50. Our approximation has led to a very simple solution, and comparison

with Example B.8 shows the level of error that has been introduced.
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When is it acceptable to use such an approximation? This depends on those fac-

tors already mentioned. In the present example we might examine the quantity

ct 
 ½Hþ� to see if ½Hþ� is indeed much smaller than ct (for that is the assumption on

which the approximation is based). In Example B.9 we can compare these numbers:

Exact: ct 
 ½Hþ� ¼ 1:00� 10
2 
 3� 10
4 ¼ 0:97� 10
2

Approximate: ct 
 ½Hþ� � ct ¼ 1:00� 10
2

Therefore the approximation introduces about a 3% error into the denominator of

Eq. (B.37). The error in the final answer is even smaller than this, and for most

purposes the approximate result would be acceptable. This is the practical point

of view that is adopted, and it can be seen that decisions of this sort depend greatly

on experience with making calculations and with interpreting experimental results.

Graphical Properties of Linear Functions. Let us begin this treatment by

writing this linear equation in a standard form:

y ¼ mxþ b ðB:39Þ

We call this ‘‘linear’’ because y depends on x to the first power. The following

terminology is used:

x, y are variables

m, b are parameters (i.e., constants of the system)

More specifically, x is often called the independent variable and y the dependent

variable. This terminology signifies that the value of x is under our control, and

that the value of y then depends on x.

If paired x; y data are related by Eq. (B.39), when plotted on graph paper they

yield a straight line (which is another reason why we call Eq. (B.39) ‘‘linear’’).

Figure B.1 shows how the plot is conventionally made. It is traditional to plot

the x values on the horizontal axis (the abscissa) and the y values on the vertical

axis (the ordinate).

Let us set x ¼ 0 in Eq. (B.39); we get y ¼ b; that is, b is the value of y when

x ¼ 0. We call this the intercept on the y axis. The parameter m describes the

steepness with which y increases (or decreases) as x increases; m is called the slope.

Evidently if we know the values of m and b, we know everything there is to know

about Eq. (B.39).

Now let us review the calculation of m, the slope. In Fig. B.2, two points, on the

line, having coordinates (x1; y1) and (x2; y2), are identified. We write the equation of

the line for each of these points (for the equation is satisfied at every point on the

line):

y1 ¼ mx1 þ b

y2 ¼ mx2 þ b
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Now subtract y1 from y2 and solve for m:

m ¼ y2 
 y1

x2 
 x1

ðB:40Þ

This equation allows us to calculate the slope of any straight line. The slope m can

be positive (y increases as x increases), negative (y decreases as x increases), or zero

(y does not depend on x). We can read b from the graph as the value of y when

x ¼ 0, or more accurately and sometimes more conveniently (because sometimes

the plot doesn’t include the x ¼ 0 region), b can be calculated from Eq. (B.38),

0
0

x

y

Figure B.1. A typical straight-line plot of data points.

x1,y1

x2,y2

x

y

Figure B.2. Illustrating the calculation of the slope of a straight line; see text.
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since we now know m. Simply choose any point on the line and substitute the

corresponding numerical values into b ¼ y
 mx.

Here are two interesting special cases of Eq. (B.38).

1. m ¼ 0. Then the line is horizontal, parallel to the x axis, since substituting this

value of m into Eq. (B.38) gives y ¼ b.

2. b ¼ 0. Then Eq. (B.38) yields

y ¼ mx ðB:41Þ

showing that the line passes through the origin at y ¼ 0, x ¼ 0.

Example B.10. Table B.2 lists experimental data (Cohen and Connors 1967)

giving the solubility of the drug theophylline (in water at 25�C) as a function of

the concentration of added sodium salicylate. Analyze the data.

The first thing to do is to plot the data. Use graph paper having fine enough

divisions to preserve the accuracy of the data; 1-mm divisions usually work well,

whereas 1
4
-in. divisions are too coarse.6 Figure B.3 shows the plot of the data. Since

the sodium salicylate concentration was set by the experimenter, we consider it to

be the independent variable x.

The data points appear to describe a straight line. There is a theoretical reason

for this, but we can view it purely experimentally as a pleasingly simple result. Note

that the data points show some small but significant ‘‘scatter’’ about the line that has

been drawn. This scatter introduces ambiguity into the question of how best to draw

the line. Later, in Section B.5, we will deal with this issue of the ‘‘best straight

line,’’ but for the present it is sufficient to note that we draw a line that appears

to approximately balance the deviations of the points above and below the line.

Next we calculate the slope of the line. Because of the scatter seen in the

experimental points, our two points for the slope calculation will be taken from

the line itself, for it is the slope of the line that we want.7 Any two points will

do, but they should be far enough apart to yield an accurate result. Points

Table B.2. Solubility of theophylline in water at 25.0�C as
a function of added sodium salicylate

Sodium Salicylate Theophylline

Concentration (M) Concentration (M)

0 0.0387

0.0252 0.0517

0.0504 0.0622

0.1009 0.0860

0.1261 0.0946

0.1514 0.1094

0.2018 0.1288
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corresponding to x1 ¼ 0:060 and x2 ¼ 0:160 were chosen. Reading directly from

Fig. B.3 gives

At x1 ¼ 0:060 M; y1 ¼ 0:0669 M

At x2 ¼ 0:160 M; y2 ¼ 0:1122 M

These numbers are used in Eq. (B.40):

m ¼ 0:1122
 0:0669

0:160
 0:060
¼ 0:453

Now we calculate b using (for convenience, because we already have the values)

point x1, y1:

b ¼ y
 mx

¼ 0:0669
 ð0:453Þð0:060Þ
¼ 0:0397 M

Note that b has the units of y whereas m has the units of y=x. Also observe that b as

calculated from the line is slightly different from the experimental value of

0.0387 M when x ¼ 0. Such discrepancies are common in scientific work. They

add interest to the interpretation of experimental data.

We can now state that the set of data given in Example B.10 can be described by

the equation

y ¼ 0:453xþ 0:0397

where x ¼ sodium salicylate concentration in M

y ¼ theophylline concentration in M
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Figure B.3. Plot of the data in Example B.10.
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and the equation is valid over the range x ¼ 0–0.20 M. The physical interpretation

is that the presence of sodium salicylate increases the theophylline solubility in a

linear manner. How this comes about chemically we will not pursue here (but see

Chapter 14 for an interpretation).

Linearization of Nonlinear Functions. The experimental data of Example

B.10 consisted of molar concentrations, and we found empirically that a plot of

theophylline solubility as a function of sodium salicylate concentration gave a

straight line. We could conclude that the concentrations were linearly related,

and we obtained the parameters of the straight-line relationship.

It is not always this simple. Often, perhaps usually, the data are smoothly but

nonlinearly related. In such circumstances we may be able to carry out a mathema-

tical transformation that converts a nonlinear function to a linear function. This is

often very desirable, because of the simplicity with which we can describe straight

lines. We may have theoretical reasons to expect certain transformations to work in

this way, or we may just try different plotting forms empirically, hoping that we will

generate a straight line. Here are some of the most common transformations.

1. Exponential Functions. These have the general form

y ¼ aebx ðB:42Þ

where, as before, x and y are variables, a and b are parameters, and e is the base of

natural logarithms. We take the natural logarithm of both sides:

ln y ¼ ln aþ bx ðB:43Þ

This operation has converted the nonlinear function Eq. (B.42) to the linear

function Eq. (B.43), which has the form of Eq. (B.39) for a straight line. In other

words, if Eq. (B.42) describes the data, a plot of ln y against x should be linear with

slope value b and intercept (on the vertical axis when x ¼ 0) equal to ln a. This is

often called a semilog plot. It is widely used in kinetic studies.

2. Power Functions.

y ¼ axb ðB:44Þ

Again we take the logarithm.

ln y ¼ ln aþ b ln x ðB:45Þ

A plot of ln y against ln x will be linear if Eq. (B.44) describes the data. This is

called a log–log plot.

3. Polynomial Functions

y ¼ aþ bxþ cx2 ðB:46Þ
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This equation is a quadratic function, which can be linearized as in

y
 a

x
¼ bþ cx ðB:47Þ

Evidently a plot of (y
 a)=x against x will give a straight line if Eq. (B.46)

describes the data. Of course, the parameter a must be known in order to construct

this plot.

4. Rectangular Hyperbola. Any equation having the following form is called a

rectangular hyperbola:

y ¼ ax

1þ bx
ðB:48Þ

This is nonlinear when plotted as y against x. We can linearize it in several ways.

Taking the reciprocals of both sides gives

1

y
¼ 1

ax
þ b

a
ðB:49Þ

so a plot of 1=y against 1=x (this is called a double-reciprocal plot) will be linear.

You may encounter this plot in your study of enzyme kinetics, where it is called the

Lineweaver–Burk plot. Algebraic manipulation also leads to the following

equation, another linear plotting form.

x

y
¼ b

a
xþ 1

a
ðB:50Þ

In this version, x=y is plotted against x. A third linear transformation can be

obtained; this is shown as

y

x
¼ a
 by ðB:51Þ

A plot of y=x against y is linear. Notice that the slope is negative. In protein binding

studies a plot according to Eq. (B.51) is called a Scatchard plot. The rectangular

hyperbola arises naturally in mathematical descriptions of chemical equilibria.

It will be evident that a facility for recognizing the standard linear form

y ¼ mxþ b (where the definitions of the variables and parameters depend on the

particular system) is invaluable in seeking linear forms from nonlinear functions.

Example B.11. Table B.3 gives kinetic data for the decomposition of nitrogen

pentoxide in carbon tetrachloride solution at 45�C.8 Analyze the data.

The experimental data consist of the concentration of N2O5 (c) as a function of

time (t). Figure B.4 is a direct plot of c (as the dependent variable) against t. The
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plot is obviously nonlinear. As it happens, we have some theoretical guidance for

this reaction (and for many other processes that follow the same functional depen-

dence on time). We anticipate that the progress of the reaction is described by

Eq. (B.52), where c0 is the reactant concentration when t ¼ 0 (the beginning of

the reaction) and c is the concentration at any time t:

c ¼ c0e
kt ðB:52Þ

The parameter k is called the rate constant.

We recognize Eq. (B.52) as an exponential function, which we can linearize by

taking the logarithm.

ln c ¼ ln c0 
 kt ðB:53Þ

Table B.3. Kinetics of N2O5 decomposition at 45�C
in CCl4

t ðsÞ c ðMÞ log [c ðMÞ]

0 2.33 0.367

184 2.08 0.318

319 1.91 0.281

526 1.67 0.223

867 1.36 0.134

1198 1.11 0.045

1877 0.72 
0.143

2315 0.55 
0.260

3144 0.34 
0.469

t/s

0 500 1000 1500 2000

c/
M

0

1

2

Figure B.4. Direct plot of data in Example B.11.
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or

Log c ¼ log c0 

kt

2:303
ðB:54Þ

We can use either Eq. (B.53) or eq. (B.54). The table of data shows values of log c,

and Fig. B.5 is the plot of log c against t as suggested by Eq. (B.54). Evidently we

have succeeded in linearizing the data, which we interpret to mean that Eq. (B.52)

describes the reaction.

From Fig. B.5 we calculate the slope as follows:

Slope ¼ 
0:167
 ðþ0:100Þ
2000
 1000

¼ 
2:67� 10
4s
1

Observe the sign and units of the slope. Now, from Eq. (B3.31) we can write

Slope ¼ 
 k

2:303

so

k ¼ 6:15� 10
4s
1

B.4. DEALING WITH CHANGE

Change in Physical and Chemical Processes. We are often interested in

some sort of process that has happened, is happening, or is expected to happen;

t/s

0 1000 2000 3000

-0.4

-0.2

0.0

0.2

0.4

lo
g 

c

Figure B.5. Semi-log plot of data in Example B.11.
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in other words, something changes. We need to be able to describe and analyze such

changes. Table B.4 shows the kinds of processes that may concern us.

Suppose that we want to specify quantitatively the value of some property P that

changes as the physical or chemical system passes from its initial state A to its final

state Z. The process itself is symbolized A! Z, and the change (or increment) in

P is defined as

Change in P ¼ ðvalue of P in final stateÞ 
 ðvalue of P in initial stateÞ

or

�P ¼ PZ 
 PA ðB:55Þ

If P increases during the process, then PZ > PA and �P is positive; if P decreases,

then �P is negative.

Incremental and Differential Change. We have defined an increment in a

quantity by Eq. (B.55). Let us now revert to our study of a straight-line function

y ¼ mxþ b ðB:56Þ

and recall how we calculated the value of the slope m. We chose two points on the

line (see Fig. B.2) and found that m is equal to the function in

m ¼ y2 
 y1

x2 
 x1
ðB:57Þ

Table B.4. Types of physicochemical processes

Solid
melting ðfusionÞ

crystallization
liquid

Liquid
vaporization

condensation
gas (vapor)

Solid
sublimation

gas

Solventþ solid
dissolution

precipitation
solution

Solute in solvent A
partitioning

solute in solvent B

Gas at volume 1
compression

expansion
gas at volume 2

System at temperature 1
heating

cooling
system at temperature 2

Reactants
chemical reaction

products
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If we think of larger positive values of x (values increasing toward the right on the

abscissa) as ‘‘later,’’ then we can identify the point (x1; y1) as an initial state and

point (x2; y2) as a final state. Then we see that m can be written in our delta

symbolism as

m ¼ �y

�x
ðB:58Þ

Carrying out the division on the right-hand side with numerical quantities yields a

number equal to m. Since this result can be viewed as the number divided by 1, we

interpret m ¼ �y=�x as the change in y per unit change in x. In Example B.10 we

found m ¼ 0:453, which we interpret to mean that as x increases by one unit, y

increases by 0.453 unit. Recall also that m can be negative; this would mean that

y decreases as x increases.

Now the essence of a straight line is that its slope m is a constant, so that we

would obtain the same value for m no matter which two points, wherever they

may be on the line, we choose for its calculation. But suppose the plot of y against

x yields a curved (nonlinear) line, as in Fig. B.6? Obviously if we calculate the

slope value using points (x1; y1) and (x2; y2), we will get a different value from

that using points (x2; y2) and (x3; y3). In fact, we have to ask if the concept of

‘‘slope’’ has meaning in this circumstance. The answer is that we can expand our

definition of the slope to include such circumstances. We will now define the slope

of any line at a point p as the value of the tangent to the line at p, as shown in

Fig. B.7.

x
1
,y

1

x
3
,y

3

x
2
,y

2

x

y

Figure B.6. A curvilinear function y ¼ f ðxÞ. The slope of the line depends on the value of x.
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How can we evaluate the numerical value of the slope at point p? We simply

return to our original definition

m ¼ �y

�x

and require that �x (in the immediate vicinity of point p) be made smaller and

smaller until it is so small that m approaches an essentially constant value; that is,

making �x still smaller doesn’t sensibly alter the value of m. Now the ratio �y=�x

gives the slope (tangent) of the line at point p. We write this

m ¼ lim
�x!0

�y

�x
ðB:59Þ

which is read ‘‘m is the limiting value of �y=�x as �x approaches zero.’’ Of

course, it would be cumbersome to write Eq. (B.59) repeatedly, so a new terminol-

ogy is introduced, namely

m ¼ lim
�x!0

�y

�x
¼ dy

dx
ðB:60Þ

where dy and dx are individually referred to as differentials and the ratio dy=dx is

called the derivative of y with respect to x.

We interpret the derivative dy=dx of any function y ¼ f ðxÞ as the slope of the

function (when plotted in the usual manner). If the function is a straight line,

dy=dx is a constant (its value does not depend on x), whereas for curved functions

the slope dy=dx depends on (varies with) x. Thus dy=dx, for both straight and curved

lines, is a measure of change.

P

x

y

Figure B.7. The slope at point p is the value of the tangent to the curve at p.
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Formulas for Derivatives. One of the interesting properties of derivatives is

that the individual differentials can be treated as algebraic quantities. Thus we

can write

dy

dx
� dx ¼ dy ðB:61Þ

and

dy

dx
¼ dy

du
� du

dx
ðB:62Þ

Equation (B.62) is known as the ‘‘chain rule.’’ Evidently we also have dx=dx ¼ 1.

Table B.5 collects some formulas [Eqs. (B.63)–(B.70)] for derivatives and

differentials that will be found useful in scientific settings. In these formulas u

and v are functions of x, c and n are constants, and e is the base of natural loga-

rithms. The differential form is obtained from the derivative through multiplication

by dx. Table B.5 is a compact way of summarizing these formulas, and a more

expanded form might express the results as follows, where we take Eq. (B.65) as

an example:

Function: y ¼ uþ v

Derivative:
dy

dx
¼ du

dx
þ dv

dx

Differential: dy ¼ duþ dv

Table B.5. Some derivatives and differentialsa

Derivative Differential Eq.

dc

dx
¼ 0 dc ¼ 0 (B.63)

dðcuÞ
dx
¼ c

du

dx
dðcuÞ ¼ c du (B.64)

dðuþ vÞ
dx

¼ du

dx
þ dv

dx
dðuþ vÞ ¼ duþ dv (B.65)

dðuvÞ
dx
¼ u

dv

dx
þ v

du

dx
dðuvÞ ¼ u dv þ v du (B.66)

dðu=vÞ
dx

¼ vðdu=dxÞ 
 uðdv=dxÞ
v2

d
u

v
¼ v du
 u dv

v2
(B.67)

dun

dx
¼ nun
1 du

dx
dðunÞ ¼ nun
1du (B.68)

d ln u

dx
¼ 1

u

du

dx
d ln u ¼ du

u
(B.69)

deu

dx
¼ eu du

dx
deu ¼ eudu (B.70)

au; v; x are variables; c; n are constants.
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Observe also that some entries can be derived from others; for example, Eq. (B.64)

is a special case of Eq. (B.66), and Eq. (B.67) can be obtained from Eq. (B.66) by

writing the quotient u/v as the product uv
1.

All the derivatives in Table B.5 are first derivatives. We can also define higher

derivatives. Suppose that we define u ¼ dy=dx; then

du

dx
¼ dðdy=dxÞ

dx
¼ d2y

dx2

is called a second derivative. A second derivative is a measure of change of the first

derivative.

Example B.12. Find the slope of the hyperbolic function

y ¼ ax

1þ bx
ðB:71Þ

We want the slope dy=dx. Equation (B.71) is a quotient, so we use Eq. (B.67)

combined with Eq. (B.64):

dy

dx
¼ ð1þ bxÞa
 ðaxÞb

ð1þ bxÞ2

¼ a

ð1þ bxÞ2
ðB:72Þ

Thus the slope depends on x, as can be seen graphically in Fig. B.8. As x! 0,

dy=dx! a, a constant; this is the ‘‘limiting slope’’ or ‘‘initial slope,’’ that is, the

0 2 4 6 8 10 12 14
0

2

4

6

8

10

x 

y

Figure B.8. The rectangular hyperbola, Eq. (B.71), for the case a ¼ 10, b ¼ 1.
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tangent to the curve at the point x ¼ 0. On the other hand, when x!1 ½x becomes

so large that the denominator of Eq. (B.71) becomes much greater than the numer-

ator�, dy=dx! 0; in this circumstance the value of y becomes essentially indepen-

dent of x.

Maxima, Minima, and Inflection Points. Figure B.9 shows a function y ¼ f ðxÞ
that passes through a maximum.

Picture how the slope dy=dx changes as x increases from left to right. This is

indicated by the tangent lines. In the vicinity of the maximum, whose location is

labeled xmax, the slope decreases as x approaches xmax from the left. At x ¼ xmax,

dy=dx ¼ 0; then as x leaves xmax, moving to the right, dy=dx becomes an increas-

ingly large negative number.

This behavior provides a criterion for the location of a maximum in a function.

At a maximum, dy=dx ¼ 0, dy=dx is positive at x < xmax, and dy=dx is negative at

x > xmax. (In addition, the second derivative d2y=dx2 is negative at a maximum.)

Analogous conditions locate a minimum: dy=dx ¼ 0, dy=dx is negative for

x < xmin, dy=dx is positive for x > xmin, and the second derivative is positive.

An inflection point in a plot of y against x is a point where the first derivative

passes through a maximum; hence it is also detectable as the point where the

second derivative is equal to zero. This idea is clarified with some experimental

data in Example B.13 (Connors 1967, Chapter 6).

Example B.13. Given: 0.3070 g of a weak base dissolved in glacial acetic acid was

titrated with 0.1138 M acetous perchloric acid; the data in Table B.6 are the titrant

volume V and the electrochemical cell potential E in the vicinity of the endpoint.

Estimate the endpoint volume by the second derivative method.

x
max

x

y

Figure B.9. The tangent lines show how dy=dx changes as y passes through a maximum.
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The third column in Table B.6 shows �E=�V (an approximation to the first

derivative) as calculated from the V ;E data; note how the values of �E=�V are

centered on the V;E intervals. In column 4 the ‘‘second derivative’’ �2E=�V2 is

similarly calculated from

�2E

�V2
¼ ð�E=�VÞ2 
 ð�E=�VÞ1

V2 
 V1

Figure B.10 shows plots of E against V , of �E=�V against V , and of �2E=�V2

against V .

The endpoint could be estimated directly from Fig. B.10a as the volume

corresponding to the steepest point of the curve, but Fig. B.10b shows how this

point can also be found through extrapolation from the �E=�V values on either

side of the maximum. Figure B.10c uses an interpolation from the �2E=�V2

calculation to find the endpoint; the calculation, from the table, is

Vendpoint ¼ 8:25þ 0:25
48

48þ 176

� �
¼ 8:30 mL

Thus, the point at which �2E=�V2 ¼ 0 is found by linear interpolation between

the two data points on either side of zero. (We now have enough data to calculate the

equivalent weight of the weak base.)

Integration. Integration is the opposite of differentiation; starting from the

derivative, we seek to recover the original function. An equation of the form

dy

dx
¼ f ðxÞ ðB:73Þ

Table B.6. Potentiometric titration data (Example B.13)

V E �E=�V �2E=�V2

(mL) (mV) (mV/mL) (mV/mL2)

7.50 490

44

7.75 501 112

72

8.00 519 192

120

8.25 549 48

132

8.50 582 
176

88

8.75 604 
112

60

9.00 619
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Figure B.10. Plots of the data in Example B.13. The dashed line shows the endpoint of the

titration. [Reproduced by permission from Connors (1967).]
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is called a differential equation; we have seen many examples. We wish to learn

how y is related to x; our only clue is Eq. (B.73). We rearrange to the form

dy ¼ f ðxÞ dx ðB:74Þ

and integrate both sides as directed by the integral signs:

ð
dy ¼

ð
f ðxÞ dx ðB:75Þ

(An integral sign must always be accompanied by a differential.) On the left-hand

side of Eq. (B.75) the integral sign reverses the action of the differential sign, since

y is the function whose differential is dy. Hence

y ¼
ð

f ðxÞ dx ðB:76Þ

To proceed, we will take some special cases.

Example B.14.

(a) Integrate dy=dx ¼ a, where a is a constant. In the form of Eq. (B.76) we

have

y ¼
ð

a dx ðB:77Þ

One rule of integration is that we can take constants outside the integral sign,

so

y ¼ a

ð
dx ðB:78Þ

This suggests that y ¼ ax. But consider the following. Suppose that the

original function was y ¼ axþ 2, or y ¼ axþ 106, or y ¼ ax
 15, or the

like. All of these functions (and there are an infinite number of them)

have the derivative dy=dx ¼ a, because the derivative of a constant is zero.

So when we integrate Eq. (B.78) we must restore the constant that might

have been there. Our final result is therefore

y ¼ axþ C ðB:79Þ

where C is called the constant of integration.

(b) Integrate dy=dx ¼ 24x2. Experience with derivatives leads us to expect [see

Eq. (B.68) in Table B.5] that if dy=dx ¼ 24x2, then y is some function of x3.

A bit of guessing shows us that if y ¼ 8x3, then dy=dx ¼ 24x2. We therefore

have

y ¼ 24

ð
x2 dx ¼ ð24Þ x3

3

� �
þ C ¼ 8x3 þ C
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Integrals of the type discussed above are called indefinite integrals, at least in part

because the value of the constant C is unspecified. A short tabulation of indefinite

integrals is given in Table B.7 [which contains Eqs. (B.80)–(B.88)]. The CRC

Handbook of Chemistry and Physics gives a table with hundreds of integrals.

A definite integral has specified initial and final points over which the integral is

to be evaluated. We will develop this concept with an example of great importance

in many types of scientific work.

Example B.15. Let us study a chemical reaction described by the scheme A! Z,

where A is the reactant and Z is the product. It is often observed experimentally, for

reactions fitting this scheme, that the rate of loss of reactant is directly proportional

to the concentration of A at that moment. Expressed mathematically, this observa-

tion becomes


 dcA

dt
¼ kcA ðB:89Þ

Here dcA=dt is the reaction rate; the negative sign arises because cA, the concen-

tration of A, is decreasing as time t increases. The quantity k is the rate constant.

Because cA appears on the right-hand side to the first power, Eq. (B.89) is called the

first-order differential rate equation, and k is a first-order rate constant. [In Problem

B.22, Eq. (B.89) is obtained from a set of experimental kinetic data.]

Equation (B.89) expresses a rate as a function of a concentration, but it is

more convenient experimentally to measure a concentration as a function of

Table B.7. Some indefinite integralsð
du ¼ uþ C ðB:80Þ

ð
a du ¼ a

ð
du ðB:81Þ

ð
ðduþ dvÞ ¼

ð
duþ

ð
dv ðB:82Þ

ð
un du ¼ unþ1

nþ 1
ðn 6¼ 
1Þ ðB:83Þ

ð
du

u
¼ ln uþ C ðB:84Þ

ð
eau du ¼ eau

a
þ C ðB:85Þ

ð
audu ¼ au

ln a
þ C ðB:86Þ

ð
ðaþ buÞndu ¼ ðaþ buÞnþ1

ðnþ 1Þb þ Cðn 6¼ 
1Þ ðB:87Þ
ð

du

aþ bu
¼ 1

b
lnðaþ buÞ ðB:88Þ
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time. Integration will convert Eq. (B.89) into such a form. Let us make these

definitions:

c0
A is the concentration of A when t ¼ 0, which means ‘‘at the beginning of the

reaction.’’

cA is the concentration of A at any time t.

Now, to place Eq. (B.89) into an integrable form, we collect like variables; in this

case we want cA and dcA on the same side of the equation. Algebraic rearrangement

gives

dcA

cA

¼ 
k dt ðB:90Þ

We are going to carry out a definite integration between the limits cA ¼ c0
A when

t ¼ 0 and cA ¼ cA when t ¼ t. This is indicated as in

ðCA

C0
A

dcA

cA

¼ 
k

ðt

0

dt ðB:91Þ

Note that the initial state is at the lower end of the integral sign and the final state at

the upper end. Next we integrate both sides, making use of Eqs. (B.80) and (B.84)

(from Table B.7):

ln cA�cA

c0
A

¼ 
kt �t0 ðB:92Þ

This symbolism shows that we have carried out the integration but have not yet

applied the integration limits, so next we do this, writing the final state first and

subtracting off the initial state, exactly as in our earlier definitions of changes:

ln cA 
 ln c0
A ¼ 
kðt 
 0Þ

This is obviously equivalent to

ln
cA

c0
A

¼ 
kt ðB:93Þ

or, in Briggsian logarithms

log
cA

c0
A

¼ 
kt

2:303
ðB:94Þ

Yet another rearranged form is shown as

cA ¼ c0
Ae
kt ðB:95Þ
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Equations (B.93)–(B.95) are equivalent forms of the integrated first-order rate

equation (this is sometimes called the first-order rate law, first-order decay, or

the exponential rate law). We have seen here that it appears naturally in the field

of chemical kinetics. It is also important for describing radioactive decay, pharma-

cokinetic processes, and other applications. Mastery of the material in Example

B.15 is essential. Note also how Example B.11 and Problem B.22 are related to

this treatment.

More complicated rate equations will sometimes be encountered, but a thorough

treatment is not appropriate here. Sometimes the kinetic scheme and the differential

rate equation can suggest the qualitative nature of the integrated equation. Consider

this scheme of two first-order reactions in series:

A!k1
B!k2

C

The differential rate equations are


 dcA

dt
¼ k1 cA

dcB

dt
¼ k1 cA 
 k2 cB

dcc

dt
¼ k2 cB

We can therefore anticipate that the dependence of cA on t will be given by

Eq. (B.95), since the rate of loss of A depends only on rate constant k1. Intermediate

B, however, involves both k1 and k2, so we expect that cB will be a biexponential

function. The integrated result for cB [which we will not derive here (Connors 1990,

Chapter 3)], is

cB ¼
c0

A k1

k2 
 k1

½e
k1t 
 e
k2t� ðB:96Þ

except for the special case k1 ¼ k2. The dependence of cC on time can be found

from the conservation equation c0
A ¼ cA þ cB þ cC combined with Eqs. (B.95)

and (B.96) for cA and cB.

Partial Differentiation and the Total Differential. Up to this point in our

treatment of change we have dealt with functions of a single variable. For example,

if y is a function of the variable x alone, we write y ¼ f ðxÞ, and we can evaluate the

derivative dy=dx. Very often, however, we encounter functions of two or more

variables, and here we consider how to describe changes in such quantities. This

material may not have been covered in an introductory calculus course.
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Suppose that we have a function z ¼ f ðx; yÞ, meaning that the value of z depends

on both of the variables x and y. We wish to describe how z changes when we alter x

or y, or both x and y. We do this as follows. First take the derivative of z with respect

to x while holding y constant. In order to make transparently clear what is going on

we use a slightly different symbolism for this derivative, writing

qz

qx

� �
y

Note the subscript y; this tells us that y is held constant while x is changing. In like

manner we can take the derivative of z with respect to y while x is held constant,

writing the result as

qz

qy

� �
x

Observe the use of the symbol in these expressions. The operation just described is

called partial differentiation and the quantities written above are partial derivatives.

Next we make use of a chain rule to define the total differential dz of the function

z ¼ f ðx; yÞ:

dz ¼ qz

qx

� �
y

dxþ qz

qy

� �
x

dy ðB:97Þ

These considerations may seem somewhat abstract, but it happens that many quan-

tities of scientific interest are functions of more than one variable. Incidentally,

Eq. (B.97) can be generalized to functions of more than two variables; the pattern

will be evident from Eq. (B.97) (see also Problem B.31).

Example B.16. The volume V of a fixed amount of a homogenous gas depends

only on its temperature T and its pressure P. Write the total differential dV .

By analogy with the foregoing we write

V ¼ f ðT ;PÞ

so

dV ¼ qV

qT

� �
P

dT þ qV

qP

� �
T

dP ðB:98Þ

Experimental measurements can provide numerical quantities for these partial

derivatives, so Eq. (B.98) has a definite physical meaning.

Recall from our earlier definition of change in a chemical process that we

defined an increment as the difference between values in final and initial states.
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Taking volume V as an example of a property undergoing change we have, using

the language of calculus

�V ¼
ðVfinal

Vinitial

dV ¼ Vfinal 
 Vinitial ðB:99Þ

Now suppose that we carry out the change in two steps, first A! B and then

B! C. What is the change �V for the overall process A! C? We apply

Eq. (B.99):

�V ¼
ðVB

VA

dV þ
ðVC

VB

dV ¼ ðVB 
 VAÞ þ ðVC 
 VBÞ

V ¼ VC 
 VA

We have found that state B plays no role in determining �V . State B is an inter-

mediate state on the path from A to C, and since B could have been any intermedi-

ate state, evidently the change �V is independent of the path or mechanism of the

process.

If the change in a property or function between two states of a system is inde-

pendent of the path taken between the states, the total differential is called an exact

differential and the property or function is called a state function. Whether or not a

function is a state function (path-independent) is ultimately based on experimental

observations, but extensive laboratory studies have clarified the situation. The

subject of thermodynamics (which describes systems at equilibrium) deals largely

with state functions, including the temperature, volume, pressure, and energy.9 On

the other hand, chemical kinetics, which describes systems changing in time,

largely treats path-dependent quantities; in this context, the path taken by a reaction

is the reaction mechanism, and a major role of chemical kinetics studies is to

investigate reaction mechanisms.

B.5. STATISTICAL TREATMENT OF DATA

The results of a quantitative experimental study often consist of a set of numbers

obtained from replicate determinations made under essentially identical conditions,

or a set of numbers corresponding to one quantity as a function of another quantity.

These numbers may represent concentrations, weights, equilibrium constants, rate

constants, pH values, and so on. The interpretation of these data by the experimen-

talist answers two general questions:

1. What is the best estimate of the quantity or function being investigated?

2. How reliable is this estimate as a measure of the true value?

The branch of mathematics called statistics deals with such issues. Our present

treatment will be very brief, intended to provide an immediately usable tool

for the interpretation of data obtained in laboratory coursework.
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Random Errors and the Normal Distribution. Every measurement has some

error associated with it. These errors may be of two types. Systematic errors are

errors introduced by some inadequacy in the experimental technique (such as an

improperly calibrated balance or an interference caused by impurities in reagents)

or poor judgment or unconscious bias on the part of the experimentalist (as may

happen through parallax error when reading the meniscus in a burette). Systematic

errors can be tracked down and substantially eliminated (or the method may have to

be abandoned); we will not consider them further.

Even after all systematic errors have been eliminated, it is a familiar observation

that repeated determinations of a quantity almost never result in the same number.

This variability in experimental data is a manifestation of random error. We usually

observe that replicate observations are grouped about a most frequently observed

value, and that large deviations from this value are rarer than small deviations.

Random errors are the consequence of limitations inherent in the observational

method. They can perhaps be reduced in magnitude by careful work, but they

cannot be eliminated. Statistics helps the experimentalist to interpret the data, given

this inevitable presence of random error.

The statistician adopts a point of view concerning experimental data that may

seem peculiar to the experimentalist. The statistician considers an experimental

observation to be a single member that has been randomly selected from an infinite

population of individual observations that are characteristic of the system being

investigated. Replicate observations will exhibit variation owing to the operation

of random errors. If we draw a graph of the value of each experimental observation

on the horizontal (x) axis against the number of times each value is observed (its

frequency) on the vertical ( y) axis, a symmetric figure usually is obtained, with a

maximum corresponding to the most frequently observed value. As the number of

observations increases toward the (unattainable) limit of infinity, the graph will

assume the form of a smooth curve. This curve is called a frequency distribution.

In scientific practice experimental frequency distributions can usually be closely

fitted to a theoretical frequency distribution that is called the normal distribution,

the Gaussian error curve, or the normal error curve. The equation of the normal

distribution is

f ðxÞ ¼ 1

s
ffiffiffiffiffiffi
2p
p e
ð1=2Þ½ x
mÞ=sð �2 ðB:100Þ

where f ðxÞ is the frequency of occurrence of the value x of the ‘‘random variable,’’

which is the experimental observable, and s and m are parameters of the population.

The symbol m signifies the population mean, which is the value of x corresponding

to the maximum in the distribution; and s, the population standard deviation,

determines the ‘‘spread’’ or width of the bell-shaped curve. Figure B.11 shows a

plot of the normal distribution. Graphically the quantity s is the horizontal distance

from the mean to either inflection point of the curve, as shown in Fig. B.11.

Approximately 68% of the area under the normal curve, and therefore 68% of

the members of the population, lie within one standard deviation of the mean,
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m� s. About 95% of the population are found in the range m� 2s, and over 99%

in the range m� 3s. Scientists usually assume that their data can be described by

the normal distribution, and we will adopt this assumption in the following

treatment.

Estimation of Statistical Parameters. The population parameters m and s are

not accessible to us because we would have to sample an infinity of random

variables in order to define the population frequency distribution. Nevertheless,

we desire estimates of m and s. Because of the symmetry of the normal distribution,

the best estimate of the population mean is the arithmetic average, or mean, �x,

defined by

�x ¼
P

xi

n
ðB:101Þ

where xi is the value of the ith observation (i ¼ 1; 2; 3; . . . ; n) and n is the total

number of observations.

The accuracy of an experimental result is the closeness with which the experi-

mental mean �x approaches the population mean m. Since we do not know m, we

cannot in general assess the accuracy. Sometimes, however, an experiment can

be designed so that the experimental �x can be compared with a known value that

has been set by the experimentalist with a standard sample. There also exist a few

quantities that have been measured by so many workers, using different methods in

different laboratories, that we have developed great confidence in their accuracy.

For example, the Ka value of benzoic acid at 25�C is 6:26� 10
5, an average of

many experimental results; and so much care and effort has gone into this number

that we may reasonably take it as very accurate.

µµ−σ µ+σ
x

f(
x)

Figure B.11. The normal error curve with mean m and standard deviation s.
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The median is sometimes used as an estimate of the population mean, especially

if the set of experimental results includes one or two widely divergent results. The

median is that value that exceeds as many values as it itself is exceeded by, for n

odd. If n is even, the median is the average of the two values satisfying the same

criterion. The median is easily picked out if the numbers are arranged in order of

increasing magnitude.

It is a valuable result of statistical theory that, even if the experimental variable

is not normally distributed, the means of small sets of the variable are normally

distributed. Since the mean �x is our best estimate of the true value, we are assured

that these �x estimates follow a normal distribution.

We have next to obtain an estimate of s, the population standard deviation,

which we see from Fig. B.11 to be a measure of the width of the normal distribu-

tion. This width reflects the reproducibility of the measurements; the more

reproducible, the narrower the curve, and the smaller the value of s. Precision is

the term usually used to describe reproducibility. Our estimate of s is labelled s and

is called the experimental standard deviation; s is our measure of the precision of �x,

and sometimes s is said to measure the ‘‘uncertainty’’ of �x. Its calculation begins

with the definition of the following equation, where s2 is called the variance:

s2 ¼
P
ðxi 
 �xÞ2

n
 1
ðB:102Þ

The standard deviation is then found as the square root of the variance. Note the

denominator in this equation; the quantity n
 1 is called the degrees of freedom,

for it specifies the number of independently assignable quantities needed to

completely determine the system. This is n
 1 because we already have calculated

one parameter, namely, �x. The units of s are the same as those of �x.

At one time (before electronic calculators and computers made statistical

calculations easy), the average deviation, expressed as follows, was often used as

a measure of precision:

Average deviation ¼
P
jxi 
 �xj

n
 1
ðB:103Þ

The range w is the difference between the largest and the smallest results in a set; w

can be a useful indicator of the spread of results when n is small.

The precision can be expressed in relative terms as the quotient s=�x, or more

frequently on a percent basis by 100s=�x, which is called the coefficient of variation

or the relative standard deviation (RSD). Similarly, we might report

Precision in parts per thousand ¼ 103s

�x

Precision in parts per million ¼ 106s

�x
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It is important to appreciate that the accuracy and precision of an experimental

result are very different concepts. In the best of circumstances we may have

good accuracy (�x closely approximates m) and high precision (s is small relative

to �x), but it is also possible to encounter poor accuracy with high precision.

A more complete description of s is that it is the standard deviation of a single

observation. However, it is the mean �x that we take as our best estimate, so we really

would like a measure of the precision of the mean. This is provided by the standard

deviation of the mean, sm:

sm ¼
sffiffiffi
n
p ðB:104Þ

Some authors call sm the standard error.

Example B.17. The following numbers are the percent recoveries in seven identi-

cal nonaqueous titrations of a urea sample: 98.4, 100.2, 99.3, 101.7, 97.4, 98.2, and

100.8. Calculate the mean, median, range, variance, standard deviation, relative

standard deviation, and standard deviation of the mean.

It is best to arrange the work in tabular form. Notice that the variance is

calculated according to Eq. (B.104) with the arithmetic operations carried out in

the following order: (1) differences are taken, (2) differences are squared, and (3)

squares are summed:

Percent

Recovery

Titration, i (xi) (xi 
 �x) (xi 
 �xÞ2

1 98.4 
1.0 1.00

2 100.2 0.8 0.64

3 99.3 
0.1 0.01

4 101.7 2.3 5.29

5 97.4 
2.0 4.00

6 98.2 1.2 1.44

7 100.8 1.4 1.96
———— ————

696.0 14.34

Mean: �x ¼ 696:0%=7 ¼ 99:4%

Median: 99.3%

Range: 101:7%
 97:4% ¼ 4:3%

Variance: s2 ¼ ½14:34ð%2Þ�=6 ¼ 2:39ð%2Þ
Standard deviation: s ¼

ffiffiffiffiffiffiffiffiffi
2:39
p

¼ 1:55%

RSD: 100ð1:55=99:4Þ ¼ 1:56%

Standard deviation of the mean: sm ¼ 1:55=2:65 ¼ 0:58%
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Equation (B.102) for the variance can be placed in other forms that are more

convenient for electronic calculation. You will undoubtedly use your electronic

calculator (which should be capable of the routine statistical calculations described

in this Section B.5), but make sure that the calculator uses n
 1 rather than n in the

denominator of Eq. (B.102). Of course, if n is very large (an unusual circumstance

in much experimental work), the difference between n and n
 1 becomes

negligible.

Confidence Limits of the Mean. We have seen that the mean �x can be treated

as a normally distributed random variable. �x is our best estimate of the quantity we

seek, and now we would like some measure of the reliability of �x. It might seem that

we could achieve this by taking note of the properties of the normal distribution.

For example, we saw that 95% of the members of a normally distributed population

fall within two standard deviations of the mean, so perhaps we could state that

the interval �x� 2s should include 95% of any future estimates of �x for the same

quantity.

This sounds plausible, but as it happens, if n is fairly small, the actual distribu-

tion of �x is somewhat wider than is specified by the normal distribution. The actual

distribution for small n is given by a different function called Student’s t

distribution,10 which approaches the normal distribution as n becomes large.

Table B.8 lists some values of Student’s t. In this table the column headed ‘‘Degrees

of Freedom’’ is to be interpreted as n
 1. The headings of the other columns give

the value of P, which is the probability that the limits to be calculated may be

exceeded by chance. The values in the table are the Student’s t. Observe how t

seems to be approaching 2 for the column P ¼ 0:05 and recall that for the normal

distribution 95% of the population lies in the interval �x� 2s; this comparison gives

some meaning to the t values.

We now wish to measure the reliability of our �x estimate. This measure of relia-

bility is called the confidence limits of the mean, and it is calculated with the aid of

Student’s t distribution. We suppose that n replicate observations have been made,

Table B.8. Some values of Student’s t distribution

Degrees of Freedom P ¼ 0:10 0.05 0.01

1 6.314 12.706 63.657

2 2.920 4.303 9.925

3 2.353 3.182 5.841

4 2.132 2.776 4.604

5 2.015 2.571 4.032

6 1.943 2.447 3.707

7 1.895 2.365 3.499

8 1.860 2.306 3.555

9 1.833 2.262 3.250

10 1.812 2.228 3.169
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and �x, s, and sm have been calculated. We then calculate the confidence limits of

�x by

�x� tsm

where t is read from the appropriate column in Table B.8. For example, if we wish

to know the limits within which 95% of further �x values would fall (if we undertook

to measure them), we would choose the column P ¼ 0:05, where the quantity P is

the fraction of results that are expected to fall outside the limits. Similarly the

P ¼ 0:01 column gives the 99% confidence limits.

Example B.18. Find 95% and 99% confidence limits of the mean calculated in

Example B.17.

95% Confidence Limits. For P ¼ 0:05 and 6 degrees of freedom, Table B.8 gives

t ¼ 2:447. The confidence limits (P ¼ 0:05) are therefore �x� tsm or

99:4� 2:447 ð0:58Þ% ¼ 99:4� 1:4%. The meaning of this result is that, if

many additional sets of seven observations were made, about 95% of the

means of these sets would be expected to fall within the range 98.0–100.8%

(the confidence interval).

99% Confidence Limits. For P ¼ 0:01, t ¼ 3:707. The limits (P ¼ 0:01) are

99:4� 2:2%. The limits are wider at P ¼ 0:01 than at P ¼ 0:05 because we

have used the same information but have required that a larger percentage of

additional results will fall within specified limits; that is, we have asked for a

greater level of confidence, so we must pay for this with a wider confidence

interval.

Comparison of Two Means. It is often required that two experimental results

are to be compared to determine whether they are different. For example, we might

wish to know if a newly developed chromatographic method yields the same

analytic result as a well-tested spectrophotometric method. Such problems are dealt

with by tests of significance, meaning that a decision is sought concerning whether

the difference between the two results is significant or negligible.

In statistical terms, one tentatively assumes that there is no difference between

the two results—this is called the null hypothesis—and then tests this assumption.

Usually two means are to be compared. Let us symbolize these means as �x and �y.

According to the null hypothesis, �x and �y describe the same population. To show the

basis of the significance test, suppose that �x and �y have the same value sm for the

standard deviation of the mean. As we have seen, confidence intervals can

be defined by

Confidence interval for �x ¼ �x� tsm

Confidence interval for �y ¼ �y� tsm
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We can therefore say that �x and �y are not significantly different (at the P level of

confidence expressed by t) if �x lies within the confidence interval of �y (and vice

versa), as indicated graphically in Fig. B.12.

Therefore �x ¼ �y� tsm expresses the null hypothesis, and rearranging, we obtain

t ¼ �x
 �y

sm

����
���� ðB:105Þ

The approach is to calculate t by eq. (B.105). If the calculated t exceeds the tabu-

lated t value at the chosen level of significance, the null hypothesis may be rejected;

that is, �x and �y are significantly different.

This demonstrates the principle. Some subtleties enter when, as may happen, the

numbers of observations contributing to �x and �y are different, and when sm for �x is

different from sm for �y. We will not pursue these matters here, except as seen in the

following example.

Example B.19. These are analytical results for the analysis of two lots of aspirin

tablets, given in milligrams of aspirin per tablet. Are the aspirin contents of the two

lots different at the 95% significance level?

xi yi

295.4 300.5

301.1 310.9

297.8 307.1

305.0 302.6

297.5 305.9

For lot x we find �x ¼ 299:4, s ¼ 3:755, sx
m ¼ 1:679.

For lot y we find �y ¼ 305:4, s ¼ 4:039, sy
m ¼ 1:806.

We now introduce this modification. Somewhat later in this section we will discover

that variances of both sums and differences are additive. Since the numerator of

Eq. (B.105) is a difference, we really want the standard deviation of the mean of

this difference in the denominator. We therefore take the square root (to get the

-tsm

-tsm +tsm

+tsmx

y

FigureB.12. The means �x and �y are not significantly different if their confidence intervals overlap.
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standard deviation) of the sum of the variances:

sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsx

mÞ
2 þ ðsy

mÞ2
q

¼ 2:466

Now we calculate t with Eq. (B.105):

t ¼ 305:4
 299:4

2:466
¼ 2:433

Consulting Table B.8, we find that the tabulated t½P ¼ 0:05; (nx 
 1Þþ ðny 
 1Þ ¼ 8

degrees of freedom] is 2.306. The calculated t exceeds the tabulated t, so the null

hypothesis may be rejected, and we conclude that the two batches are different at

the 95% significance level.

It is interesting that at the 99% significance level the tabulated t ¼ 3:555, so the

null hypothesis may not be rejected; the two batches are not different at this signif-

icance level. This result shows that statistics alone cannot make decisions; the

experimentalist must exercise judgment. When reporting statistical results of this

type it is essential to specify the chosen level of significance.

Linear Correlation. In Section B.3 we discussed linear relationships in detail.

Our general formula for a linear correlation is

y ¼ mxþ b ðB:106Þ

where m is the slope and b is the intercept on the y axis. When confronted with a set

of x; y data, we constructed a plot of y against x, determined by inspection whether

it was linear, and drew our best straight line using a straightedge (ruler) and our

intuition. We now wish to learn how statistics can assist us in such an analysis.

Our first task is to decide whether the correlation between x and y is linear.

Visual inspection is usually adequate, but many scientists like to calculate a

quantity r called the correlation coefficient:

r ¼ sxy

sxsy

ðB:107Þ

where sx is the standard deviation of all the x values, calculated in the usual way,

and similarly sy is the standard deviation of the y values. The quantity sxy is called

the covariance and is given by

sxy ¼
P
ðxi 
 �xÞðyi 
 �yÞ

n
 1
ðB:108Þ
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Electronic calculators yield r directly without requiring the user to proceed through

Eqs. (B.107) and (B.108).

The numerator of Eq. (B.107) is a measure of how strongly correlated the x and y

values are, and the denominator ‘‘normalizes’’ r so that it must lie in the interval 0

to 1 (for positive slope) or 0 to 
1 (for negative slope). The closer r is to 1 (or 
1),

the more linear the correlation. That, at least, is the conventional interpretation, but

it must be treated with caution. This is because r depends not only on the linearity

of the relationship but also on the slope of the line (a steeper slope giving a larger r

value) and on the scatter of the points (more scatter giving a smaller r value).

Figures B.13 and B.14 illustrate these points. These figures have been con-

structed so that the slopes of the lines are very similar. Figure B.13 has more scatter

than does Fig. B.14, and this is reflected in their r values: r ¼ 0:990 for Fig. B.13;

r ¼ 0:999 for Fig. B.14. But close observation will reveal that although the points

in Fig. B.13 show considerable scatter, they very reasonably follow a straight line.

The points in Fig. B.14, however, clearly describe a curve, although a straight line

has been drawn through them. The lesson is that one should not rely on the correla-

tion coefficient alone, but should also plot the data and examine the graph critically.

A good way to do this is by ‘‘sighting’’ along the data points as a carpenter sights

along the edge of a board to determine how straight it is.

If we conclude that the data are linearly correlated, the next step is to draw the

‘‘best’’ straight line. This is nearly universally done now by a statistical technique

0 2 4 6 8 10
0

2

4

6

8

10

12

x

y

Figure B.13. The points yield r ¼ 0:990; the straight line has the equation y ¼ 1:16x þ 1:15.
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called the method of least squares or linear regression analysis. The line is drawn

such that the sum of the squares of the vertical distances of the points from the line

is a minimum.11

Let the least-squares line be written

ŷi ¼ mxi þ b ðB:109Þ

where m and b are the slope and intercept of the line (not yet known) and ŷi is the

value of y on the least squares line corresponding to xi. Then we write

G ¼
X
ðyi 
 ŷiÞ2 ðB:110Þ

where yi is the experimental value of y for observation i and ŷi is the corresponding

value from the line. Thus the right-hand side expresses the sum of squares of

differences of the points from the line. To minimize this sum, we use the methods

of calculus, taking the partial derivatives qG=qm and qG=qb, setting these equal to

zero, and solving for the parameters. The results are

b ¼ �y
 m�x ðB:111Þ

m ¼
P

xy
 n�x�yP
x2 
 n�x2

ðB:112Þ
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Figure B.14. The points yield r ¼ 0:999; the straight line has the equation y ¼ 1:07x þ 2:49.
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In these equations �x and �y are the mean values of these variables, and n is the

number of data points. Inasmuch as scientific electronic calculators are capable

of generating the parameters m and b of the least-squares regression line, it is

unlikely that you will make direct use of Eqs. (B.111) and (B.112). This is how

the calculator does it, however.

Example B.20. In Example B.10, the data in Table B.2 were analyzed as a linear

correlation. Repeat the analysis using the method of least squares.

Using an electronic calculator, we obtain the following for the least-squares

regression line:

y ¼ 0:447xþ 0:0397

In Example B.10 the line was drawn ‘‘by eye,’’ and its equation turned out to be

y ¼ 0:453xþ 0:0397. These two results compare quite favorably. The reason for

the general preference for the least-squares treatment is that it is objective; any

number of scientists applying the least squares method to the same set of data

will obtain the same result.

Since the slope and intercept values of the least-squares regression line are them-

selves estimates of statistical parameters, they possess uncertainties that can be

expressed as their standard deviations. We will not go into the evaluation of the

standard deviations of the slope and intercept values.

Propagation of Errors. We nearly always subject our raw experimental data to

arithmetic operations in order to arrive at a number that is useful to us, as when we

convert a titrant volume to a concentration or a weight of sample, or when we oper-

ate on a parameter of an equation to give us a rate constant. When we make such

calculations we are ultimately interested in the uncertainty (expressed as a standard

deviation) of the final calculated result, whereas what we may know are the stan-

dard deviations of the quantities that are used in the calculation. We therefore wish

to learn how the errors (uncertainties) in the primary quantities are propagated

through the calculation into the final result.

Suppose that we let Q represent our final result, which is obtained by carrying

out calculations on the two primary quantities x and y; that is, we have

Q ¼ f ðx; yÞ

Then the equation for the propagation of the uncertainties in x and y into Q, which

we will not derive here, is

s2
Q ¼

qQ

qx

� �2

s2
x þ

qQ

qy

� �2

s2
y ðB:113Þ

where the quantities in parentheses are partial derivatives, and s2
Q; s2

x ; s2
y are the

variances of the subscripted quantities. We will apply Eq. (B.113) to the basic

arithmetic operations.
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Sum

Q ¼ xþ y

qQ

qx
¼ 1;

qQ

qy
¼ 1

so, from Eq. (B.113), we have

s2
Q ¼ s2

x þ s2
y ðB:114Þ

Difference

Q ¼ x
 y

qQ

qx
¼ 1;

qQ

qy

 1

s2
Q ¼ s2

x þ s2
y ðB:115Þ

Thus the errors (variances) add for both sums and differences. (We used this

result in Example B.19.) This is why the relative error of a difference of two

numbers similar in magnitude may be very large.

Product

Q ¼ xy

qQ

qx
¼ y;

qQ

qy
¼ x

s2
Q ¼ y2s2

x þ x2s2
y

which is equivalent to

s2
Q

Q2
¼ s2

x

x2
þ

s2
y

y2
ðB:116Þ

Quotient

Q ¼ y

x

Equation (B.116) is again obtained.

The essential result of these demonstrations is that variances are additive. For sums

and differences, the absolute variances add [Eqs. (B.114) and (B.115)]; for products

and quotients, relative variances add [Eq. B.116)]. To find the standard deviation of

Q, we first calculate s2
Q as in the examples above, and then take its square root.
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Example B.21. Suppose that we titrate a solution of acetic acid with 15.00 mL of

0.1000 N NaOH. What is the uncertainty in the weight of acetic acid found if

sN ¼ 0:0003 and sV ¼ 0:02 mL?

Since mmol of HOAc ¼ VN ¼ w=M, where V is volume of titrant, N is titrant

normality (molarity), w is weight of acetic acid in milligrams, and M is the

molecular weight of acetic acid, our function is w ¼ MVN. Thus

s2
w ¼

qw

qV

� �2

s2
v þ

qw

qN

� �2

s2
N

We have ðqw=qVÞ ¼ MN and ðqw=qNÞ ¼ MV , so

s2
w ¼ M2N2s2

V þM2V2s2
N

¼ ð60Þ2ð0:1Þ2ð4� 10
4Þ þ ð60Þ2ð15Þ2ð9� 10
8Þ
¼ 14:4� 10
3 þ 8:1� 10
3 ¼ 2:25� 10
2 mg2

sw ¼ 0:15 mg

Since w ¼ ð60Þð15Þð0:1Þ ¼ 90 mg, the relative standard deviation (RSD, or coeffi-

cient of variation) is ð100Þð0:15Þ=90 ¼ 0:17%.

A practical consequence of the propagation of error treatment is that if one of the

uncertainties (say, s2
x) is very much larger than the other, then the uncertainty s2

Q

will receive its largest contribution from s2
x . Any experimental attempts to reduce

the error in Q should obviously focus on reducing the error in x, because the error in

y makes a negligible contribution to the error in Q.

Significant Figures. In reporting a final numerical result it is necessary to

decide how many digits will be retained. This is especially pertinent in modern

science because electronic calculators and computers routinely generate numbers

having 10 or more digits. There is a temptation to record the entire display, but

this is seldom justified. Instead we should retain and report only those digits that

have physical significance.

Here is a simple criterion for deciding on how many digits to retain. The final

digit should possess some uncertainty, whereas the digit preceding this one should

be essentially certain. Some flexibility (within one digit) is acceptable. The number

of significant figures in a result is then the total number of digits (exclusive of zeros

that are needed solely to establish the position of the decimal point).

In order to use this criterion, we need a means for establishing whether a digit

is essentially certain or is uncertain. We have this means at hand in the standard

deviation s (or the standard deviation of the mean sm if it is a mean that we are

reporting). Consider, for example, the analytical results reported in Example

B.19. For the x series we calculated �x ¼ 299:4, sx
m ¼ 1:679 and for the y series,

�y ¼ 305:4, sy
m ¼ 1:806. For both series, therefore, the sm values indicate variability
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in the unit place, suggesting that the means are uncertain in the unit place. Accord-

ingly, we would report these results as �x ¼ 299, sx
m ¼ 1:7 and �y ¼ 305, sy

m ¼ 1:8.

Incidentally, it is good practice to retain more digits than otherwise may be justified

throughout the calculation in order that ‘‘rounding errors’’ not be inadvertently

introduced. Then the significant-figure criterion is applied to the final result.

Another guide may be available in experimental practice and experience. For

example, much laboratory experience has shown us that very precise titrimetric

analysis can routinely be accomplished with precision corresponding to standard

deviations in the fourth decimal place of molar concentrations; this is the justifica-

tion for expressing solution concentrations to the fourth place. Another example

occurs in pH measurements, where experience shows that, in careful but neverthe-

less routine work, the tenth unit is certain and the hundredth unit is uncertain, so we

usually write pH values with two decimal places. The experimental procedure itself

may determine the significance. For example, on a typical buret the finest gradua-

tions are in tenths of a milliliter, and we estimate to the hundredth place; thus we

write the volume to two decimal places.

B.6. DIMENSIONS AND UNITS

This subject is not part of pure mathematics, but it fits comfortably into this review,

and it makes a nice transition into the physicochemical and biological sciences

coursework of the curriculum. Much of this will be familiar material.

Base and Derived Units. The value of a physical quantity is expressed as the

product of a numerical value and a unit; thus

Physical quantity ¼ numerical value� unit

For example

Distance ¼ 125 km

Many systems of units have been used, and several systems are in use today, but in

scientific work the standard system of units is the Système International (SI),

occasionally varied with a few units from older systems (IUPAC 1993). There

are seven SI base units, each of these being independent of the others. Table B.9

lists the SI base units. No punctuation is used with symbols, nor are symbols

pluralized.

All other units are called derived units; these can be obtained by appropriate

algebraic combination of the base units. Table B.10 gives a few derived units to

illustrate the manner in which they are formed. Of course, in common practice

we make wide use of traditional alternatives. For example, we may express area

in square centimeters (cm2) if this is convenient to the problem. Density is usually

expressed in grams per milliliter (g mL
1), and concentration in moles per liter

(mol L
1), which is sometimes written mol dm
3.
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A few important physical quantities have special names and symbols for their

units; a selection of these is shown in Table B.11. The expression of a derived

unit in terms of base units, as illustrated in Table B.10, is obtained from the appro-

priate physical law or definition. For example, from Newton’s law of motion, we

have

Force ¼ mass� acceleration

and

Acceleration ¼ velocity

time
¼ distance

time2

Table B.9. SI base units

Symbol for Quantity Name of Symbol for

Physical Quantity (Dimension) SI Unit SI Unit

Length l meter m

Mass m kilogram kg

Time t second s

Electric current I ampere A

Temperature T kelvin K

Amount of substance n mole mol

Luminous intensity IV candela cd

Table B.10. Some SI derived units

Physical Quantity Defining Relationship Derived SI Unit

Area l� l m2

Volume l� l� l m3

Velocity Distance per second m s
1

Density Mass per volume kg m
3

Concentration Amount per volume mol m
3

Table B.11. Some named derived units

Physical Quantity SI Unit SI Symbol Base Unit Expression

Frequency hertz Hz s
1

Force newton N m kg s
2

Pressure pascal Pa N m
2 �m
1 kg s
2

Energy, heat, work joule J N m�m2 kg s
2

Electric charge coulomb C A s

Electric potential volt V J C
1 �m2 kg s
1 A
1

Electric resistance ohm � VA
1 �m2 kg
1 s3 A2
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so, in terms of SI units

N � m kg s
2

Similarly

Pressure ¼ force

area

so

Pascal � N m
2

Also

Work ¼ force� distance

so

Joule ¼ N m

Not all scientists restrict themselves to SI units, and a few quantities are occasion-

ally written in units from older systems. Moreover, the published scientific

literature obviously makes use of older units, and so it is essential to be able to

interconvert units of the several systems. Table B.12 gives the relationships between

the most important of the older units and SI units.

It is often convenient to represent quantities in terms of multiples or submulti-

ples of SI units. Table B.13 gives the prefixes and symbols for these multiplicative

operations.

Table B.12. Some older units

Older Unit SI Equivalent

1 g (gram) 10
3 kg

1 mL (milliliter) 10
3 L

1 L (liter) 10
3 m3

1 m (micron) 10
6 m

1 Å (angstrom) 10
10 m (10
8 cm)

1 atm (atmosphere) 101,325 Pa

1 dyn (dyne) 10
5 N

1 erg 10
7 J

1 cal (calorie) 4.184 J

1 D (debye) 3.336� 10
30 C m
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Quantity Algebra. We earlier wrote this equation:

Physical quantity ¼ numerical value� unit ðB:117Þ

We now assert that each of the three quantities in this equation can be treated as an

algebraic quantity and manipulated by the rules of algebra. Thus Eq. (B.117) could

be written as

Physical quantity

unit
¼ numerical value ðB:118Þ

This equation is particularly convenient because, since the right-hand side is a pure

number (it has no dimensions), so is the left-hand side. To illustrate this with an

example, let us write

T ¼ 273:15 K

in the form of Eq. (B.117). Transforming to the form of Eq. (B.118) gives

T=K ¼ 273:15

We will call this method of manipulating units quantity algebra.12 It is particularly

convenient for designing headings of table columns and for labeling the axes of

figures. We will make use of the quantity algebra when converting from one unit

to another.

Conversion of Units. We often find it convenient or necessary to convert from

one system of units to another. In our study of proportions (Section B.3) as a means

of setting up equations we encountered one method for converting units.

Example B.22. Convert an energy change of 125 kJ mol
1 to kcal mol
1.

Table B.13. Submultiple and multiple prefixes

Submultiple Prefix Symbol Multiple Prefix Symbol

10
1 deci d 10 deca da

10
2 centi c 102 hecto h

10
3 milli m 103 kilo k

10
6 micro m 106 mega M

10
9 nano n 109 giga G

10
12 pico p 1012 tera T

10
15 femto f 1015 peta P

10
18 atto a 1018 exa E

10
21 zepto z 1021 zetta Z

10
24 yocto y 1024 yotta Y
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From Table B.12 we have the essential relationship

1 cal ¼ 4:184 J

Multiplying each side by 103 gives

1 kcal ¼ 4:184 kJ

Now we form the proportion from statements:

Since 1 kcal ¼ 4:184 kJ

x kcal ¼ 125 kJ

or

1

x
¼ 4:184

125

x ¼ 29:9

Therefore 125 kJ mol
1 is equal to 29.9 kcal mol
1.

Quantity algebra offers a general procedure for the interconversion of units. This

is the method—multiply the quantity whose unit must be converted by one or more

quotients each being equal to the pure number one, but having the units needed to

get the job done.

Example B.23. Convert a wavelength of 560 nm to angstroms.

We know (Table B.13) that 1 nm ¼ 10
9 m, so it follows that 1 nm/10
9 m ¼ 1.

Similarly, from Table B.12, 1 Å¼ 10
10 m, so 1 Å/10
10 m¼ 1. Therefore we can

write

560 nm
10
9 m

1 nm

� �
1

10
10 m

� �
¼ 5600

The method works because each quantity in parentheses is equal to 1, and we know

that we can multiply fearlessly by 1. These quantities in parentheses are chosen

so that the units that we do not want will cancel, and the units that we want will

remain.

Example B.24. The surface tension of water at 25�C is 71.8 erg cm
2. Convert this

to SI units:

71:8
erg

cm2

1 J

107 erg

� �
1 N m

1 J

� �
102 cm

1 m

� �2

¼ 71:8� 10
3 N m
1

Å
Å
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This is usually written 71.8 mN m
1. Note in this multiplication how the unitary

multipliers are oriented so as to achieve the desired cancellations. Incidentally,

71.8 erg cm
2 also equals 71.8 dyn cm
1, because 1 erg ¼ 1 dyn cm.

Extensive and Intensive Properties. A physical property whose magnitude is

additive is called an extensive property; its magnitude depends on the extent (size)

of the system. Mass, volume, and energy are examples of extensive properties.

A property whose magnitude is independent of the size of the system is called

an intensive property. Temperature, pressure, and concentration are intensive

properties.

An extensive property can be converted to an intensive property by dividing it by

a mass or an amount of substance, thus placing it on a per unit basis. If an extensive

property is divided by mass, the adjective specific is often used to describe it. Usual-

ly the mass unit gram (g) is used, so the specific property refers to the quantity per

gram. For example, the volume V is an extensive property, but if V is divided by the

mass, we get the specific volume (the volume per gram), which is intensive.

If we divide V by the amount of substance in moles, we have V=n, which is

called the molar volume, and is interpreted as the volume per mole.

Example B.25. The density of acetone is 0.788 at 25�C. Calculate the specific

volume and the molar volume of acetone.

The units of density, which are g mL
1 (or g cm
3) are not always written out.

The specific volume is simply the reciprocal of the density, as we can deduce from

its units.

Specific volume ¼ 1 mL

0:788 g
¼ 1:269 mL g
1

Molar volume ¼ 1:269 mL

g

� �
58:08 g

1 mol

� �
¼ 73:7 mL mol
1

These two statements have the same meaning:

1. The heat of solution of succinyl sulfathiazole is 12.0 kcal mol
1.

2. The molar heat of solution of succinyl sulfathiazole is 12.0 kcal.

Dimensional Consistency. We have seen that units can be treated algebraically

in that they undergo division and multiplication just as do numerical values.

Units have two additional characteristics of great importance when carrying out

calculations:

1. In what may appear to be a disagreement with the assertion that units can be

treated algebraically, we note that when we add or subtract physical

quantities, they must possess the same units, but the units themselves do

not add or subtract.
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2. When using or deriving physicochemical equations, the left-hand and right-

hand sides of the equation must have the same units.

Example B.26. We will use the content of Example B.7 to demonstrate dimen-

sional consistency. Equation (B.32) defined the Ka value:

Ka ¼
½Hþ�½A
�
½HA�

In this equation the square brackets represent concentration in mol L
1, or M for

convenience. Thus the units of the right-hand side are M2 M
1 or M. It follows that

the Ka value has the unit M.

We then wrote the following for the total solute concentration:

ct ¼ ½HA� þ ½A
�

Each concentration on the right has the unit M, so they can properly be added, and

ct also has the unit M. We then derived the following:

Ka ¼
½Hþ�2

ct 
 ½Hþ�

Clearly this equation is dimensionally consistent, as it has the unit M on each side.

Suppose that the superscript 2 had inadvertently been omitted in the numerator of

the right-hand side; a quick dimensional check would have detected the error.

Rearrangement to the standard quadratic form gives

½Hþ�2 þ Ka½Hþ� 
 KaCt ¼ 0

in which each term has the same units (M2), so it is dimensionally correct. It may

seem that dimensional consistency has been lost because the left side has the units

M2 whereas the right side appears to be dimensionless. Actually, we have no way to

assess the dimensionality of the right-hand side because of its numerical value of

zero. If this makes us uneasy, we can simply divide both sides of the equation by

M2. Alternatively, we can rearrange to the dimensionally obvious form

½Hþ�2 þ Ka½Hþ� ¼ KaCt

The quadratic solution is readily seen to be dimensionally consistent:

½Hþ� ¼ 
Ka �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

a þ 4 KaCt

p
2

Dimensional consistency in equations describing physical systems is a necessary

condition for their validity, but it is not a sufficient condition. Incidentally, if
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approximations are introduced into equations, the approximations must not alter the

dimensional consistency.

PROBLEMS

Problems B.1–B.6 pertain to Section B.2; Problems B.7–B.21, to Section B.3;

Problems B.22–B.31, to Section B.4; Problems B.32–B.35, to Section B.5;

and problems B.36–B.43, to Section B.6.

B.1. Convert these pH values to hydrogen ion concentrations:

(a) pH¼ 4.75

(b) pH¼ 11.13

(c) pH¼ 7.19

(d) pH¼ 2.00

B.2. Convert these hydrogen ion concentrations to pH values:

(a) [Hþ]¼ 3.85� 10
3 M

(b) [Hþ]¼ 1.15� 10
9 M

(c) [Hþ]¼ 6.46� 10
8 M

(d) [Hþ]¼ 1.15 M

B.3. Convert ln x to the corresponding Briggsian logarithm.

B.4. How much more acidic is a solution of pH 3.00 compared with a solution of

pH 9.00?

B.5. Solve for q in the equation

13:52q ¼ 5:62� 104

B.6. Calculate the product 6; 942; 821� 0:0057384 by using logarithms. Check

the result by direct multiplication on an electronic calculator.

B.7. How many grams of benzoic acid are required to prepare 500 mL of an

0.0025 M solution?

B.8. Ethyl acetate hydrolyzes according to the reaction

CH3COOC2H5 þ H2O! C2H5OH þ CH3COOH

How much acetic acid is produced by the hydrolysis of 10.00 g of ethyl

acetate?

B.9. Let RA
 ¼ ½A
�=½HA� and FA
 ¼ ½A
�=ð½HA� þ ½A
�Þ. Then derive an

equation giving RA
 as a function of FA
 (or the reverse).

B.10. Given [HA]¼ [A
], calculate the ratios RHA, RA
 and the fractions FHA,

FA
 .

316 REVIEW OF MATHEMATICS



B.11. A solution of weak acid is prepared to have a total concentration of

7.50� 10
4 M, and analysis shows that the ratio [A
]=[HA] is 0.15.

Calculate the individual concentrations [HA] and [A
].

B.12. Vinegar contains �5% acetic acid (i.e., 5 g of acetic acid per 100 ml). The Ka

of acetic acid is 1:78� 10
5. Calculate the pH of vinegar.

B.13. Repeat Problem B.12 using the approximate solution [Eq. (B.38)].

B.14. Find the value of the intercept on the x axis for the straight line of Eq. (B.39).

B.15. Carry out the algebraic manipulations that give Eqs. (B.49)–(B.51) from

Eq. (B.48).

B.16. In this set of data, c is the molar concentration of trans-cinnamic acid

(C6H5CH



CHCOOH) in acidic solution, and A is a dimensionless measure

of light-absorbing ability of the solution called the absorbance. It is anticipa-

ted that the data are described by the equation A¼ Ebc, which is called Beer’s

law, where b is the ‘‘pathlength’’ of light through the solution (b¼ 1 cm in

this experiment) and E is called the molar absorptivity. Analyze the data:

105 c (M) A

0 0

1.083 0.224

2.165 0.450

3.248 0.679

4.330 0.901

B.17. The noncovalent interaction of cinnamic acid anion with theophylline was

studied optically with a pathlength b of 1 cm. These are the data, where we

let c be the theophylline concentration.

c (M) A

0 0.978 (A0)

0.0111 1.375

0.0125 1.418

0.0143 1.472

0.0167 1.544

0.0200 1.638

0.0250 1.767

We expect the system to be described by

�A

b
¼ BKc

1þ Kc

where �A ¼ A
 A0. Find the equilibrium constant K.
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B.18. The equilibrium solubility of a solute usually varies with temperature

according to

ln s ¼ 
�H

RT
þ C

where s is the solubility corresponding to absolute temperature T , R is the

gas constant, C is a constant, and �H is the molar heat of solution. These are

solubility data for g-cyclodextrin in water, where s is the mole fraction

solubility:

t (�C) s

25 0.003539

30 0.004456

35 0.005476

40 0.006239

42 0.007583

Find the heat of solution.

B.19. The total solubility St of 4,40-dihydroxybiphenyl varies with the concentra-

tion [L] of a-cyclodextrin according to

St ¼ s0 þ K11s0½L� þ K11K12s0½L�2

where s0 is the solubility when ½L� ¼ 0, and K11 and K12 are equilibrium

constants for the formation of 1 : 1 (SL) (substrate : ligand) and 1 : 2 (SL2)

complexes. Here are data for 25�C:

102[L] (M) 104St (M)

0 1.98

0.311 2.53

0.412 2.74

0.512 3.13

0.611 3.51

0.709 4.02

0.806 4.39

0.810 4.62

0.902 4.94

0.998 5.74

1.19 6.86

Find K11 and K12.
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B.20. The rate of hydrolysis of 4-nitrophenyl glutarate at 25� and pH 7 follows a

rate law like Eq. (B.52). When the absorbance A is measured as a function of

time, the equation is written

A1 
 At ¼ ðA1 
 A0Þe
kt

where At is the absorbance at time t, A0 at t ¼ 0, and A1 at t ¼ 1
(‘‘infinity’’ time, when the reaction is essentially complete). Here are the

data; find the rate constant k:

t (s) At t (s) At

——————— ————————

10 0.129 120 0.453

20 0.168 140 0.492

30 0.200 160 0.531

40 0.237 180 0.565

50 0.270 200 0.598

60 0.300 240 0.650

70 0.330 280 0.692

80 0.357 320 0.729

90 0.381 360 0.758

100 0.407 400 0.783

1 0.900

B.21. Rearrange this equation to give a linear plotting form

y ¼ 1þ ax

1þ bx

B.22. Consult the set of data in Example B.11. For each pair of adjacent time

points, calculate the increment in time (�t) and the increment in concentra-

tion (�c). Take their quotient �c=�t as a crude estimate of dc=dt. Now plot

each �c=�t value against the mean value of c (i.e., �c ¼ ðc1 þ c2Þ=2]

corresponding to the time interval. Interpret the result.

B.23. If y ¼ au, find dy=dx, where a is a constant and u is a function of x. (Hint:

Start by taking the logarithm of y.)

B.24. Equation (B.44), a power function, has the form y ¼ axb.

(a) Find dy=dx.

(b) For the special case b ¼ 2, evaluate both y and dy=dx when x ¼ 0:5, 1,

and 2. Compare the x dependencies of y and dy=dx.

B.25. Equation (B.46) is a polynomial, y ¼ aþ bxþ cx2. Find the first derivative

dy=dx and the second derivative d2y=dx2.

B.26. Assuming that 48.2 mg of an acid of unknown structure was titrated with

0.0988 M NaOH, the following data (pH as a function of titrant volume V)
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were recorded. Find the endpoint volume by the second-derivative technique

and calculate the equivalent weight of the acid (for a monoprotic acid, the

equivalent weight equals the molecular weight):

V (mL) pH

1.40 2.74

1.50 2.86

1.60 3.12

1.70 3.60

1.80 6.15

1.90 9.74

2.00 10.40

2.10 10.62

2.20 10.75

B.27. This equation arises in the study of the effect of pH on the rate of hydrolysis

of many drugs, where k is an observed rate constant and k1; k2; k3 are

constants of the system:

k ¼ k1½Hþ� þ k2 þ k3½OH
�

Find the value of pH at which the rate of hydrolysis is a minimum.

B.28. Evaluate this definite integral.

y ¼ 24

ð4

1

x2 dx

B.29. Derive an expression giving the time elapsed for the concentration in a first-

order reaction to decrease to one-half its initial value. (This time is called the

half-life of the reaction; it is symbolized t1=2.)

B.30. Why is the constant of integration omitted when evaluating a definite

integral?

B.31. Write the total differential dw for the function w ¼ f ðx; y; zÞ.

B.32. The equilibrium constant K11 for the complexation of 4-nitrophenol anion

with a-cyclodextrin (in water at 25�C) has been measured by many

laboratories; these are the reported values (units are M
1): 2290, 2200,

2500, 2700, 1590, 2439, 1890, 2720, 2143, 2408, 2270, 3550. Calculate the

mean, standard deviation, standard deviation of the mean, and the relative

standard deviation.

B.33. The acetylation of isopropyl alcohol by acetic anhydride is a second-order

reaction:

Ac2Oþ ðCH3Þ2CHOH! HOAcþ CH3COOCHðCH3Þ2

320 REVIEW OF MATHEMATICS



It is described by this integrated rate equation

log
cB

cA

¼ ðc
0
B 
 c0

AÞkt

2:303
þ log

c0
B

c0
A

where A is isopropyl alcohol and B is acetic anhydride. These are experi-

mental kinetic data for this reaction:

t (min) cA (M) cB (M)

0 0.456 0.876

1.50 0.248 0.668

3.13 0.138 0.558

4.50 0.088 0.508

6.10 0.062 0.482

8.00 0.040 0.460

12.10 0.012 0.432

Analyze the data by the method of least squares, and report the value of the

second-order rate constant k.

B.34. These values have been reported in the literature for the dipole moment of

phenol at 25�C: 1.45, 1.53, 1.54, 1.65, 1.72, 1.86, 1.53, 1.43, 1.64. Calculate

the usual statistical parameters, and give 95% confidence limits for the mean.

B.35. Return to Problem B.32 and express the mean with an appropriate number of

significant figures.

B.36. The activation energy for the hydrolysis of aspirin in acid solution is 16.7

kcal mol
1. Convert this to kJ mol
1.

B.37. A rate constant for the uncatalyzed hydrolysis of succinylcholine chloride

has been reported to be 5:0� 10
6 h
1. Convert this to s
1 (reciprocal

seconds).

B.38. Convert a density of 1.86 g mL
1 to SI units.

B.39. The tetrahedral covalent radius of carbon is 0.77 Å. Convert this to

nanometers.

B.40. R (the gas constant) is equal to 8.314 J K
1 mol
1. Convert this to

cal K
1 mol
1.

B.41. Physicochemical equations often call for taking the logarithm of a quantity

having units. It is difficult to conceive of the logarithm of a unit. Describe a

way out of this quandary.

B.42. Beer’s law for the absorption of light is written A ¼ Ebc, where b is

pathlength in centimeters, c is molar concentration, and A is absorbance,
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defined by A ¼ logðI0=IÞ, where the I quantities are light intensities. Deduce

the units of E, which is called the molar absorptivity.

B.43. Both of these equations have been published in the scientific literature. One

of them is incorrect. The quantities ks, kL, and k11 all have the same units. k11

is defined k11 ¼ ½SL�=½S� ½L�. The F quantities are fluorescent intensities. Use

dimensional analysis to detect the incorrect equation.

ðaÞ F

F0

¼ 1þ ðk11=ksÞK11½L�
1þ K11½L�

þ kL

ks

½L�

ðbÞ F

F0

¼ 1þ ðk11=ksÞK11½L�
1þ K11½L�

þ ðkL=ksÞ½L�
½S�ð1þ K11½L�Þ

NOTES

1. Equation (B.2) is not the standard definition, which requires calculus; rather, it is a

consequence of the standard definition.

2. From Eq. (B.1), if b ¼ bx, x ¼ 1, so logb b ¼ 1.

3. From Eq. (B.1), if a ¼ 1 and b ¼ 10, then x ¼ 0, so log 1 ¼ 0.

4. It sometimes happens that b2 is relatively very large and 4ac is relatively very small; but 4ac

cannot be neglected because then the numerator of Eq. (B.31) would go to zero. In this case

an alternative calculational procedure is available; see Connors’ A Textbook of Pharma-

ceutical Analysis (1967) (this is the first edition).

5. The equation probably never was truly exact in a physicochemical sense anyway because of

the complexity of chemical systems.

6. Computers offer an alternative to manual graphing, but the manual method is better for

developing a sense of the physical nature of the data set. This is probably because it requires

active participation by the interpreter.

7. Here is the attitude we have adopted. The experimental points have led us to the line as the

best interpretation of the dependence of the y values on the x values, so henceforth we base

our interpretation on the line and not on the data points.

8. See Daniels and Alberty (1955, p. 323). The reaction yields oxygen and N2O4, which exists

in equilibrium with NO2.

N2O5 ! N2O4 þ 1
2

O2

N2O4 Ð 2NO2

9. Heat and work, however, which are important thermodynamic quantities, are not, in

general, state functions.

10. ‘‘Student’’ was the pen name of W. S. Gosset, a British statistician and chemist who worked

at Guiness Breweries.
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11. It might seem simpler to minimize the sum of the vertical distances themselves, but this sum

is zero, because some points are above the line and some are below the line. By squaring the

distances, all quantities are converted to positive numbers. It will be seen that this procedure

has much in common with the calculation of the variance, Eq. (B.102).

12. The technique is also called ‘‘quantity calculus,’’ which seems a bit pompous for such a

simple procedure.
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ANSWERS TO PROBLEMS

Chapter 1

1.1. �V ¼ 35:343 in3 ¼ 0:579 L

w ¼ P�V ¼ 0:579 L atm ¼ 58:7 J

1.2. w ¼ �1718 J

1.3. �U ¼ 0 and w ¼ P�V , so q ¼ w ¼ P�V , leading to Eq. (1.15) for q

1.4. Cp ¼ 18:02 cal mol�1 K�1

1.5. Specific heat¼ 1:74 J g�1 K�1

1.6. T (final)¼ 25�Cþ�T ¼ 105�C

1.7. Write Eq. (1.26) as �H ¼ CpðT2 � T1Þ, applying it both to water and to iron.

Since �H ðwaterÞ ¼ ��H ðironÞ, and T2 is the same for both, we find

T2 ¼ 343:36 K or 70.2�C.

1.8. �Hf þ�Hv ��Hs ¼ 0

Chapter 2

2.1. (a) (�) System becomes more ordered as it crystallizes.

(b) (þ) System becomes more random as it vaporizes.

(c) (�) Two particles combine to yield one particle, with decrease in number

of microstates.

2.2. Using Trouton’s rule, �Hv ¼ ð21Þð353:25Þ ¼ 7:42 kcal mol�1. (The experi-

mental value is 7.35 kcal mol�1.)

2.3. �Sf ¼ 5040=419:15 ¼ 12:02 cal K�1 mol�1

2.4. �Ss ¼ 17; 600=298:15 ¼ 59:0 cal K�1 mol�1

2.5. �S ¼ 9:57 J K�1 (i.e., 19:14 J K�1 mol�1)

2.6. �S ¼ 2:61 cal K�1 mol�1

2.7. �S ¼ R lnðP1=P2Þ
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Chapter 3

3.1. a ¼ 0:0175 m (from data in Table 3.1)

3.2. �m ¼ mð0:05 mÞ � mð0:005 mÞ ¼ 5:41 kJ mol�1

3.3. �m ¼ �3:44 kJ mol�1

3.4. Making a solution more concentrated yields a positive free-energy change; the

process is nonspontaneous. (See Problem 3.2.) In Problem 3.3 the process

takes the solution from 1 M (the standard state) to 0.25 M, and this is

spontaneous. It is possible for nonideal behavior (activity coefficient effects)

to reverse this conclusion, however.

Chapter 4

4.1. From the integrated Clausius–Clapeyron equation, �Hvap ¼ 9:45 kcal

mol�1 ¼ 39:5 kJ mol�1.

4.2. �G� ¼ �1:82 kcal mol�1 ¼ �7:61 kJ mol�1

4.3. �Hvap ¼ þ8:79 kcal mol�1

4.4. �G� ¼ 2:303 RT pKa

4.5. C6H5OHÐ Hþ þ C6H5O�

Ka ¼ aHþaPhO�=aPhOH ðPh � C6H5Þ
�G� ¼ þ1:36 kcal mol�1

4.6. �S� ¼ �16:9 cal mol�1 K�1

4.7. We might expect �S� to be positive, because one particle is being transformed

into two particles, with (presumably) an increase in number of accessible

microstates. Since �S� is negative, however, we may infer that something

else, something not apparent in the reaction as written, must be occurring. The

most likely possibility is that the ions on the right-hand side of the equation

are limiting the motions of solvent (water) molecules via strong ion–dipole

interactions. The implication is that, taking into account the solvent, there are

more particles, and therefore more accessible microstates, on the left-hand

side of the equation.

4.8. �G� ¼ �5:25 kcal mol�1

Chapter 5

5.1. x2 ¼ 0:0000270, so x1 ¼ 1� x2 ¼ 0:999973

5.2. About 12.4 M

5.3. 55.5 M
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5.4. m�c � m�x ¼ �RT ln 55:5

¼ �2:38 kcal mol�1

¼ �9:96 kJ mol�1

5.5. ci ¼ Mir1

5.6. x2 ¼
c2ðn1M1 þ n2M2Þ
1000rðn1 þ n2Þ

where M1 and M2 are molecular weights. [Suggestion: Start by writing the mass

of solution as n1M1 þ n2M2; then use r to write the volume of solution as

ðn1M1 þ n2M2Þ=1000r in liters.]

Chapter 6

6.1. 45�C

6.2. C ¼ 2 and P ¼ 3, so F ¼ 1; however, the pressure is fixed by experimental

design, so there remain no degrees of freedom.

Chapter 7

7.1. �Sideal
mix ¼ þ1:36 cal mol�1 K�1 ¼ þ5:70 J mol�1 K�1

�Gideal
mix ¼ �0:41 kcal mol�1 ¼ �1:72 kJ mol�1

7.2. Alanine: �m� ¼ þ4:01 kcal mol�1 ¼ 16:8 kJ mol�1

Phenothiazine: �m� ¼ �5:66 kcal mol�1 ¼ �23:7 kJ mol�1

7.3. xB ¼ 0:23; total pressure¼ 34 mm

7.4. kx ðCHCl3Þ 	 157 mm

7.5. Six extractions

7.7. (a) PAB ¼ cA=cB;PBC ¼ cB=cC;PAC ¼ cA=cC

(b) PAB ¼ PAC=PBC

(c) pA ¼ PABVA=ðPABVA þ VB þ VC=PBCÞ

7.8. P ¼ 0:25; 1:00; 4:00

Chapter 8

8.1. Bþ HOAcÐ BHþOAc
� Ð BHþ þ OAc

�

8.2. NaCl; I ¼ 3:0 m; CaCl2; I ¼ 9:0 m; ZnSO4; I ¼ 12:0 m

8.3. g
 ¼ 0:807

8.4. g
 ¼ 0:850; a
 ¼ 0:0085 M
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8.5. I ¼ 0:65 M

8.6. C ¼ 0:21 jzþz�j

Chapter 9

9.1. From p1 ¼ x1P�1, derive P�1 � p1 ¼ x2P�1

9.2. Kb ¼ 1:23� C

9.3. Kf ¼ 3:58� C

9.4. Take 0.6 g pilocarpine nitrate, 0.3 g boric acid, and dilute to 30 mL (‘‘q.s. ad’’

is a prescription abbreviation meaning ‘‘a quantity sufficient to make;’’ sterile

water is intended in this case).

9.5. �Tf ¼ 0:469� C (the experimental value is 0.470�); 5.54% dextrose will be

isotonic.

Chapter 10

10.1. x2 ¼ 0:158

10.2. At 24�C (e.g.), c2 ¼ 3:34
 10�4 M. The heat of solution is identical with that

obtained in Example 10.2. (Enthalpy changes do not change value when the

concentration scale is altered, unlike free-energy and entropy changes.)

10.3. Ksp ¼ 108s5; s ¼ 7:14
 10�7 M

10.4. AgI, then AgBr, then AgCl

10.5. x2 ¼ 0:0117 (calculated taking f1 ¼ 1) (the experimental value is

x2 ¼ 0:0142)

10.6. Log c2 ¼ �4:50 [Eq. (10.29)] or log c2 ¼ �4:87 [Eq. (10.30a)] (the experi-

mental value is log c2 ¼ �4:42)

10.7. j2 ¼ 0:55

Chapter 11

11.1. 67.6 dyn cm�1

11.2. Water on ether: S ¼ �66

Ether on water: S ¼ þ44:6

Ether will spread on water readily; water will not spread on ether.

11.3. �G ¼ g�A ¼ 4pgðr2
final � r2

initialÞ
�G ¼ 2:23
 10�4 mJ
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11.4. (a) 1=nb ¼ 1=Knmaxc2 þ 1=nmax

(b) nb=c2 ¼ �Knb þ Knmax

11.5. K¼386 M�1; ymax¼146 mg g�1 (we also calculate s¼ 105 Å2 molecule�1)

Chapter 12

12.1. (a) pH ¼ 3:60

(b) pH ¼ 3:30

(c) pH ¼ 10:93

(d) pH ¼ 5:32

(e) pH ¼ 11:48

12.2. pH ¼ 4:67

12.3. Dissolve 6.055 g tris in 325.3 mL 0.10 M HCl and dilute to 500 mL.

12.4. (a) Both are 1
15

M ¼ 0:0667 M

(b) pH ¼ 6:98

12.5. At 0 mL, pH ¼ 11:95; 2 mL, pH ¼ 11:45; 5 mL, pH ¼ 10:94; 8 mL,

pH ¼ 10:60; 12 mL, pH ¼ 10:12; 16 mL, 5.76; 18 mL, pH ¼ 1:84; methyl

red or bromcresol purple

12.7. (a) Keq ¼ Ka (benzoic acid)/Ka (methylamine)¼ 2:76
 106

(b) Keq ¼ Ka (phenol)/Kw ¼ 1:00
 104

12.8. (a) pK1 (COOH); pK2 (OH)

(b) pK1 (COOH); pK2 (NH2); pK3 (guanidine)

(c) pK1 (aromatic amine); pK2 (aliphatic amine)

(d) This is an acidic group, the 7-NH structurally similar to an imide.

12.9. ½Hþ�3 þ ðKa þ bÞ½Hþ�2 � ðKac� Kabþ KwÞ½Hþ� � KaKw ¼ 0

12.10. (a) ½NHþ4 � þ ½Hþ� ¼ ½OH�� þ ½Cl��
(b) ½Hþ� ¼ ½OH�� þ ½H2A�� þ 2½HA2�� þ 3½A3��
(c) ½Naþ� þ ½Hþ� ¼ ½OH�� þ ½H2PO�4 � þ 2½HPO2�

4 �

12.11. pH ¼ 5:31

12.12. pH ¼ 7:69

12.13. (a) pH ¼ pKa ¼ 9:25

(b) pH ¼ 5:52

12.14. �G� ¼ þ13:64 kcal mol�1

12.15. 0.1689 g of sodium acetate
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12.16. F ¼ R=ðRþ 1Þ

12.17. 3:91
 10�4 M

12.18. (a) Decrease

(b) Decrease

12.19. pH ¼ 1:70

12.20. 8.528 g of NaH2PO4 �H2O and 5.424 g of Na2HPO4

12.21. �G� ¼ �19:1 kcal mol�1 ¼ �79:8 kJ mol�1

Chapter 13

13.1. (a) ClO�3 þ 3Sn2þ þ 6Hþ ¼ Cl� þ 3Sn4þ þ 3H2O

(b) PbO2 þ 2I� þ 4Hþ ¼ Pb2þ þ I2 þ 2H2O

(c) 3OCl� þ 2NH3 ¼ 3Cl� þ N2 þ 3H2O

(d) 2MnO�4 þ 5H2O2 þ 6Hþ ¼ 2Mn2þ þ 5O2 þ 8H2O

(e) MnO�4 þ 3CuIþ 4Hþ ¼ MnO2 þ 3Cu2þ þ 3I� þ 2H2O

(f ) S2O2�
8 þ 2Fe2þ ¼ 2SO2�

4 þ 2Fe3þ

(g) 2NH2OHþ 4Ce4þ ¼ N2Oþ 4Ce3þ þ H2Oþ 4Hþ

(h) 2RSHþ I2 ¼ RSSRþ 2HI

13.2. I ¼ 0:150 M

13.3. �E ¼ �0:59 V

13.4. pK 0a ¼ 8:02

13.5. (a) Slope of plot of Ecell versus log (Ca2þ activity)¼ 0.029, consistent with

0.059/2

(b) Ecell ¼ þ0:162 V

13.6. (a) I ¼ 0:04 M

(b) g
 ¼ 0:458

13.7. (a) Ecell ¼ �0:548 V

(b) Ecell is negative, so reaction is nonspontaneous (proceeds from right to

left); copper dissolves. 2Fe2þ þ Cu2þ Ð Cuþ 2Fe3þ

13.8. (a) Ecell ¼ þ1:44 V

(b) Silver-plated zinc

13.9. E� ¼ þ0:15 V;K ¼ 349

13.10. pKsp ¼ �10:85
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Chapter 14

14.1. b23 ¼ K11K21K22K23

14.3. Initial slope¼ StK11�E11

14.4. (a) �A=b
½L� ¼ �K11ð�A=bÞ þ StK11�E11

(b) K11 ¼ 10:2 M�1; �E11 ¼ 257 M�1 cm�1

14.5. Initial slope ¼ K11a � K11b

Appendix B

B.1. (a) ½Hþ� ¼ 1:78
 10�5 M

(b) ½Hþ� ¼ 7:41
 10�12 M

(c) ½Hþ� ¼ 6:46
 10�8 M

(d) ½Hþ� ¼ 1:00
 10�2 M

B.2. (a) pH ¼ 2:41

(b) pH ¼ 8:94

(c) pH ¼ 7:19

(d) pH ¼ �0:06

B.3. log x ¼ ðln xÞ=2:303 ¼ 0:434 ln x

B.4. One million times more acidic (i.e., 106).

B.5. q ¼ 4:20

B.7. 0.1526 g benzoic acid

B.8. 6.82 g acetic acid

B.9. RA� ¼ FA�=ð1� FA�Þ or FA� ¼ RA�=ð1þ RA�Þ

B.10. RHA ¼ RA� ¼ 1:0; FHA ¼ FA� ¼ 0:5

B.11. ½HA� ¼ 6:52
 10�4 M; ½A�� ¼ 0:98
 10�4 M

B.12. pH ¼ 2:41

B.13. pH ¼ 2:41

B.14. �b=m

B.16. E ¼ 2:08
 104 M�1 cm�1

B.17. K ¼ 10:8 M�1

B.18. �H ¼ 7:73 kcal mol�1

B.19. K11 ¼ 41 M�1;K12 ¼ 345 M�1

B.20. k ¼ 4:90
 10�3 s�1
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B.21. ðy� 1Þ=x ¼ a� bx (there are other possible linear forms also)

B.22. The plot of �c=�t against c is reasonably linear, so it has the equation

��c=�t ¼ kc, with k ¼ 6:1
 10�4 s�1. You have obtained an experimental

rate equation, where �c=�t is the rate of reaction and k the rate constant.

Compare your value of k with the value calculated in Example B.11.

B.23. dy=dx ¼ au ln aðdu=dxÞ

B.24. (a) dy=dx ¼ abxb�1

(b) At x ¼ 0:5; y ¼ a=4; dy=dx ¼ a; at x ¼ 1; y ¼ a; dy=dx ¼ 2a; at

x ¼ 2; y ¼ 4a; dy=dx ¼ 4a

B.25. dy=dx ¼ bþ 2cx; d2y=dx2 ¼ 2c

B.26. Vendpoint ¼ 1:83 ml; equivalent weight ¼ 266:6

B.27. pHmin¼ 1
2

pKw þ 1
2

log ðk1=k3Þ, where pKw¼ �log Kw and Kw¼½Hþ�½OH��

B.28. y ¼ 504

B.29. t1=2 ¼ ln 2=k ¼ 0:693=k

B.30. Because the constant of integration will disappear anyway in the subtraction

process

B.31. dw ¼ qw

qx

� �
y;z

dxþ qw

qy

� �
x;z

dyþ qw

qz

� �
x;y

dz

B.32. x ¼ 2392 M�1; s ¼ 484 M�1; sm ¼ 140 M�1; RSD ¼ 20:2%

B.33. The plot of log ðcB=cAÞ against t has r ¼ 0:981, intercept¼ 0:262, slope ¼
0:107 min�1, from which is obtained k ¼ 0:585 M�1 min�1 ¼ 9:75

10�3 M�1 s�1.

B.34. x¼1:59; s¼0:139; sm¼0:046; confidence limits ðP ¼ 0:05Þ¼1:59
 0:11

B.35. x ¼ 2:4
 103 M�1; sm ¼ 1:4
 102 M�1 (note that each of these quantities

possesses two significant figures; the numbers 2:4
 103 and 2400 are subtly

different in this regard)

B.36. 69:9 kJ mol�1

B.37. 1:39
 10�3 s�1

B.38.
1:86g

mL

� �
103mL

1L

� �
1L

10�3m3

� �
1kg

103g

� �
¼ 1:86
 103 kg m�3

B.39. ð0:77 Þ 10�10m

1

 !
109nm

1 m

� �
¼ 0:077 nm

B.40.
8:314J

K mol

� �
1cal

4:184J

� �
¼ 1:987 cal K�1 mol�1

Å
Å
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B.41. Use quantity algebra to generate a pure number, and then take the logarithm

of this pure number. For example, the expression log Ka really should be

interpreted as log ðKa=MÞ. We use the former symbolism in equations for

convenience.

B.42. Since A is dimensionless, and E ¼ A=bc; E has the units L mol�1 cm�1, or

M�1 cm�1.

B.43. Equation (a) is incorrect.
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INDEX

Abscissa, 274

Absolute temperature, 4

Absolute zero, 4

Absorption, 153

Accuracy, 297

Acetylium ion, 189

Acid

definition of, 157

strong, 173

weak, 174

Acid–base

distribution, 163

indicators, 181

solubility, 185

strength, 193

theories, 157

titration, 177

Acid dissociation constant, 51, 159

Acid strength, 193

Activity, 38, 63

mean ionic, 100

of a solid, 65

of a solute, 65

of a solvent, 65

Activity coefficient, 63

definition of, 38

mean ionic, 100

of an ion, 65

Adiabatic process, 8

Adsorbate, 147

Adsorbent, 147

Adsorption isotherm, 147

Langmuir, 148

Alkaline error, 231

Allotropy, 69

Amines

aliphatic, 195

aromatic, 195

Amorphous state, 70

Amphiprotic solvents, 190

Analyte, 177

Anode, 211

Apparent constant, 224

Approximations, 272

Aprotic solvents, 190

Arrhenius theory, 157

Association constant, 52, 244

Asymmetry potential, 230

Atmosphere, 311

Autoprotolysis constant, 160

Average

arithmetic, 134, 297

weighted, 132

Average deviation, 298

Azeotrope, 95

Balancing equations, 207

Barbituric acid derivatives, 198

Base

definition of, 157

strong, 173

weak, 175

Base dissociation constant, 160

Base strength, 193

Benesi–Hildebrand plot, 246, 249

Bernoulli trials, 92

Binding constant(s), 52, 244

by dialysis, 255

by potentiometry, 252

by solubility, 251

by spectrophotometry, 248

measurement of, 248

microscopic, 247

overall, 243

stepwise, 244

Binding isotherm(s), 245, 249, 251, 254

Binding models, 243

Binding site, 246
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Boiling point, 27, 45

normal, 69

Boiling point elevation, 106

Boiling point elevation constant, 108

Boiling temperature, 67

Boltzmann constant, 23, 261

Bronsted theory, 157

Bubble, 141

Buffer capacity, 171, 181

Buffer index, 171

Buffer solutions, 168, 176

standard, 224

Calorie, 5, 311

Capacity factor, 5, 86

Cathode, 211

Cavity, 141, 242

CCD, see Countercurrent distribution

CED, see Cohesive energy density

Cell potential, 213

Celsius scale, 3

Centigrade scale, 3

Chain rule, 285

Characteristic functions, 41

Charge

electronic, 96

ionic, 96

Charge–charge interaction, 239

Charge–dipole interaction, 239

Charge-induced dipole interaction, 239

Charge transfer (CT), 210, 241

Chemical potential, 63

definition of, 34

dependence on pressure, 35

Clapeyron equation, 45, 67

Clausius–Clapeyron equation, 45, 68

Closed system, 7

Coefficient of variation, 298

Cohesive energy density (CED), 127

Colligative properties, 106

Common ion effect, 125

Comparison of means, 301

Complex, 238, 243

Complex populations, 257

Complex strength, 256

Component, 57, 76

Concentration cell, 220

Concentration scales, 62

Confidence limits, 300

Conjugate pair, 158, 193, 253

Conservation of energy, 9

Contact angle, 141

Correlation coefficient, 303

Cosolvent, 131

Coulomb’s law, 96, 238

Countercurrent distribution (CCD), 88

Covalent bonds, 237

Covariance, 303

Cryoscopic constant, 109

CT, see Charge transfer

Cycle, 9

Daniell cell, 210

Debye–Hückel equation, 102, 226

Debye–Hückel limiting law, 102

Degree

Celsius, 3

centigrade, 3

Kelvin, 4

Degree of saturation, 149

Degrees of freedom, 48, 298, 300

Dehydrogenation, 209

Derivative, 284

first, 286

partial, 294

second, 286

Desorption, 148

Detection, lower limit of, 233

Dialysis, 255

Dibasic acid, 165

Dielectric constant, 97, 189

Differential, 284

exact, 9, 295

total, 294

Differential change, 282

Differential equation, 290

first-order, 291

Differential scanning calorimetry (DSC), 71

Differentiating effect, 192

Differentiation, 285

partial, 293

Dimensional consistency, 314

Dimensions, 309

Dipole, 238

Dipole–dipole interaction, 239

Dipole-induced dipole interaction, 239

Dipole moment, 239

Diprotic acid, 165, 198

Disorder, 25

Disperse systems, 135

Dispersion interaction, 238

Dissociating solvents, 189

Dissociation, 98

Dissociation constant, 51, 159, 244

Distribution

frequency, 296
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normal, 296

Student’s t, 300

Double-reciprocal plot, 246, 279

Droplet, 141

DSC, see Differential scanning calorimetry

Ebullioscopic constant, 108

EDA, 241

Electrical work, 206

Electric potential, 211

Electrochemical cell, 210

Electrode(s), 209

glass, 230

hydrogen, 215, 221

ion-selective, 228

membrane, 228

saturated calomel, 222

solid, 231

Electrode potential, 211

Electrolyte, 96

Electrolytic cell, 211

Electromotive force (emf), 211

Electroneutrality, 172

Electron donor–acceptor (EDA) interaction, 241

Electron pair acceptor, 205

Electron pair donor, 205

Electron transfer, 206, 210

Electrophile, 209

Electrostatic interactions, 238

Emf, see Electromotive force

Emulsion, 135

Endothermic process, 18

Endpoint, 177

detection of, 180

Energy, 5

electronic, 6

ideal gas, 12

internal, 6

kinetic, 6

potential, 238

rotational, 6

surface, 136

thermodynamic, 6

translational, 6

units of, 5

vibrational, 6

Enthalpy, definition of, 12

Enthalpy changes, 53

Enthalpy of mixing, ideal, 79

Entropy

and disorder, 25

and randomness, 24

changes, 23, 27, 53

configurational, 21

definition of, 21, 22

interpretation of, 24

of fusion, 27, 129

of mixing, ideal, 79

of solution, 117

of vaporization, 28

relationships, 26

unit, 27

Equation of state, 7

Equilibrium

chemical, 7

condition for, 42, 212

mechanical, 7

thermal, 7

thermodynamic, 7

Equilibrium constant, 51, 212

temperature dependence of, 52

Equivalence point, 177

Erg, 5, 311

Error propagation, 306

Errors

random, 296

systematic, 296

Eutectic, 75

Eutectic point, 75

Exact differential, 9, 295

Excess functions, 82

Exothermic process, 17

Exponential functions, 278

Exponential rate law, 293

Exponents, 266

Extensive properties, 314

Extraction

multiple, 88

solvent, 86

Faraday, 213, 261

First law, 9, 25

First-order decay, 293

First-order rate equation, 291

Foam, 135

Force, 238

Formation constant, 52, 244

Fraction(s), 163, 268

Fraction bound, 246

Fraction free, 246

Free energy

dependence on pressure, 33

dependence on temperature, 33

Gibbs, 30

Helmholtz, 40

partial molar, 34
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Free energy changes, 53

Free energy of mixing, ideal, 79

Free energy of solution, 117

Freezing point, 69

of water, 3

Freezing point depression, 108

Freezing point depression constant, 109

Freezing point depression method, 112

Frequency distribution, 296

Fugacity, 37

Galvanic cell, 211

Gas

ideal, 10

perfect, 10

Gas constant, 10, 261

Gaussian error curve, 296

Gibbs adsorption equation, 147

Gibbs–Duhem equation, 35

Gibbs free energy, 30

Gibbs–Helmholtz equation, 34

Glacial acetic acid, 98, 192

Glass electrode, 230

Glass transition temperature, 71

Glassy state, 70

Heat, 5

units of, 5

Heat capacity, 122

at constant pressure, 14

at constant volume, 14

molar, 14

Heat of fusion, 13, 27, 119

Heat of reaction, 13

Heat of solution, 13, 117, 121

Heat of vaporization, 27

Helmholtz free energy, 40

Henderson–Hasselbalch equation, 169, 186

Henry’s law, 81

Henry’s law constant, 81

Heterogeneous system, 7

Hill plot, 246

Homogeneous system, 7

Hydantoins, 198

Hydrogenation, 209

Hydrogen-bonding, 240

Hydrophobic effect, 242

Hydrophobic interaction, 242

Hyperbola rectangular, 245, 279, 286

Hypertonic solution, 112

Hypotonic solution, 112

Ideal gas, 10

Ideal gas law, 10

Ideal solutions, 77, 118

Imides, 198

Incremental change, 282

Indicators, acid–base, 181

Induction interactions, 238

Inflection point, 287

Instability constant, 52

Integral(s), 291

definite, 291

indefinite, 291

Integration, 288

constant of, 290

Intensity factor, 5

Intensive properties, 314

Intercept, 274

Interfaces, 135

Interfacial tension, 139

Intrinsic solubility, 251

Ion exchange, 206

Ionic atmosphere, 101

Ionic strength, 102, 226

Ionization, 98

Ionization constant, 51, 160

Ion pair, 105

Ion product, 160, 190

Ion transfer, 206, 228

Isolated system, 7

Isoosmotic solutions, 111

Isotherm(s)

adsorption, 147

binding, 245, 249, 251, 254

distribution, 95

Langmuir, 148

partition, 95

reaction, 50

Isothermal expansion, 21

Isothermal process, 7

Isotonicity, 111

Isotonic solutions, 111

IUPAC, 309

Joule, 5, 310

Langmuir isotherm, 148

Least squares method, 304

Lennard–Jones potential, 239

Leveling effect, 192

Lewis acid, 205, 209

Ligand, 238

Linear combination model, 132

Linear correlation, 303

Linear equations, 274, 303

Linearization, 278

340 INDEX



Linear regression analysis, 304

Lineweaver–Burk plot, 279

Liquid crystalline phase, 76

Liquid junction potential, 212

Liquid–liquid partitioning, 83

Logarithms

Briggsian, 263

natural, 263

Log–log plot, 246

London interaction, 238

Lyate ion, 191

Lyonium ion, 191

Mass balance, 168, 172, 248, 251

Mathematical symbols, 263

Maxima, 287

Mean

arithmetic, 134

experimental, 297

geometric, 134

population, 296

Mean ionic activity, 100

Mean ionic activity coefficient, 100

Mean ionic molarity, 100

Melting point, 27, 44, 69

mixed, 76

Melting temperature, 67

Membrane, 228

liquid, 233

semipermeable, 109, 255

solid, 231

Microscopic constant, 199

Microstate, 19

Minima, 287

Mixing entropy, ideal, 79

Mixing free energy, ideal, 79

Molality, 63

Molarity, 63

mean ionic, 100

Molar volume, 314

Mole fraction, 63

Nernst equation, 212

Nernstian response, 214, 229, 233

Neutrality, 162, 192

Nonaqueous acid–base behavior, 189

Noncovalent interactions, 237

Noncovalent populations, 257

Nonelectrolyte, 77

Nonideality, 38, 66

Nonideal solutions, 80

Nonspontaneous process, 8

Normal distribution, 296

Normal error curve, 296

Normal saline, 112

Nucleophile, 209

Null hypothesis, 301

Open system, 7

Ordinate, 274

Osmometry, 111

Osmosis, 110

Osmotic pressure, 109

Oxidant, 207

Oxidation, 207, 236

Oxidation state, 208

Oxidizing agent, 207

Parameters, 274

statistical, 297

Partial derivative, 294

Partial molar free energy, 34

Partial molar volume, 36

Partial pressure, 77

Partition coefficient, 83

Partitioning, 83

Percent

by volume, 62

by weight, 62

weight/volume, 62

Percent purity, 267

Perfect gas, 10

Permittivity, 97

of the vacuum, 97

relative, 97

Phase diagram(s), 67

pressure–temperature, 44

solubility, 252

temperature–composition, 72

Phase rule, 48, 68

Phase transitions, 44

pH, 161

calculations, 172

measurement of, 221

meter, 223

standards, 223

Phosphoric acid, species distribution of, 171

Physical constants, 261

pK, definition of, 161

pKa assignment, 198

pKa, determination of, 181, 224

pKa values, 195

Polarity, 84, 98

Polarizability, 238

Polarization interactions, 238

Polymorph, 69
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Polymorphism, 69

Polynomial functions, 278

Population mean, 296

Population standard deviation, 296

Potential

asymmetry, 230

cell, 213

chemical, 34, 63

electric, 211

half-reaction, 216

electrode, 211, 214, 215

Lennard–Jones, 239

liquid-junction, 212

standard, 213, 214

standard chemical, 38

Potential energy, 238

Potential energy functions, 238

Power functions, 278

Precision, 298

Pressure, partial, 77

Process(es)

adiabatic, 8

chemical, 61

cyclic, 9

endothermic, 18

exothermic, 17

isothermal, 7

nonspontaneous, 8

physical, 44, 61

physicochemical, 282

reversible, 8

spontaneous, 8, 19, 21, 32

Product, 49

Propagation of errors, 306

Proportions, 266

Protogenic solvents, 190

Proton-acceptor, 158

Proton-donor, 158

Proton transfer, 158

Protophilic solvents, 190

Quadratic equations, 270

Quantity algebra, 312

Quantum state, 20

Random errors, 296

Randomness, 24

Range, 298

Rate, 291

Rate constant, 280, 291

Ratios, 268

Raoult’s law, 77

deviations from, 80

Reactant, 49

Reaction isotherm, 50

Rectangular hyperbola, 245, 279, 286

Redox reactions, 207

Reducing agent, 207

Reductant, 207

Reduction, 207, 236

Regression analysis, 304

Regular solution theory, 126

Reference state, 38, 64

Relative standard deviation (RSD), 298

Reversible process, 8

Reversibility, 8

RSD, see Relative standard deviation

Saline, normal, 112

Salt bridge, 211

Salt effects, 126

Salting-in effect, 126

Salting-out effect, 126

Saturated calomel electrode (SCE), 222

Saturation, 116

degree of, 149

Saturation effect, 246

Scatchard plot, 246, 279

SCE, see Saturated calomel electrode

Second law, 24, 25

Semipermeable membrane, 109, 255

Setschenow constant, 126

SI units, 309

Sigmoid curve, 163

Sign conventions, 214

Significance, statistical, 301

Significant figures, 308

Simultaneous equations, 270

Slope, 274, 283

calculation of, 274

initial, 286

limiting, 286

Solid solution, 76

Solubility, 49, 116

aqueous, 129, 185

equilibrium, 116

ideal, 117

in mixed solvents, 131

intrinsic, 251

of acids and bases, 185

of slightly soluble salts, 123

prediction of, 129

temperature dependence of, 120

Solubility parameter, 127

Solubility product, 124, 218

Solute, 80
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Solution

ideal, 77

nonideal, 80

solid, 76

Solvent, 49, 80

amphiprotic, 190

aprotic, 190

differentiating, 192

dissociating, 189

leveling, 192

nondissociating, 190

protogenic, 190

protophilic, 190

Solvent extraction, 86

Sorption, 153

Specific heat, 14

Specific volume, 314

Spontaneous process, 8, 19, 21, 32

Spreading coefficient, 140

Spreading of liquids, 140

Stability constant, 52, 244

Standard chemical potential, 38, 63

Standard deviation

complex population, 257

experimental, 298

of the mean, 299

population, 296

relative, 298

Standard error, 299

Standard free energy change, 51

Standard potential, 213

Standard state, 38, 63, 64

molar, 82

mole fraction, 82

Standard state definitions, 39

State, 7, 295

amorphous, 70

equation of, 7

glassy, 70

metastable, 69

reference, 38, 64

standard, 38, 63, 64

State function, 9, 295

Statistical mechanics, 18

Statistics, 295

Stoichiometric models, 244

Strong acid, 173

Strong base, 173

Student’s t distribution, 300

Sublimation, 45

Sublimation temperature, 67

Substrate, 237

Sulfonamides, 198

Surface active agents, 147

Surface

area, 137

boundary, 144

energy, 136

excess, 145

phase, 143

Surfaces, 135

Surface tension, 136, 243

Surfactants, 147

Surroundings, 7

Suspension, 135

System, 6

closed, 7

heterogeneous, 7

homogeneous, 7

isolated, 7

liquid–liquid, 72

liquid–solid, 74

open, 7

Système International, 309

Temperature scale

absolute, 4

Celsius, 3

centigrade, 3

ideal-gas, 4

Kelvin, 4

thermodynamic, 4

Temperature, 3

boiling, 67

glass transition, 71

melting, 67

sublimation, 67

upper critical, 72

Thermometer, 3

Third law, 27

Tieline, 72

Titrant, 177

Titration

acid–base, 177

strong acid–strong base, 177

weak acid–strong base, 178

Total differential, 294

Transition interval, 182

Triple point, 45, 67

Trouton’s rule, 28

Units

base, 309

conversion of, 312

derived, 309

SI, 309
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van der Waals interactions, 257

van’t Hoff equation, 53

van’t Hoff plot, 54, 121

Variables, 274

Variance, 298, 307

Voltaic cell, 211

Volume

molar, 36, 314

partial molar, 36

specific, 314

Volume fraction, 62, 127, 132

Volume of mixing, ideal, 79

Weak acid, 174

Weak base, 175

Weighted average, 132

Wetting of solids, 141

Work, 5

electrical, 5, 206

of adhesion, 139

of cohesion, 136

of expansion, 5, 11

maximum, 32

mechanical, 5

surface, 5, 136

units of, 5

Zeroth law, 4, 25

Zwitterion, 202
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