

Rebol
A programmer’s guide

Copyright 2008, Olivier Auverlot and Peter W A Wood
First edition – December 2008

The programs in this book are intended to illustrate the topics under
discussion. There is no guarantee given that they will function once
compiled, assembled or interpreted in the context of professional or
commercial use.

By visiting the site at www.auverlot.fr you can

• Talk with the authors
• Download the example code
• Look for updates and additions

All rights reserved. Any reproduction, even partial, of the content, the cover
or illustrations, by any means whatsoever (electronic, photocopier, tape or
otherwise) is prohibited without written permission of the authors.

Preface

For many years the answer to the question “Which is the best book to learn
Rebol?” has been Olivier Auverlot’s “Programmation Rebol”. As you
probably guessed from the title, it’s written in French. Soon after it was
published late in 2001, work started on a translation. It was even listed with
a publication date on Amazon.com. Sadly, it has yet to see the light of day.

At the beginning of 2007, Olivier published “Rebol - Guide du
programmeur”. I hoped for news of a translation; but none came. It seemed
that the only option was going to be to read the book in French. So why not
translate the book myself?

Translating “Rebol - Guide du programmeur” has been most enjoyable.
Olivier’s writing is eloquent and informative. His command of Rebol shines
through. I learned a lot whilst translating the book, some Rebol and some
French. I hope you will too, though perhaps not so much French as me.

Rebol – A programmer’s guide

2

Acknowledgements

I would like to thank Olivier not only for writing such a good book but
equally for all the help and support he’s provided as I’ve been working on
the translation.

There are many helpful folks in the Rebol community. In particular, Gregg
Irwin and Sunanda have been a constant source of friendship and
encouragement. Thank you.

Last but certainly not least, I would like to thank Noriati, my wife, and
Hannah Sarah, our daughter, for their love, their unquestioning support and
their forbearance during the many hours I’ve sat staring at my computer.

Peter W A Wood

Foreword

What is the purpose of this book?

For five years, Olivier had the pleasure of working for the French computer
magazine Login and wrote many articles about REBOL. Sadly Login is no
longer published and Olivier felt it both necessary and appropriate to
consolidate his work so that the accumulated knowledge would still be
available to the Rebol community. Understandably, he initially published his
work as “Rebol – Guide de Programmeur”. This book is a translation of the
original into English.

The basic idea was simply to regroup articles according to specific subject,
but the project turned out to be much larger than that. Many articles required
a partial rewrite, others needed to be supplemented and finally, some
previously unpublished elements were added. The "remix" has been much
greater than anticipated, but it was necessary to ensure that the book has a
coherent structure.

In the end, the book turned out to be a highly practical guide to Rebol for
programmers.

Rebol – A Programmer’s Guide

vi

The diversity of topics makes the book more of a reference manual than a
complete introduction. It elaborates on a number of points from Olivier’s
previous book “Rebol Programmation” published by Eyrolles (ISBN: 2-212-
11017-0).

Who is this book for?

This book is primarily aimed at Rebol developers. It was conceived and
designed with them in mind, giving the maximum of knowledge across a
wide range of topics in a concise form. Most importantly, it can save them a
lot of time through the numerous examples provided.

It also meets the needs of developers and students wishing to learn Rebol.
Each chapter explains the strong points of the language and then applies that
knowledge.

Additionally, it meets the needs of policy makers by outlining the capability
of Rebol technology. Various case studies and product presentations are used
to study the implementation of the language with the help of examples.

Finally, it is intended for system administrators interested in using Rebol to
automate certain tasks (Unix server administration, managing grid
computing, etc.). Many parts of this book are devoted to such topics.

How is it structured?
The book consists of seven chapters each built around a theme:

• Chapter 1 is an overview of Rebol by example,
• Chapter 2 deals with the basics of the language,
• Chapter 3 covers graphical interfaces, graphics and sound,
• Chapter 4 describes Rebol’s advance network programming features,

Foreword

 vii

• Chapter 5 is aimed at professional users of Rebol. It presents the use
of Rebol in the context of e-business,

• Chapter 6 provides advanced information for Rebol developers,
• Chapter 7 is a series of workshops designed to facilitate learning the

language through practice.

Contents

Introduction

Chapter 1 – Discover Rebol in an hour

Chapter 2 – The Rebol langauge

Chapter 3 – GUI, graphics and sound

Chapter 4 – Networking and the Internet

Chapter 5 – Rebol for pros

Chapter 6 – Rebol for geeks

Chapter 7 – Practical applications

Table of Contents

Introduction 1
 Join the REBOLution ! 1
 Programmer, word builder 2
 A virtual machine 3
 A family of products 3
 Rebol/Core 4
 Rebol/View 4
 Rebol/Command 5
 Rebol/SDK 6
 Rebol/IOS 6
 A network programming language 6
 Manipulating information 7
 Object programming 7
 The main applications written in Rebol 8
 Protocols and dialects 8
 Rebol and the web 8
 Utilities as if it raining! 9
 Multimedia and games 10
 Downloading and installing 11
 Using the console 14

Rebol – A programmer's guide

xii

 Establishing a working environment 15

Chapter 1 - Discover Rebol in an hour 17

 The robotFTP project 17
 Project introduction 18

 Technical considerations 18
 The execution environment 18
 The security manager 19
 Writing the header 20
 The principle datatypes 21
 And now, the code! 22
 Declaring a function 23
 Manipulating URLs 24

Executing FTP commands 25
 Defining and using dialects 25

 The robotFTP dialect 26
 Managing errors 27
 Conditional expressions 28
 Managing files 28
 Completing and testing robotFTP 29

 Adding a graphic layer 30
 Managing a progress bar 30
 Opening a window 31
 Integration with the RobotFTP script 31

 Summary 32

Chapter 2 – The Rebol language 33

 Survival guide 33
 Let's write a program 34
 Running your script 35

 Variables and datatypes 36
 Declaring a variable 36
 Finding the type of a variable 37
 Using Constructors 37
 Simple datatypes 38
 Complex datatypes 38
 Blocks 39

Table of Content

xiii

 Handling lists 40
 Arrays 40
 Navigating within a series 41
 Accessing an element 42
 Adding and removing elements 42
 Modifying a series 43
 Searching and sorting series 43
 Copying and clearing series 43
 Control structures and loops 44
 Tests in Rebol 44
 And else? 45
 Multiple choices 46
 Loop 46
 The for loop family 47
 Repeat, until and while 48
 A simple game in Rebol 49
 Functions and objects 50
 Using functions and objects 50
 Defining functions 51
 Creating objects 53
 Parsing and dialects 55
 The art of handling character strings 55
 Rebol parsing 56

 Parsing using a dialect 56
 A little parsing 57
 Defining a dialect 58
 Summary 60

Chapter 3 – GUI, graphics and sound 61
 GCS and VID 62
 Basic concepts 62
 Styles 64
 Attributes 64
 Style layout 65
 A dollar-euro converter 65
 Image processing with VID 66
 Using images 67

Rebol – A programmer's guide

xiv

 Displaying an image 67
 Modifying images 69
 Applying special effects 70
 The DRAW dialect 72
 Let's draw a line 72
 Other draw functions 74
 Adding text 75
 Manipulating images 76
 Generating image files 77
 Using DRAW dynamically 77
 Generating DRAW instructions 77
 A little animation 79
 Handling events with VID 80
 Event-driven programming 80
 Default behaviours 80
 Tracking events 81
 The event object 83
 Controlling Windows 84
 Managing styles 85
 Defining a style 85
 Applying a style sheet 86
 Modifying style aspects 87
 Defining a style's behaviour 89
 Rebol and sound 90
 Opening and closing a sound port 90
 Loading and handling sound samples 91
 Playing Samples 93
 Graphic display of a sound sample 94
 Summary 96

Chapter 4 – Networking and the Internet 97
 Using TCP/IP protocols 97
 Protocols in Rebol 98
 Network configuration 98
 Sending and receiving email 99
 Accessing web resources 101
 And the other protocols? 101

Table of Content

xv

 Clients and servers 102
 Creating network protocols in Rebol 103
 The standard protocols 104
 The root protocol 105
 Properties of the root-protocol object 106
 Methods of the root-protocol object 107
 Implementing Echo 108
 Developing a gopher protocol 110
 Rebol and CGI scripts 113
 The overall picture 114
 CGI overview 114
 How to write CGI scripts in Rebol? 115
 Reading parameters 116
 Producing dynamics web documents 119
 How Magic! Works 120
 Installation 120

 When the static becomes dynamic 121
 Magic! Functionality 123
 Library functions 123
 Controlling embedded Rebol code 124
 Handling MIME types 124
 Managing cookies 126
 Managing sessions 126
 Handling XML documents 128
 The problem of interoperability 129
 Rebol's integrated parser 129
 How to use the data? 130

 The guts of the parser 132
 A better XML parser 133
 Generating XML 135

 Using Web Services 136
 Introducing XML-RPC 136
 Using XML-RPC 136
 The Rebol/View plugin 137
 Small yet powerful 137
 Inserting the plugin in an HTML page 139
 Configuration Parameters 140

Rebol – A programmer's guide

xvi

 Cache, proxy and compression 141
 Interacting with the Browser 144
 Summary 147

Chapter 5 – Rebol for pros 149
 Rebol/Command 149
 Concentrated power 150
 Database access 150
 Shell access 151
 Using dynamic libraries 152
 Data encryption 153
 Rebol, CGI scripts and MySQL 153
 Introducing the MySQL protocol 154
 Downloading and installing the protocol 154
 Using the protocol 155
 Integration in a CGI script 156
 Data encryption 158
 Symmetric key encryption 159
 RSA encryption 160
 Diffie Hellman 162
 Signing your document with DSA 163
 Rebol/IOS 164
 IOS: a concept lacking exposure 164
 An ultra-secure system 165
 The Rebol/Serve server 166
 The Rebol/Link client 168
 Reblets 169
 Administration tools 172
 Managing Rebol projects 174
 The Prebol preprocessor 174
 Installation and use 175
 Including files 176
 Evaluation and conditions 178
 Summary 179

Chapter 6 - Rebol for geeks 181
 Rebol and virtual desktops 181

Table of Content

xvii

 A work environment 181
 The Rebol/View desktop organisation 182
 The file index 183
 Unix programming with Rebol 183
 Displaying data in a console 184
 Managing the keyboard 188
 Integration with the Unix environment 190
 Files and access rights 192
 Shell access 194
 Inter-process communication 195
 Managing Unix signals 199
 Interfacing with dynamic libraries 202
 Databases with RebDB 205
 Getting started with RebDB 205
 Tables and fields 206
 Manipulating data 208
 Putting it to work 209
 Editing and saving 211
 Publishing your database on the web 213
 Summary 215

Chapter 7 – Practical applications 217
 Writing a raycasting engine with View 217
 What is raycasting? 218
 It looks real to me! 218
 Starting with the foundations 219
 Shaping the walls 220
 Finishing with interaction 222
 Program your "chat" in Rebol 223
 Basic principles 223
 Writing the client 224
 Setting up the server 226
 A MySQL administrative console 228
 The specification 229
 User identification 229
 Creating the main screen 230
 Some utility functions 231

Rebol – A programmer's guide

xviii

 The processing functions 232
 Writing a reblet for IOS 234
 The specification 235
 The development cycle 235
 Defining a fileset 236
 The POST methos 237
 The client code 238
 Summary 240

Introduction

Rebol (Relative Expression-Based Object Language) is the work of Carl
Sassenrath who was one of the main creators of the esteemed AmigaOS
operating system. In 1995, he decided to work on a new programming
language and his efforts came to fruition in 1997 with version 1.0 of Rebol.

Carl’s objective was to design a language that is simple to learn, multi-
platform and fully adapted to the exchange of information between
heterogeneous systems. As such the language is highly capable in the field of
network programming. It supports the major network protocols and allows
easy handling of sockets. Rebol is an ambitious concept realised in a range
of products.

Join the REBOLution !

The intelligence underlying the Rebol concept, based on the simple but
powerful observation that with the rise of importance of computers
communicating with each other, is that programmers need a new generation
of more expressive languages with syntax closer to human language and the
ability to use standard protocols to exchange information via TCP/IP.

Rebol – A programmer’s guide

2

Modern software must be designed not with the picture of just a single
computer in mind but a network of interconnected systems to share data and
programs. Like Python, Ruby and some aspects of Java and .NET solutions,
Rebol is an ambitious, innovative scripting language. It is much more than a
simple programming language, it can be called a meta-language, the heart of
a device dedicated to the exchange of information over networks.

Programmer, word builder

In the conventional sense, Rebol is an interpreted rather than compiled
language. The code is not converted into an executable binary or even
bytecode like Java. In fact, Rebol is an evaluator like Lisp and Scheme. They
build a vocabulary from a script and interpret the words you’ve set as well as
those belonging to the standard dictionary of the language. This mode of
operation makes Rebol a meta-language: that is a language with the ability to
describe, redefine and enrich its own internal mechanisms.

In Rebol, everything boils down to words. Instructions, variables, functions
and objects are all words. Some simply provide particular functionality. All
these words belong to either a general context (the global context) or a
specific context. Just as in a spoken language, a word may have a special
meaning depending on the context in which it is evaluated.

Words can also be defined in a dialect which is a kind of mini-language
often referred to as a domain specific language or DSL these days. A dialect
is a language within a language, to perform a very specialised task. To better
understand dialects, we can take engineering as an example. When engineers
talk about their profession, a person from outside their discipline often finds
it very difficult to grasp the meaning of the conversation. Admittedly, these
engineers speak English but enrich it with technical terms that form a dialect
known only between themselves! In a Rebol script, dialects allow the
description of certain portions of an application by using a specialised
vocabulary which can not only be manipulated by a programmer but also an
outsider who is not necessarily a developer. With dialects, we can define
business rules, graphic interfaces or a sequence of screens during the
installation of a program.

Introduction

 3

A virtual machine

The evaluator is actually a virtual machine which simulates an identical
environment regardless of the underlying operating system and hardware
architecture. Unlike Java, it is very light weighing in at between 250 and 400
KB depending on the version. It is also very easy to install because it
consists of a single executable. No! you are not dreaming, the Rebol virtual
machine is entirely contained in a single file. There are no DLLs or libraries
to install whatever the operating system. In a few seconds, it is possible to
transform any computer into a machine capable of using your applications
written in Rebol.

Figure 0-1. Running a Rebol application.

This virtual machine contains the Rebol evaluator, the standard dictionary,
TCP/IP support, a garbage collector and security manager.

A family of products

Rebol comes in six versions aimed at different audiences and also targeting
different application areas.

Rebol – A programmer’s guide

4

Rebol/Core

Rebol/Core is the foundation. This compact evaluator, of around 350 KB,
contains the heart of the language. It includes the evaluator, the garbage
collector, the security manager, network protocols and the words in the
Rebol dictionary. Distributed under a “freeware” licence, this product can be
freely downloaded from rebol.com for many operating systems and can be
freely used in commercial products.

Figure 0-2. The Rebol/Core console.

Rebol/Core is not a demonstration version or limited product. It is the perfect
tool for developing applications to exchange information, write CGI or
system administration scripts.

Rebol/View

Rebol/View is an overlay on top of Rebol/Core which adds the ability to
develop graphic applications. Since version 1.3, Rebol/View uses the very
powerful AGG graphics library as its display engine. It’s possibilities are
impressive since AGG provides advanced graphics primitives, excellent
display speed, anti-aliasing management, vector fonts and incredible effects
which can be applied in real-time (rotation, perspective, size, transparency,
colour processing, etc.).

Introduction

 5

For building user interfaces, Rebol/View incorporates VID (Visual Interface
Dialect) allowing the definition of screens with a minimum of instructions.
The main user interface components are included as standard (button, input
field, slider, image, progress bar, etc.). You can also change their appearance
by using a style sheet and even create your own components. VID is a
dialect which allows the flexible implementation of complex graphical
interfaces on multiple platforms. All this takes place in a single executable
file that is only a few hundred KB in size.

Figure 0-3. Graphic programming with Rebol/View

Rebol/View is also free and can be redistributed without constraint. A
commercial version called Rebol/View/Pro is also available and adds to the
evaluator a group of encryption functions (DES, RSA, DH and electronic
signature management) and also support for the HTTPS protocol.

Rebol/Command

For e-business applications, you can use a commercial product called
Rebol/Command. This version is also available for multiple operating
systems and provides encryption functions, the HTTPS protocol, and access
to ODBC data sources and the MySQL and Oracle databases.

Rebol – A programmer’s guide

6

Rebol/Command is perfectly adapted for the development of complex
dynamic web sites and thanks to its native FastCGI support, it allows the
establishment of high-performance applications that can be distributed
across multiple servers using a n-tier architecture.

Rebol/SDK

Rebol/SDK is a development kit allowing the generation of executable files
from a Rebol script. With the SDK, it becomes possible to distribute an
application written in Rebol without the user having to install Rebol/Core,
Rebol/View or Rebol/Command. One feature of the SDK is that it uses an
encryption algorithm to conceal the source code of the Rebol script. Thus
making it possible to distribute a commercial application containing
proprietary technology.

Rebol/IOS

Finally, if you want to set up an intranet with a high degree of security and in
which a community of users can share information, applications and data
files, you can use the Rebol/IOS groupware platform. This is composed of
two elements which are the server, Rebol/Serve, and the Rebol/Link multi-
platform client. Rebol/IOS not only comes with a large number of
applications ready for use (task management, phone book, news publication,
administration tools, etc.) but also includes a development kit which allows
custom applications to be written.

A network programming language

These different versions of Rebol support several TCP/IP protocols and
make the development of applications able to exchange data over a network
easy. Support for HTTP allows the development of web clients capable of
surfing the World Wide Web or your own intranet in order to retrieve data.
FTP offers the possibility to retrieve files from or send them to a remote
server. The POP3 and SMTP protocols let you retrieve and send email.
News forums can be accessed by using the NNTP protocol.

Introduction

 7

A script may also interrogate your DNS server to find the machines on your
network or obtain information on user or a server with the help of the Finger
and Whois protocols.

If these are not enough, you can also design your own protocols. In fact,
Rebol provides direct access to TCP and UDP ports on your machine. It is
possible to write not only client applications but also servers. A simple
HTTP server can be implemented in Rebol in less than 50 lines of code!

Manipulating information

As well as its talents in the communications domain, Rebol also excels at
managing information. It differs from other programming languages by the
number and specialisation of its data types. Rebol is obviously capable of
manipulating numbers, reals, strings or Boolean values but it doesn’t stop
there. Rebol is one of the few languages which naturally recognises and uses
IP addresses and URLs.

These simple data types can be grouped together in lists. Lists are the
foundation of the language. In Rebol, lists are omnipresent. A Rebol script is
a list of words. An array is a list of values. Rebol provides the programmer
with a set of words to access this information such as traversing a list and
seeking or extracting data with the minimum of operations.

Object programming

Data can be contained in objects, grouping properties and methods. Objects
written in Rebol allow the development of modular applications, facilitate
team work on a project and enhance the productive aspects of the language.
Conceptually much simpler than JavaBeans, Rebol objects can also be
transmitted over a network, shared between multiple applications and have a
mechanism for introspection.

Rebol – A programmer’s guide

8

The main applications written in Rebol

Many applications have been written in Rebol. Almost all of them are free
and operate on all the platforms that have a Rebol evaluator. Their
eclecticism shows the versatility of a simple, elegant language. Connect to
the World Wide Reb and download protocols, dialects, web applications,
utilities and even video games.

Protocols and dialects

Protocols and dialects enrich the capabilities of a Rebol evaluator. Protocols
relate mainly to networking. Vincent Demongodin has written a SNMP
(Simple Network Management Protocol) client for Rebol to collect
information about the active elements on a network. Other essential products
include the MySQL and PostgreSQL protocols of Nenad Rakocevic
(www.softinnov.org). Free and compatible with all versions of Rebol, they
allow you to interact with these famous SQL databases. There are in fact a
number of additional network protocols that you can add to your Rebol
evaluator.

Dialects are domain specific languages. Each of them is a language within a
language and is dedicated to performing a task in the most efficient way.
Gabriele Santilli’s PDF-Maker simplifies creating PDF documents. If you
need to display numeric data as curves or histograms, grab the excellent Q-
Plot which is a prodigiously effective dialect for such operations. In the Web
domain, do not miss the SWF dialect which allows you to dynamically
generate Flash animations.

Rebol and the Web

As Rebol is network oriented, it is hardly surprising to find many
applications for the Web. MailReader and Rim are two communication tools,
a mail client and a chat client. Rix is a search engine dedicated to documents
about Rebol and Rebol source code. ShearchCenter allows the interrogation
of multiple search engines. Vanilla is a web application for the establishment
of collaborative sites.

Introduction

 9

Figure 0-4. The Vanilla wiki.

Cheyenne is a very powerful HTTP server written entirely in Rebol.
Impressive and hard to ignore, AltMe allows the creation of virtual
communities.

Utilities as if it is raining!

Castro is a file manager allowing you to view, rename, move and delete
files. With François Jouen’s Michka, you can classify your PDF documents.

Figure 0-5. Draw your curves with Grapher.

Rebol – A programmer’s guide

10

Essential for developers, Anamonitor fully monitors the system object of the
Rebol evaluator. Finally Grapher will delight mathematics fans tracing and
retracing all the curves imaginable.

Multimedia and games

Rebol is good for games. It’s GCS graphics engine is totally independent
from the execution platform and is capable of managing complex graphic
operations. It can draw, apply effects (brightness, rotation, transparency,
etc.) and even read images in many formats (PNG, GIF, JPG and BMP). The
most impressive demonstration is most probably Reviewer which is a great
product for storing and editing graphics.

Figure 0-6. A game made with the Arcadia engine.

Rebol is lightweight, versatile and really simple to deploy. It has everything
needed to develop games and multimedia applications. Rebol, a network
oriented language with excellent graphic and animation ability, is a fantastic
solution for creating online games.

Introduction

 11

Figure 0-7. The R-Box2 game

.
Talented programmers have already provided numerous demonstration of
Rebol’s online capabilites. Take a look at R-Box2 which is an adaptation of
a classic video game. For his part, Cyphre has not hesitated to develop a
video game engine called Arcadia, incorporating a variety of functions and a
specialised dialect.

Downloading and installing

Rebol/Core can be downloaded from the Download section of
www.rebol.com. Simply select the file archive for your operating system.
The file obtained is in zip format under Microsoft Windows and tar.gz for
Unix systems. On these, the shell command tar xvzf followed by the
name of the archive allows you to decompress files into the current
directory. There will be a number of files including the Rebol evaluator,
installation documents, updates and Rebol scripts recognisable by their .r
extension. On Unix-type systems, it is common practice to copy the Rebol
executable to the /usr/local/bin directory so that it can be accessed by all
users of the machine.

Rebol – A programmer’s guide

12

Figure 0-8. The www.rebol.com site.

Once you’ve done this, you must configure the evaluator to get the best use
from it by specifying your email address, STMP server, POP server and any
proxy server that you want to use. Use the setup.r script for this by typing the
following command line rebol setup.r. This script is an interactive
program in which you simply answer the various questions. The result is a
user.r file, specific to each user. The folder also contains a file called
rebol.r. Like the user.r, script this file is loaded by the Rebol
interpreter whenever it is loaded. The rebol.r file is intended for storing
features that will automatically be included in the evaluator. To discover all
the words available in Rebol/Core, you can run the words.r script with the
help of the command line syntax rebol words.r. Then you will get a
file, words.html, containing all the definitions of each element of the
Rebol dictionary.

The Rebol/View archive contains only three files and two of them are
documentation. In fact, you simply launch the Rebol executable to trigger
the installation procedure to set the directory to which Rebol/View will be
copied and also indicate your email settings and possibly those of a proxy
server.

Once the set-up is complete, the evaluator starts and displays a desktop that
gives you access to different resources.

Introduction

 13

At the top of the window, the User menu item allows you to change your
configuration. Through the Goto menu option, you can specify a URL to a
Rebol script on the Internet and thus run it.

On the left, the Rebol.com folder gives you access to applications that are
written in Rebol which are available over the Internet and can be
downloaded over the Internet for running on your machine. Stored in a
cache, these scripts are always available to you whether you are connected to
the Internet or not. This illustrates one of the key Rebol concepts: the X-
Internet. This idea describes an information exchange network in which each
node is an active participant. Weighing less than 600 KB, with a network
oriented scripting language, platform independent, economic with system
resources and incorporating advanced graphic features, Rebol/View is the
model client for such an architecture.

Below the Rebol.com folder, the Public folder gives access to the Rebol
script library, hosted at Rebol.org, and the many RebSites hosted by various
members of the Rebol community. These contain hundreds of useful scripts
and, following the X-Internet principle, are also stored in a cache so that they
can be used when you’re not connected to the Internet.

Figure 0-9. Rebol/View provides access to RebSites.

Next, you will see a Local folder for the classification and access to the
different Rebol scripts on your machine. Finally, the Console option lets you
launch an interactive console identical to that of Rebol/Core.

Rebol – A programmer’s guide

14

Using the console

The Rebol console holds many possibilities that facilitate working with
Rebol. First, it allows you to work interactively and test code sequences. For
example, you can type 2 + 2 followed by enter key. Immediately, the
instructions are evaluated and the result displayed in the console.

The code sequences are not limited to a single line, it is possible to type full
blocks before their evaluation. During typing, the right and left arrow keys
move the cursor to allow you to make corrections. Using the up and down
arrow keys, you can scroll through the previous commands and by hitting the
enter key, re-run prior instructions. A single press of the tab key activates
Rebol’s auto-complete function. Pressing it twice in quick succession
displays a list of the Rebol words that start with the characters already typed.
For more information about a specific word, you can use the word help
followed by the Rebol word about which you are enquiring. Each Rebol
word is self-documented and you can do the same for your own functions.
The help function displays the meaning of a word, its different parameters
and its usage in the console.

There are different ways to run a script residing on your hard disk. You can
specify the filename on the command line, create folders used locally by
Rebol/View or use the word do followed by the filename. Thus to evaluate
the myscript.r file, you type the command do %myscript.r in the
console. The “%” character tells Rebol that the argument is of the file
(file!) or path (path!) type. By extension, since Rebol is a network-
oriented language, you can also execute a script stored on a remote server
which will be read with the help of the HTTP or FTP TCP protocols. The
instruction do http://myserver/scripts/transfer.r launches
an application stored in the file system of a web server.

To help you develop your own scripts, the console includes some dedicated
tools such as the word trace which takes a Boolean value (on or off) to
enable or disable the monitoring of code as it runs. This instruction also lets
you monitor network actions and reports the different function calls.
Through the word echo, you can specify the name of a log file in which the
information displayed in the console will be saved. When the word receives

Introduction

 15

an argument with the value none, the logging is halted. recycle gives
control over the Rebol garbage collector. Automatic memory management
can be enabled or disabled. A special “torture” mode allows testing of
extremes.

Establishing a working environment

The console is a very handy tool but is not sufficient to write Rebol
applications. You will, of course, need a code editor to enter your scripts. In
this domain, there are many to choose from and it is mainly a question of
taste. There are configuration files for many editors which provide colour
coding of Rebol code.

You can opt for products such as Vim (www.eandem.co.uk/mrw/vim/syntax)
or Emacs (www.rebol.com/tools/rebol.el) for Unix.

Under KDE, the Kate editor can also be configured to recognise a Rebol
script (www.errru.net/rebol/utilities/katesyntax). On MacOS X, the excellent
editor SubEthaEdit (www.codingmonkeys.de) includes a syntax colouring
file. On Windows, you find the remarkable and free Crimson Editor
(www.crimsoneditor.com). If you regularly swap between different
machines, you could try the free JEdit (www.jedit.org) which runs on any
machine with Java installed and includes not only Rebol code colouring but
also a nice bracket auto-alignment feature.

If you use Rebol/View, then you could use its integral editor, you can
activate it by right-clicking on a file icon on the View desktop and pressing
the Edit button or typing editor followed by the name of the file you wish
to edit in the Rebol/View console.

Rebol – A programmer’s guide

16

Figure 0-10. The Rebol/View code editor.

We have now reached the end of this introduction to Rebol. It has all been
very theoretical so far but from here on we will start programming, even in
the very first chapter.

1
Discover Rebol in an

hour

For your Rebol apprenticeship, you are going to use Rebol/Core or
Rebol/View which are freely available for all the principal development
platforms. Whether you are using Mac OS X, Linux or Windows, you can
start to learn this fantastic programming language.

The robotFTP project

By the end of this introduction, you will have developed a complete program
and seen many different aspects of Rebol. You will now start a short tutorial
to discover the main aspects of programming in Rebol. For this, the best way
is to carry out a real project.

Rebol - A Programmer’s Guide

18

Project introduction

The objective is to develop an automated FTP client. This means you are
going to write a script able to retrieve files from and send files to an
anonymous FTP server. The different operations will be described in a
configuration file. This script will allow you to deploy files according to a
schedule or make a backup of files stored on a remote server. Used in
conjunction with the Unix cron command, your script can be run
periodically without any human intervention.

Technical considerations

In fact, you are going to write an interpreter whose task will be to implement
a set of controls similar to those present in a conventional FTP client. The
application can navigate through the tree structure of either the server or the
client, send or receive a file, treat batches of files by their extension, create a
directory, or delete a file or directory on the remote machine. To describe its
operations, you will use a Rebol object containing the name of the remote
host, the login and the password to be used, a boolean value to indicate a
passive mode FTP connection and finally a list of the FTP commands to be
executed.

With Rebol/Core, the script runs “silently” (needs no keyboard input or
produces any screen output) and can be fully automated. However, if the
script is run under REBOL/View, a graphical display will be used to show
the progress of operations. A name is needed for any project and for this one
it will be robotFTP.

The execution environment

First create a file called robotftp.r with a text editor.

For this file to be executable on Unix (and Mac OS X), you must specify the
path to the Rebol executable on the first line of the file in order to invoke the
script interpreter. So you should use the character sequence #! followed by
the path of the Rebol executable. This is known as the shebang line.

Discover Rebol in an hour

 19

It is often useful to provide Rebol with some additional information to define
the runtime environment. The list of options can be obtained by running
Rebol with the –help option. The -c option is used for running CGI
scripts. If you want to directly evaluate a Rebol expression from the
command line, you can use the --do option followed by the Rebol
instructions. So, the command rebol --do “print 2 + 2” will
display the result of the evaluation. This option is useful when you want to
set the value of a variable before running a script.

Rebol scripts running under Windows don’t need a Shebang line. You can
simply double-click on the script and it will automatically launch Rebol
(provided that the name of the file ends in .r and the r file extension has been
associated with Rebol). When you run Rebol scripts this way, it is not
possible to supply the additional information to define the runtime
environment for each script. To do that you need to run Rebol from the
Windows Command Prompt; for example c:Rebol\Rebol.exe –c
robotftp.r.

For our robotFTP project, you are going to use the most common options
which are -q for starting in silent mode (without any information displayed)
and -s to disable Rebol’s built-in security manager to avoid the interpreter
requesting confirmation from the user for each resource accessed. Rebol’s
security manager allows precise control over the freedom of action of a
script. This is very important with a network-oriented programming
language with which it is possible to download and run applications via the
Internet. The security manager allows monitoring of file system access as
well as access to outside networks.

The security manager

The word secure specifies the behaviour of the interpreter in response to
the script’s requirements for file access (read, write, execute and all)
establishing the rules based on four options (allow, ask, throw and
quit). The logic of the security manager is to allow everything that is
explicitly permitted and even allow the modification of the security policy if
it is reinforced by the new rule.

Rebol - A Programmer’s Guide

20

Otherwise, the security manager is forced to ask the user for specific
permission before allowing any file to be accessed. To avoid the redefinition
of certain critical functions by a script, the security manager also provides
the user with the protect-system word. As you can see security is not
dealt with lightly in Rebol, which provides an extremely safe runtime
environment.

For our robotFTP project, the first line of the script looks like this:
#!/usr/bin/rebol -qs (obviously the file path depends on your
installation).

Writing the header

The next step is to draft the header. Every Rebol script starts with an
information section whose objective is to document the code. Within a Rebol
data block, the programmer has the opportunity to use different fields to
present the script. These metadata are directly readable by a human. The
choice of fields is left completely to the author. However, it is wise to follow
the standards established in the Rebol language documentation.

Chapter five of “Rebol/Core Users Guide” presents some rules to follow to
write clear and legible Rebol scripts and also suggests standard fields to use
for header information. By following this standard, it becomes possible to
use the reflective features of Rebol and perform searches by author,
category, date or version number of the Rebol scripts on your hard drive.

The main fields recommended in the documentation are title for the script
title, date for the date written and author for the name of the
programmer. You can also specify the name of the script (name), the
filename (file), a version number (version) or the version of Rebol
required to run the script (needs). With the fields purpose, note and
history, the programmer can provide a detailed description of the purpose
of the script, give an indication of its functionality and show how it has
evolved.

Discover Rebol in an hour

 21

For the robotFTP project, you will learn the key fields and present the use of
your FTP client. The header is prefaced with the word REBOL and the
metadata are stored in a block, a fundamental data format in Rebol. As you
can see, the allocation of a value to a variable is achieved by using the “:”
operator.

 REBOL [
 title: "automatic FTP client"
 author: "Olivier Auverlot"
 version: 1.0
 purpose: {
 RobotFTP executes of FTP commands
 in order to automate the sending and
 receipt of files
 }

 usage:
 robotftp commands-script
 }
]

The principle datatypes

The construction of the header is an opportunity to discover the many
datatypes available in Rebol. Along with simple types such as integer!,
string!, logic! or char!, the language provides types adapted to
storing and processing large volumes of information with block!, hash!
and binary!.

Rebol demonstrates its adaptation to network programming and information
exchange with a number of dedicated types such as tag!, url!, tuple!
and email!. In fact, you have more than fifty different datatypes at your
disposal. All you have to do to get a list of them is to type the command
help datatype! in the Rebol console.

Rebol - A Programmer’s Guide

22

Figure 1-1. Display of Rebol’s datatypes in the console.

You should not be misled by this profusion of types; Rebol is not a strongly
typed language (in the traditional sense) and places priority on flexibility.
Even though you may declare a declaration with a given type, it may change
at any time during the execution of a script.

Bear in mind that Rebol is able to determine the type of data. So, if you type
the instruction type? olivier.auverlot@domaine.fr, in the
Rebol console, the interpreter will unequivocally return the answer:
email!.

And now, the code!

The first real assignment is reading parameters from the command line. In
effect, when the robotftp.r script is launched it takes the name of a file
containing the various FTP commands to be executed as an argument. For
this, we will use the args property of the options object contained in
Rebol’s system object. This latter is the core of the interpreter and is a tree-
structure composed of a number of objects containing multiple operating
parameters such as the type and version of the interpreter, the installation
directory, the user’s directory, network protocols and statistics collected.
It also contains the whole Rebol dictionary. This unique store contains
constants, functions written in Rebol and native functions written in C.

Discover Rebol in an hour

 23

If you want to embark on a study of this object, all you need to do is to enter
print mold system in the Rebol console.

Accessing a property or a method of an object is achieved with the help of
the / character which sets an access path. To read the args property, you
must write system/options/args. This property contains a block of
character strings. You must therefore obtain the first element of the property
and convert it to a file type before you load the object describing the FTP
operations into memory and evaluate it. In Rebol, this suite of operations is
performed in a single line command: do load to-file first
system/options/args. To avoid an execution error if the list is empty
or the file does not exist, this line should be enclosed in an “error-resistant”
block preceded by the word try. The block is always evaluated. If an object
of the type error! is returned, the second block is executed to manage the
problem.

if error? try [
 commands: do load to-file first system/options/args
] [error/fatal "Command script could not be loaded"]

Declaring a function

If a problem is encountered, the error function is called. Its role is to display
a message for the attention of the user and, if necessary, stop execution of
the script. That decision is indicated by using a feature of REBOL known by
the term refinement. This mechanism allows the modification of the
behaviour of a function and the use of a variable number of parameters. In
this case, it’s the refinement /fatal which is used and it is declared within
the function.

error: func ["Display an error message"
 msg [string!] "Description of the problem"
 /fatal "The error requires stopping the program"
] [
 print msg
 if fatal [quit]
]
A function is a word of the function! datatype. It can be declared in
different ways by using the make function!, func or does syntax.

Rebol - A Programmer’s Guide

24

The error word takes a character string called msg as a parameter and
provides a refinement /fatal. Again Rebol allows the programmer to
include metadata in the code. It is possible to indicate the purpose of the
function and to document the parameters and refinements supported. Once a
function has been evaluated, the help command extracts this information
and displays it in the Rebol console. The body of the function simply
displays the message supplied as a parameter and performs a simple test to
determine whether the /fatal refinement has been used.

Manipulating URLs

Once the contents of the command line have been analysed, you can
construct a URL with which to connect to the FTP server. In the object
describing the operations, the user and password properties contain the
account and password of the user. If the user property isn’t present, the
connection will be anonymous. You must therefore access the user
property of the commands object and check that its value isn’t none. You
will notice in the code that user is preceded by a ' character. This tells the
Rebol interpreter that this data item is a symbol and should not be evaluated
by the interpreter.

The server name is indicated by using the host Property. As all the data has
already been loaded into the commands object, all you need to do is to use
the Rebol string manipulation functions to assemble the URL. In Rebol, a
string is a list of characters that can be manipulated and traversed in the same
ways as blocks. The dictionary contains numerous functions for copying,
extracting, concatenating and searching for character sequences. The
initialisation of the network parameters ends with the activation of passive
mode by changing the Boolean value of the
system/schemes/ftp/passive property. Finally, the script assigns
the current directory tree of the FTP server to the curdir word. When the user
moves through the folders, this variable will be responsible for storing the
location.

Discover Rebol in an hour

 25

ftpurl: copy "ftp://"
if not none? get in commands 'user [
 ftpurl: join ftpurl [commands/user ":" commands/password "@"]
]
ftpurl: join ftpurl commands/host

if not none? get in commands 'passive [
 if commands/passive = true [system/schemes/ftp/passive: true]
]
curdir: copy %/

Executing FTP commands

Now you need to define how the various FTP commands will be described in
the configuration files. These are objects made up of various properties that
indicate the connection settings (host, user, password and passive)
and operations to be performed. For this, you use a property called script
whose content is a block. This will allow you to use one of the most
interesting features of Rebol: dialects.

Defining and using dialects

In effect, Rebol can define unique languages whose function is dedicated to a
specific task. These are specialised vocabularies that are not part of the
Rebol dictionary but which can be defined and manipulated by the user.
Using a grammatical analyser following the BNF (Backus-Naur Form)
notation, it is thus possible to define mini-languages in Rebol.

The dialects can be used in many areas such as describing operations,
establishing a network protocol, or defining constraints and rules. Moreover,
the Rebol interpreter itself contains different dialects dedicated to the
manipulation of strings or the description of graphical interfaces. Several
libraries also use this additional functionality to elegantly extend the
capabilities of the language, so you can find on the Internet a dialect to
generate PDF documents (www.rebol.org) or yet another which simplifies
managing consoles in text mode (http://www.rebolforces.com/articles/tui-
dialect).

Rebol - A Programmer’s Guide

26

The robotFTP dialect

In the case of the robotFTP project, you need a dialect whose syntax is
similar to the commands for FTP clients. So it is a set of commands, each of
which may have an optional parameter. The definition of the rules takes
place in a block where each symbol relates to a possible command. If the
instruction receives a parameter, you must define the type of this parameter
and the name of a variable that will receive its value. The rest of the
definition is enclosed in parentheses and contains Rebol code to be executed
when the command is encountered during the analysis.

In the following code, you will probably notice that the definition of the
different commands is enclosed in an any [] block and each line is
terminated by the “|” character. The reason is quite simple: this is to indicate
to the interpreter that at least one of the grammatical conditions must be met
for the analysis to be correct (the “|” is the syntax for “or”).

rules: [
 any [
 'quit (quit) |
 'debug set arg string! (print arg) |
 'lcd set arg file! (exec-cmd [change-dir arg]) |
 'get set arg file! (exec-cmd [write arg (read/binary make-ftpurl arg)
]) |
 'put set arg file! (exec-cmd [write/binary (make-ftpurl arg)
read/binary arg]) |
 'cd set arg file! (
 either arg = %/ [
 curdir: copy %/
] [append curdir reduce [arg "/"]]
) |
 'mkdir set arg file! (exec-cmd [make-dir make-ftpurl/directory arg])
|
 'delete set arg file! (exec-cmd [delete make-ftpurl arg]) |
 'rmdir set arg file! (exec-cmd [delete make-ftpurl/directory arg]) |
 'mput set arg file! (
 exec-cmd [
 foreach file read %. [
 if (suffix? file) = arg [
 write/binary (make-ftpurl file) read/binary file
]
]
]
) |
 'mget set arg file! (
 exec-cmd [

Discover Rebol in an hour

 27

 files: read make-ftpurl ""
 forall files [
 files: first files
 if (suffix? files) = arg [
 write/binary files read/binary (make-ftpurl files)
]
]
]
)
]
]

Managing errors

Some of the commands are very simple. The quit instruction simply closes
the FTP connection and ends the Rebol interpreter session. The debug
command receives a character string as a parameter which it displays on the
screen. Other instructions are a little more complicated as they are designed
to use the FTP protocol. For this reason, the execution of code is delegated to
a function, exec-cmd, the purpose of which is to manage errors.

exec-cmd: func [
 cmd [block!] "Rebol Instructions"
 /local err
] [if error? err: try [do cmd] [print mold disarm err]]

This function takes a block containing Rebol code as its parameter and
defines a local variable called err. This is used to gather error objects
intercepted by the try word. The Rebol instructions are executed by using
do which simply evaluates a block of code.

In case there is a problem, disarm transforms the datatype error! into an
object which is then displayed on the screen. This object contains various
information including a plaintext message describing the error.

The word mold is designed to prepare information of any datatype for
displaying on the screen. For example, a character string will be enclosed in
quotes, a block in square brackets. In this case, it will be an object that will
be displayed.

Rebol - A Programmer’s Guide

28

Conditional expressions

The navigation around the various directories within the FTP server is
entrusted to the cd command. Its work is to update the contents of the
variable, curdir, by the use of a simple test. For this, Rebol offers two
words; if and either.

if is followed by a condition and a block of code to be evaluated if the
condition is true. either, for its part, is followed by a condition and two
blocks of code: the first is evaluated if the condition is true, the second if the
condition is false. With regard to operators, Rebol is very classical as you
can use =, <, >, <=, >= or <>.

In the robotFTP script, if the argument provided is the value of the file
system root (%/), this value is assigned to curdir. If not, the outcome of
the evaluation of the block is that the argument and a “/” character are
appended to the current directory.

Managing files

The other functions use words concerned with manipulating files. These
commands interact with the server using the FTP protocol and therefore need
to establish a url based on the argument passed as a parameter. For this, you
are going to define the word make-ftpurl which returns a value of the
url! datatype. As a first step, the argument of either the file! or
string! datatype is “cleaned” by using the word clean-path. Thus, a
path like %/home/olivier/docs/../autres/ will be converted to
%/home/olivier/docs/. You also need to distinguish between
generating a URL to a file or a directory. For this, you must define a
refinement /directory which, if used, will force a “/” character at the end
of the url.

make-ftpurl: func ["Constructs the URL for FTP commands"
 arg [file! string!] "Argument passed by the dialect"
 /directory "The URL is for a directory"
] [
 clean-path curdir
 either not directory [

Discover Rebol in an hour

 29

 to-url join ftpurl [curdir arg]
] [to-url join ftpurl [curdir arg "/"]]
]

The lcd command can specify a local directory by using the change-dir
word. The creation and deletion of directories on the FTP server are
entrusted to the mkdir and rmdir commands which call the words make-
dir and delete of the Rebol dictionary. The commands put, get, mput
and mget are more complex as they read or write files, either on the client
or the FTP server. For this, they use the Rebol words read and write, and
also the /binary refinement to work in binary mode.

The command mput allows a group of files with a common extension to be
sent to the FTP server. read returns a file list in a block. This list is then
traversed using foreach and each value is assigned, in turn, to the variable
file. With the word suffix?, its extension can then be compared with
that specified in the argument. If the boolean true is obtained, the file is
transferred to the server. The mget command performs the inverse operation
but uses another word designed to trawl through lists: forall.

Completing and testing robotFTP

You can now complete your application by inserting the line of code
parse commands/script rules.

This instruction will trigger the application of the parse rules on the content
of the property commands/script. To test your application, use a text
editor to write a little test script called test.r. This contains an object
consisting of four properties for the connection parameters and the script
describing the operations to be carried out.

context [
 host: "monserveur.domaine.fr"
 user: "olivier"
 password: "homer"
 passive: false

 script: [
 debug “debut”
 lcd %temp

Rebol - A Programmer’s Guide

30

 mget %.r
 get %gscite159.tgz
 mput %.c
 debug "fin"
]
]

You now need to run it by typing ./robotftp.r test.r in the shell. In
case of a problem, check that your script has execution privileges (chmod
+x). (Under windows, you would type c:\<insert path to Rebol>\rebol
robotftp.r test.r). If all went well, the operations described in the test.r
file were performed. The program is well suited to run under a scheduler
such as the Unix cron utility as it can run silently. In certain cases, a
graphical display can also be interesting. Now you are going to modify the
script to take advantage of the features of Rebol/View.

Adding a graphic layer

Our aim is to add graphic support to the script to demonstrate the capabilities
of Rebol/View. We will open a window containing a progress bar and
display the progress of the FTP commands.

The script will be run on different versions of Rebol, so it is necessary to
determine which version of the interpreter is being used in the script. For
this, you use the view? word which returns the value true if the script is
being executed by Rebol/View.

Managing a progress bar

At the start of the script, you will add a line of code to initialise the variable
stp. A progress bar works on a range of values from 0 to 1 (100%) and stp
is the value that will be added to the progress bar on the completion of each
FTP command. To calculate a reasonable step value, we divide the number 1
by the number of commands in the block commands/script (by
approximation, the number of elements divided by two).

Discover Rebol in an hour

 31

Opening a window

Next we define a function, progress-window, which opens a window in
the centre of the screen. The window’s layout (layout) is defined by using
Rebol’s VID dialect and is assigned to the object ftp-box. This includes a
title (title) and a progress bar (progress) assigned to the object,
progression.

if view? [
 stp: 1 / ((length? commands/script) / 2)
 progress-window: does [
 view/new center-face ftp-box: layout [
 title "robotFTP"
 progression: progress
]
]
]

Integration with the RobotFTP script

To update the progress bar automatically, it is necessary to modify the
exec-cmd function so that it takes advantage of Rebol/View. For each FTP
command executed, the data property of the progression object is
incremented and the graphic component refreshed.

exec-cmd: func [
 cmd [block!] "Instructions Rebol"
 /local err
] [
 if error? err: try [
 do cmd
 if view? [
 progression/data: progression/data + stp
 show progression
]
] [print mold disarm err]
]

Before starting the interpretation of the rules, it is now necessary to call the
progress-window function so that the window is displayed. Once all the
commands have finished, a modal confirmation dialog box is displayed
before the main window is closed.

Rebol - A Programmer’s Guide

32

if view? [
 request/ok "Operations completed"
 unview ftp-box
]

Summary

You are at the end of this short exploration of the Rebol language in which
you covered a number of topics such as writing a script, network
programming and developing a graphic interface. This small project allowed
you a glimpse of the many facets of a novel language, resolutely different
and designed to encourage the interchange of data.

2
The Rebol language

Let’s get started! Type the following instruction in your Rebol console:

print "Cuckoo"

Press the "Enter" key on your keyboard and you will immediately see the
character string "Cuckoo" on your screen. Congratulations we have just
performed our first evaluation. We used the word print whose function is to
display the parameter that immediately follows it on the screen. Don’t worry
about capital and ordinary letters, Rebol doesn’t care: it is not at all case
sensitive.

Survival Guide

Let’s continue our exploration by looking at the word what : it displays the
whole of Rebol’s dictionary in the console. If a Rebol word interests you,
Rebol can provide you with information about the role and function of the
word.

Rebol – A Programmer’s Guide

34

If you want to know what the word input does, simply type the phrase
help input and you will get a description on your screen. Even better,
type source input, you can now look at the source code of the word
input. This operation is possible for all the words in the dictionary that are
defined in Rebol itself. The Rebol interpreter makes the distinction between
words written in Rebol (mezzanine functions) and those created in native
code (native functions) for which the source is not available.

Let’s write a program

Until now we have only directly evaluated our words in the Rebol console.
We haven’t written a program yet. We can write a Rebol program using a
simple text editor. All software written in Rebol must start with a descriptive
block allowing you to document your code. This block can be empty but it
must always be present

Rebol [
 Subject: "my first program"
 Author: "Olivier Auverlot"
 Version: 1.0
]

You can even create your own headings according to you needs (update
descriptions, objects or libraries required, date of last modification, etc…).
There is a recommended set of headings but you are not forced to use them.
This freedom allows you to adopt the descriptive block to the needs of each
project; the important thing is to make sure that there is consistency between
different software components. So our block could also be written:

Rebol [
 Title: "my first program"
 Author: "Olivier Auverlot"
 Version: 1.0
 Date-released: 10/11/2000
]

What will our first program to do? It will simply display a string of
characters on the screen, wait until the “Enter” key is pressed and then stop
running. To do that, add the following code immediately after your
descriptive block:

The Rebol Language

 35

print "Do the REBOLution !"
input
quit

Running Your Script

Save this program on your disk with the name programme1.r. If you are
working with Windows, all you need to do is double-click on the icon of
your script’s file. Under Linux and Mac OSX, you can run the script by
entering the shell command rebol programme1.r

A second option under Linux and Mac OSX is to link the script to the Rebol
interpreter. First insert the instruction #!/usr/bin/rebol –qs as the
first line in your script; make sure it is before the opening Rebol block. (This
line is called the shebang line in the Unix world). As you can see, we can
pass runtime options to the Rebol interpreter as it is launched. When our
script is run, the Rebol interpreter will not display any messages or impose
any security restrictions. You can get a full list of the available runtime
options by entering the word usage in the Rebol console. Then once you
have added the shebang line and saved the file again, you must then make
the script executable by entering the shell command chmod +x
programme1.r.

You also have the option of running the script directly from the Rebol
console. The do word can be used to run a script. It takes the name of the
script to execute as a parameter; you can specify an access path to the script
if necessary. In Rebol, a file is a datatype recognised by the interpreter
because it starts with the “%” character. For this reason, if you want to run
our script and it is stored in the directory /home/olivier, you type do
%/home/olivier/programme1.r in the Rebol console.

Rebol – A Programmer’s Guide

36

Figure 2-1. Running a script in the console.

Variables and datatypes

After seeing how to use the console and the structure of a Rebol script, we
will now create our first words. Rebol programming consists of expanding a
dictionary of words which represent functions, object and variables.

Declaring a variable

It is extremely simple to create a word in Rebol. All you need to do is add
the character “:” at the end and indicate its value. So the expression var: 0
adds a word called var with the value number 0 to the dictionary. With the
Rebol language being case insensitive, we could have also used Var, VaR,
etc. If we then enter the word in the console, we obtain the value 0 as Rebol
evaluated the content of the word which now forms part of the dictionary in
its global context. However, if you use the word what, the word var seems
to be missing from the dictionary. The answer to this question is obvious:
what does not display variables. There is a way to check that a variable was
actually declared; use the Rebol help function: help var (or its shorthand?
var).

The Rebol Language

 37

This not only confirms that the word has been created but also shows that the
type of its value is an integer and its value (0). Nothing surprises you? For
what reason did Rebol declare our variable completely when we didn’t
specify a type? The explanation is that in absence of a specific declaration,
the interpreter selects the datatype that seems appropriate.

Another concept can and may possibly shock many purists: a word does not
have a fixed type; it assumes the type of its contents and may well change
during the course of execution. This means our variable may well be an
integer when a script starts to run, then change to a character string halfway
through and finally end up as a real (floating point) number. All these
transformations have an element of danger but they are all possible. You will
see later on how useful this potential danger can be once you’ve learnt how
to tame it.

Finding the type of a variable

If during the execution of a script we want to find out the type of a variable's
contents, we use the word type? Entering type? var in the console
gives us integer!, which makes perfect sense. Now let us try to change
the content of var by keying in var: 0.82 and checking its type in the
same way. Now we get decimal!. The type of our word has now properly
changed in-line with the change of its content from a whole number to a
floating point number.

Using Constructors

Using Rebol’s constructors allows you to specify the datatype of a word.
You no doubt can see that you don’t have to use them but their use is
strongly advised to help understand and maintain long scripts. Suppose we
wanted to define the type of our word var as date!, the syntax to do so is
var: make date! 1/1/2000. Don’t be surprised by the direction of
this expression, the word var definitely will have the type date! and is
initialised to the 1st January 2000. Also never forget that its type can change
constantly during execution.

Rebol – A Programmer’s Guide

38

A practical use of constructors is in converting types. For example, var:
make integer! 3.2 gives us the way to extract the whole part of a
number (the word var will contain the value 3 and be of type integer!).

Simple datatypes

In this category, we will find the principal datatypes present in any
programming language. We’ve already met integer!, decimal! and
date!. Rebol also includes the types time! for the time, money! for
amounts of money, logic! for boolean (true or false, on or off, yes
or no), char! for single characters and none! which indicates there is no
value present. The following examples show these different types:

int: make integer! 0
float: make decimal! 2.98
hour: make time! 15:35:00
date: make date! 1/1/2000
cash: make money! $10
boole: make logic! true
character: make char! #”A”
undefined: make none!

Complex datatypes

Rebol’s complex datatypes are series which are made from simple types.
These are the tools which give Rebol its power while making it possible for
the programmer to easily handle data storage blocks, access paths to the
files, URL or electronic mail addresses. Rebol is truly a language adapted to
the daily needs of developers of client/server, n-tier and web applications.
There are over fifteen complex datatypes in Rebol which will surely provide
for your every need.

Character strings have the string! datatype. Strings are classically
contained between double-quotes except when the string includes carriage-
returns or double-quotes, then you must enclose the string in curly-brackets
{}.

The Rebol Language

 39

This ability to cope with those special characters is really appreciated by web
programmers who can directly insert their HTML in Rebol scripts:

codehtml: {
 <html>
 <head></head>
 <body>
 My HTML page.
 </body>
 </html>
}

For binary data, we have the astute binary! type that allows us to specify
in which base our data is stored. Suppose we want to assign a byte in base 2
to our word, we would use the declaration data: make binary!
2#{01111111}, which is the value 127.

Filenames and access paths are represented by the file! type. They always
begin with the % character. If we enter f: %file.txt in the console,
the expression type? f tells us that f has the file! type. We can always
convert a character string to a filename by using a constructor. The syntax to
use is f: make file! “file.txt”.

For the net, both the Internet and Intranets, Rebol has a veritable host of
types. The declaration of an email address is simply my-email-
address: make email! olivier@domaine.fr. Access paths to
web resources (Uniform Resource Locators) are, as you will probably have
guessed, represented by the url! type. The expression web: make url!
http://site.domaine.org is how we assign an address to a word.
TCP/IP do-it-yourselfers will appreciate the presence of the tuple! and
port! types which represent an IP address and a socket respectively.

Blocks

Data blocks are also a complex datatype and are one of Rebol’s key
concepts. They are at the heart of all components of the language. In Rebol,
everything is a block. A script header is one, data and instructions are
grouped in them, blocks are contained within blocks, and a script is a group
of blocks. For Rebol programmers, the world is a block !!!

Rebol – A Programmer’s Guide

40

More seriously, blocks contain the structures in which to store information
enclosed between square brackets i.e. [and]. There are a few different
constructors with which to define blocks. The main one is block! and it
works with a list of values of differing types organised without any
restrictions or fixed-formats. So we can mix the various Rebol datatypes and,
of course, include other blocks as well. The following example is completely
valid :

myblock: [

“abcd”
olivier@domaine.fr
[1 2 3]
%file.txt
[255.255.255.0 [80 129]]

]

By default, Rebol gives the block! type to a list of values if no type is
specified. For large, frequently viewed blocks of information, Rebol also
provides the hash! type which allows the optimisation of data searches.

Handling lists

Hopefully, you are rapidly coming to understand that lists are fundamental in
Rebol as they make it possible to store and manipulate data. A good
understanding of them is essential to be able to use the language correctly.

Arrays

It probably won’t surprise you to find that in Rebol, an array is a list. The
word array allows the definition of an array with n elements. Enter
mytab: array 5 into the Rebol console.

You have just defined an array of five elements; each initialised to the value
none. If you want to initialise each element of the array with the integer 0,
you can use the refinement /initial :

myarray: array/initial 5 0

The Rebol Language

 41

Refinements provide options for words. In fact, they allow a variable number
of parameters to be passed to a word. Additional parameters are written in
the same sequence as the refinements which allow you to use them. We will
see later how to define refinements in our own words.

It is also possible to create an array with multiple dimensions by using a list
with the word array. Suppose we wanted a two-by-five array, you only
have to type:

myarray: array [2 5]

Arrays in Rebol are just lists, both are handled with the exactly the same
words. Before we continue, I would like you to create the following list in
the Rebol console:

colours: [1 "red" 2 "green" 3 "blue"]

Navigating within a series

A list may be considered as a database. A pointer is used to traverse the
different elements of a list. It marks the starting point from which data can be
read. The words head and tail, respectively, let you place it at the
beginning or end of a series, next and back let you advance or move back
within the series. To find out if we are at the beginning or end of the series,
we can use the words head? and tail? which return a boolean value. The
following example places the pointer at the start of the colour series moves
forward one element and checks to see if we have found the last element.

colours: head colours
colours: next colours
tail? colours

The word index? lets us find out at which element the pointer is
positioned. It is also possible to place it directly at a given position with the
word at. The new position is relative to the existing position of the pointer
in the series. If we now enter colours: at colours 1, we don’t get
the value 1 but the character string “red” which is the element with which the
pointer was aligned at the time we entered the phrase.

Rebol – A Programmer’s Guide

42

In the same way length? returns the length of the list from the position
recorded in the pointer. (Incidentally, the length of a list in Rebol is simply a
count of the number of elements in the list).

Accessing an element

Accessing an element in a list is very intuitive. First let’s return our pointer
to the first element in the list with colours: head colours. We can
now use the words first, second, third, fourth, fifth,
sixth, seventh, eighth, ninth and tenth. If we want the
second element of the list, simply enter second colours. This method
is perfect for the first ten elements of the list but what happens if our list has
more than ten? We have the option of retrieving an element at a specific
position in the list. There are two alternatives for this: colours/2 or pick
colours 2. These two instructions will display the second element of the
list colours.

Adding and removing elements

Adding an element or another list to an existing list can be done through
either insertion or concatenation by using the words insert and join.
Suppose we wanted to add the block [4 "yellow"] to our list, we can
choose between two methods: colours: join colours [4
"yellow"] or colours: insert tail colours [4
"yellow"]. The join word makes it possible to combine elements
while in this case insert adds the block to the end of the colours block.
That is because we move the pointer to the end of colours with the word
tail. As you would expect, if we want to insert another block at the
beginning of the colours list, all we have to do is colours: insert
head colours [0 "white"].

The remove word allows you to remove the element at which the pointer is
positioned from the list. If we want to remove the second element from the
pointer, we simply type remove at colours 2.

The Rebol Language

 43

Modifying a series

As well as pick, we have poke which will bring back fond memories for
old Basic programmers. poke allows you to change a value in place within
the series. Like pick, poke index 1 always points at the first element of the
series from the current pointer. The expression poke colours 2
"violet" will replace the string "white" with the string "violet" (as
long as you inserted 0 and “white” at the beginning of the list and the
current pointer points to the head of the list).

The word change also has the same effect: change at colours 2
"white" puts the original value back in our list.

Searching and sorting series

Rebol has two words for searching for elements within a list. If the element
isn’t found, these two words return the value none. find returns the rest of
a list starting from the position of the element being searched for. If you
enter find colours "blue", the interpreter displays [“blue” 4
"yellow"].

The select word behaves differently because it returns the element after
the one being searched for. select colours 4 gets us the value
"yellow". select is perfect for look-ups in a configuration file while find
is useful for searching a database held in memory.

We also have the ability to sort the contents of a list in ascending order by
using the word sort. (Rebol even allows the programmer to replace the
standard sorting algorithm with their own).

Copying and clearing series

The word copy lets you copy one series to another. Any existing data in the
destination list is lost. The expression mycolours: copy colours
makes a copy of the elements of colours in the list of mycolours. Why
isn’t the operation "mycolours: colours" sufficient?

Rebol – A Programmer’s Guide

44

Perform a simple test by creating a list a containing [1 2 3 4]. Now
assign a to b with the expression b: a. If you change the first value of a to
10 (a/1: 10) and then type b in the console to find its value, you will
notice that the first element of b has also become 10. Why? The answer is
simple: when assigning one list to another they, in fact, share the same space
in memory. For this reason, modifying an entry in one also modifies it in the
other. It is necessary to be careful when using such an approach and it is best
to consider using the word copy which creates a real copy of one list in
another (At this moment, I’d like to remind you that a character string is also
a list!). In this case, the second list contains the same elements as that of the
original one but has its own space in memory. The two are totally independent.

Clearing a series is done with the word clear followed by the name of the
list. The word used for the name of the list is not removed from the
dictionary but is emptied of its contents. If you wish to completely delete a
word, you can use the word unset.

Many of the words which we have just seen have many refinements which
make the life of the programmer much easier. It would take too long to go
into them in all in detail here. I suggest that you make use of help in the
console which allows you look into all the different options available. Try to
fully understand how to work with lists; these words are truly the base of the
language.

Control structures and loops

After having discovered some of Rebol’s data handling capabilities, we will
now look at the control structures and loops available in the language. What
is surprising on first seeing them, is the sheer number of options available to
the programmer. Rare are languages which offer such freedom.

Tests in Rebol

In programming, tests allow the modification of the execution path of a
program according to their evaluation. The scheme is simple: if a condition
is true [do something] if not [do something else].

The Rebol Language

 45

Rebol adopts this very traditional model. The word assigned to this operation
is if. If the evaluation of its first parameter returns a boolean true, the
code placed in the second parameter will then be executed. Tests use the
classic operators such as, <>, >, <, <=, >= and the equals sign also allows the
comparison of character strings. Contrary to many other languages, you
don’t have to enclose your tests within parentheses but experience shows that
doing so can help to increase program legibility. The following program
displays "OK" when the user enters the number 0:

REBOL []
nbr: to-integer ask "a number ?"
if (nbr = 0) [print "OK"]

The words all and any provide a concise form of the logical operations
AND and OR. With all, the test returns true if all of its conditions are
true. On the other hand, any returns true if any of its conditions are true.
The following example displays "ALL true" if both of the variables a and b
are 0, it then displays "ANY true" when it finds that c is not 0 but that a is
0:

REBOL []
set [a b c] [0 0 1]
if all [(a = 0) (b = 0)] [print "ALL true"]
if any [(a = 0) (c = 0)] [print "ANY true"]

(Did you notice that we used the word set to quickly create and initialise a
list of variables? Why not look it up in the Rebol console to find out more
about it.)

And else?

Up to now, we have seen what happens only when a test turns out to be
“true”. But generally, we must also manage the other case: when the result of
the test is the boolean false. In Rebol, we have to ways to do so. First of
all, we can use the refinement else available for the word if. The first
block of code is executed if the condition returns true, if not the second block
is evaluated. In the following code, we display true or false depending on
whether the variable a contains the character string "Rebol" or not:

Rebol – A Programmer’s Guide

46

REBOL []
a: copy "Rebol"
if/else (a = "Rebol") [print "true"] [print "false"]

We can also use the word either which is actually more in the spirit of the
language. A little history, the refinement else of the word if had been
requested by Rebol programmers on the mailing list. Originally, only
either allowed a test of the form IF…THEN…ELSE. It is very simple and
more stylish (though that is a matter of taste!):

REBOL []
a: copy "Rebol"
either (a = "Rebol") [print "true"] [print "false"]

Multiple choices

With the word switch, you can selectively execute portions of code; the
choice of which code to execute is made on the basis of the value of a
variable. The default refinement allows you to handle cases when the
value doesn’t match one of those specified’

Rebol []
choice: to-integer ask "What is your choice (1 – 3)?"
switch/default choice [
 1 [print "choice 1"]
 2 [print "choice 2"]
 3 [print "choice 3"]
] [print "This choice was not expected"]

Loop

The word loop repeats a sequence of code a specified number of times. (Of
course, the specified number must be a positive integer.). Loop’s first
parameter is the number of repetitions and the second a block containing the
Rebol instructions to be repeated. Our example asks you the number of times
the program should display "Hello" on the screen and then carries out the
operation.

REBOL []
nbr: to-integer ask "Number of repetitions ?"
loop nbr [print "Hello"]

The Rebol Language

 47

The for loop family

forever is the simplest of this group of words. It simply executes the code
passed to it as a parameter: forever [print "Stop me by
pressing ESC !"].

The word for runs a portion of code a certain number of times but this time
the programmer can use a counter for the loop and control its incrementation.
for is a word which requires no less than 5 parameters:

• A variable to act as a counter,
• The value of the counter at the start,
• The value of the counter at the finish,
• The amount the counter should be incremented on each iteration of the

loop ,
• The Rebol code to be executed.

The following program inserts ten integers (1 to 10) in a list.

REBOL []
list: copy []
for i 1 10 1 [append list i]

The words forall, forskip and foreach are extremely useful as they
allow you to traverse the elements of a list. On each iteration of the loop,
forall moves the pointer onto the next element in the list. It makes it
really easy to display the contents of our list in the following way:

forall list [print first list]

forskip traverses a series while skipping over a specified number of
elements until it reaches the end of the list. This displays every second
element of our list:

forskip list 2 [print first list]

After forall and forskip have done their work, the list’s pointer will be
found at the end of the list. To perform more actions on the list, it is
necessary to return the pointer to the start by using the word head.

Rebol – A Programmer’s Guide

48

foreach also traverses each element of a list but it assigns the value of a
pointer to a variable:

foreach value list [print value]

Contrary to forall and forskip, using foreach does not require
putting the list’s pointer back at the start of the list. It stays in its original
position.

Repeat, until and while

The word repeat makes it possible to repeat the evaluation of a block of
code a specified number of times, a variable is used as a counter for the loop
which is fixed to start at 1 and is incremented by one for each iteration of the
loop. This variable does not belong to the global context and it doesn’t exist
outside the block of code being evaluated. The following example displays 1
2 3 in spite of i being initialised to 5 at the start of the program.

REBOL []
i: 5
repeat i 3 [print i]
print i
; the loop has finished, i is always worth 5 !

The two words until and while permit the execution of a program
sequence an undefined number of times. The difference between the two
words is that until evaluates the code until the last evaluation in the block
returns the boolean true whereas while evaluates the code as long as the
supplied condition is true. (Actually, until keeps evaluating the code as
long as the last evaluation in the block returns false or none). The
following example uses the two methods; the objective is to increment a
numeric value until it reaches the number 10:

REBOL []
i: 0
until [

i: i + 1
(i = 10)

]
i: 0
while [i < 10] [i: i + 1]

The Rebol Language

 49

A simple game in Rebol

We’re now going to write a short Rebol program and, in this case, we’ll start
with a simple game. It is a matter of guessing a number selected by the
computer. The game guides us by indicating if our guess is higher or lower
than the secret figure.

Figure 2-2. Running the game.

The logic consists of two embedded loops which respectively execute the
code indefinitely and ask the player to guess until he finds the correct
number. Once the guess is correct, the boolean end takes the value true,
which stops the execution of the loop defined by the word until. The
secret number is obtained from the word random followed by a maximum
value. In our case, the figure lies between 0 and 100. We also have a counter,
initialised to 0 at the start of an attempt, which indicates how many guesses
the player took to win. It is incremented by 1 for each guess.

REBOL []
forever [
 value: random 100
 counter: 0
 end: false
 print "NEW GAME"
 until [
 nbr: to-integer ask "Your figure ?"
 counter: counter + 1
 either (nbr <> value) [
 either (nbr < value) [

Rebol – A Programmer’s Guide

50

 print "Too small !"
] [print "Too big !"]
] [
 print ["Won in " counter " tries"]
 end: true
]
 end
]
]
;; Note press the escape key to finish playing

Functions and objects

Programming in Rebol consists of defining words in order to extend the
dictionary. These words can represent three different components of the
language. You already know variables whose role is to store data. The two
other types allow the development of more consequential applications; they
are functions and objects.

These types of words allow you to structure your code in order to facilitate
legibility and its re-use.

A function is a grouping of instructions that carry out one or more definite
tasks and are generally executed several times when the program is run. An
object contains both methods and properties, i.e. functions and variables
respectively. Functions are the building blocks of Rebol; you effectively
extend the language by adding functions.

One characteristic of an object is to behave like a black box that performs a
specific role well and that can be used repeatedly to save work. An object is
a reusable component; its user doesn’t need to know its inner workings, only
the various entry points, which are known as properties, public methods, and
exit points.

Using functions and objects

Whilst a function is usually very dependant upon the environment in which it
is executed, an object, on the other hand, is an integrated module that can be
used in any project, a way to capitalise on existing code that has been tested
and is reliable.

The Rebol Language

 51

Object-oriented programming makes it possible to consider large-sized
developments and teamwork: each team member being responsible for a
well-defined part of the program.

As in other languages, functions can be grouped in libraries. Objects can
include other objects as well as properties and methods, thus facilitating the
intuitive construction of hierarchies of objects. It is also important to
immediately learn of a crucial concept in Rebol: contexts. We have already
seen that Rebol makes it possible to define the scope of a word. By default,
all the words in the dictionary belong to the global context; they are known
to and useable by all other words in the same context. On the other hand it is
possible with the word use to define evaluation contexts different from the
global context. In this case, a word cannot use a word belonging to another
context. How are the words defined in functions or objects registered? Be
very careful with your first Rebol programs because unlike many other
languages, all variables defined in a function, unless they are specifically
stated to belong to a local context, are automatically placed in the global
context of the script.

The opposite is true of objects that are designed to provide independence and
modularity and automatically have their own context. A method or a
property exists only within the object itself. Any references to these elements
must specify the object that contains them.

Defining functions

Rebol makes little, if any, distinction between code and data. A function is
simply a kind of data, not surprisingly of the function! datatype which takes
as its parameters a list of words corresponding to the values sent to the
function when it is called and the code to be evaluated. We can define a
function called square which, as you will have guessed, returns the square
of a number like this:

square: make function! [number] [

number * number
]

Rebol – A Programmer’s Guide

52

The first block contains the list of parameters, the second the sequence of
code to be evaluated by the function. Our function is included in the global
dictionary and can now be used by all the words in the language. Which we
call by simply typing: square 4 in the console.

The value returned from a function is always the result of the last evaluation
performed by the function. If you want to force a return from a function, i.e.
to return a value and stop executing the function, you can use the word
return.

square: make function! [number] [

return number * number
]

If you want, you can define variables belonging only to the context of the
function by using the word use. Any word defined in this way will only
exist within the function:

square: make function! [number] [
 use [result] [
 result: number * number
]
 return result
]

With the word function, Rebol makes our work easier. This word lets you
define in one step, input parameters, local variables and refinements with
which you can introduce optional behaviour into a function. It also allows
you to specify the datatypes of the parameters and provide information about
the function that can be looked up from the console by using the word help.

square: function [
 "calculate the square of a number"
 number [integer!] "the input – the number to be squared"
 /increment n "increments the result with the value n"
] [
 result [integer!]
] [
 result: number * number
 if increment [result: result + n]
 return result
]

The Rebol Language

 53

Figure 2-3. Help lets you explore words.

Creating objects

Defining and using objects in Rebol is extremely intuitive. An object has the
object! datatype. Its initialisation block simply contains the methods and
properties of the object. The definition of a property uses the same rules that
you would use for a variable. Writing a method is the same as writing a
function. An object may also contain other objects.

The principle semantic difference between objects in Rebol and many other
languages is that you use the character "/" instead of "." to specify the access
path to a property or method. However, it is similar to such other languages
in that an object can refer to itself through the use of the word self.

We’re going to define an object computer whose property user defines
the first name of the user. The sub-object hardware allows the definition
of the computer’s characteristics and the methods on and off are intended
to switch the machine on or off.

computer: make object! [
 user: make string! "Olivier"
 hardware: make object! [
 processor: make string! "Alpha"
 memory: make integer! 32
]
 on: make function! [] [print "I’m switched on"]
 off: make function! [] [print "I’m switched off"]
]

Rebol – A Programmer’s Guide

54

In Rebol, the object is immediately usable. You can immediately access the
object without going through a process of instantiation, you work directly
with the object model (programming by prototype). You can replace or
modify the value of the property computer/user, the methods are
addressed with the syntax computer/on or computer/off. The object
hardware needs the complete description of its access path, for example
computer/hardware/processor. You can also create an instance of
the object in the following way: my-machine: make computer [].

Now let’s create a machine used by Nicolas and fitted with a network card:

server: make computer [
 user: "Nicholas"
 hardware: make object! [
 processor: "X86"
 memory: 128
 network: make logic! true
]
]

There we inherited from the object computer and added a new property to
those we had inherited. As you can see from the following code, you can
also build lists of objects dynamically:

userlist: ["Olivier" "Nicholas" "Damien"]
machines: []
foreach the-user userlist [
 append machines make computer [user: the-user]
]

Afterwards if you want to look-up or modify one of the objects in the list,
you’ll need to define an object to use as a pointer to the object in the list:

ptr: second machines
ptr/user: "Natalie"

The Rebol Language

 55

Figure 2-4. The content of objects is displayed by probe.

Parsing and dialects

We will now take a look at two complimentary aspects of the language:
parsing and dialects. If Perl and JavaScript users already know the first, the
second is new and is one of the strong points of Rebol. In combination the
power for handling character strings and the ability to define your own
dialects, true languages in themselves, make a Rebol unique and profoundly
expressive tool.

The art of handling character strings

It’s no secret that handling character strings is repetitive, painful and tiring.
We are all regularly faced with writing algorithms needed to extract from
data held in a flat file or a page HTML, to verify a string conforms to a
precise specification, etc.. The majority of traditional languages offer the
programmer only limited functionality to add characters or to search for one
string within another. Happily for us, some developers had had enough of
repeating these intellectual contortions indefinitely.

Rebol – A Programmer’s Guide

56

So they the idea that the handling of strings could be modelled in a set of
rules: it is the parsing technique. Larry Wall’s Perl, originally intended for
the data retrieval and report generation, is one of the most famous languages
in the parsing domain. In a few characters, it is possible to define an action
that can be applied to all the characters in a string.

Rebol parsing

Rebol is a messaging language. Its premier function is to obtain, process and
transmit information. On the web, most data is being stored within HTML
pages or XML documents which are both text files. It is logical that Rebol
has a tool for the analysis and extraction of information held in character
strings.
The vision of parsing in Rebol is much more modern than that implemented
in the majority of the other languages. It is not a question of keying obscure
character combinations but of using a true language conceived for this type
of operation: a dialect.

Parsing using a dialect

A dialect is a specific language that is integrated with Rebol. It is a language
within a language. It is dedicated to a specific task and does only that. If
you’ve come across the term domain specific language, a Rebol dialect is
one.

Soon we’ll look at the creation of graphical interfaces with the help of
Rebol/View. We use the VID (Visual Interface Dialect) to define the
graphical components of an application. This is probably the first parse
dialect that you’ll see though you should know that Rebol includes several
other dialects

What is so good about dialects is that we can not only use powerful specific
languages in their domain but also define our own. It is even possible to
implement a BASIC interpreter in Rebol, allowing the two languages to be
combined in a single program. In fact, John Niclasen has done just that and
implemented a BBC Basic interpreter in Rebol. You can find it at
http://www.fys.ku.dk/~niclasen/rebol/bbcbasic.r

The Rebol Language

 57

But that’s not all. Dialects have more of interest: allowing an application to
be divided into four parts:

• an engine using a dialect,
• application configuration,
• visual aspects of the application (graphical components),
• application functionality (management rules, help descriptions, etc).

If in current applications we have the opportunity to parameterise the
software (maximum values, default values, etc), thanks to dialects, we can
now extract the application logic from its body. Setting parameters now
extends to its internal logic with its behaviour. The main difficulty then
becomes defining a specialised dialect which will be sufficiently general-
purpose.

A little parsing

In Rebol, you use the word parse to perform a parse operation on a
character string. The two parameters for this word are the character string to
be manipulated and a block of processing rules to be applied. If the operation
consists only of splitting out the string based on a specified character
separator, we supply, in the place of the block, only the separator or a
character string containing more than one character separator. Using the
value none as the second parameter indicates that the string must be split by
spaces and other standard separating characters such as the comma.

Suppose we have a character string txt that contains "A few words on
Rebol ", We can separate the individual words from each other by using the
expression parse txt none. We receive a block that contains a different
character string for each word: ["A" "few" "words" "on" "Rebol"].

For our second example, we have a string txt that contains the characters
"abcdefg". We can split the string by using the characters “b” and “e” as
separators. All we need to do is use parse txt "be" to get the desired
result: ["a" "cd" "fg"].

Rebol – A Programmer’s Guide

58

It is also possible to verify that a string conforms to a specific model. Does
the following string contain only two sequences of the characters “xx”?

txt: "xx xx"
parse txt [2 "xx"]

There we used a rule checking the presence of two “xx” strings inside
another string. The word parse then returns a boolean value, true if the
string conforms to the parse rule, otherwise false.

We can also extract data from a string using rules. For example, if we want
to extract the characters present between "xx" and "yy":

txt: "some xx words yy on Rebol"
parse txt [
 thru "xx"
 copy extract
 to "yy"
 (print extract)
]

Here we split out the contents of txt from "xx" until "yy". The result is
stored in the word extract that is displayed by print. The parse dialect
allows the execution of Rebol code inside its own code.

Defining a dialect

Creating a dialect in fact means to define analysis rules. If the syntax is
correct, the dialect’s instructions are executed. For example we can set up a
dialect named cursor to manipulate the cursor of the Rebol console. We
will define two instructions:

• cls clears the screen
• at positions the cursor at the position indicated by a value of the

datatype pair! (e.g. 3x5)

The rules are simple. If Rebol finds the word cls, it clears the screen.
Otherwise, if the word at is found, it must be followed by a value of the
type pair!. The rules are exclusive. The instruction performed is one of
those that were defined (any) but there is only one instruction that relates to
each word in the dialect.

The Rebol Language

 59

For that, we use the "|" character which corresponds to “or”. A function
named cursor takes a block of code as a parameter to be analysed and
parsed. Using the word compose, all expressions encloses in parentheses
are evaluated and replaced with their value. This functionality allows us to
insert variables or Rebol code within code written in this dialect.

REBOL [
 Subject: "cursor dialect"
 Author: "Olivier Auverlot"
]

cursor-rules: [
 any [
 'CLS (
 print "^(1B)[J"
) |
 'AT set pos pair! (
 prin join "^(1B)[" [pos/y ";" pos/x "H"]
)
]
]

cursor: function [code] [] [parse (compose code) cursor-rules]

We can now use our dialect in our Rebol scripts. The following example
clears the screen, displays a string at the top of the screen and then displays a
line of 20 characters underneath it:

cursor [
 cls
 at 10x2
]
prin "Hello !"

p: 1x4
for x 1 20 1 [
 p/x: x
 cursor [at (p)]
 prin "="
]

Rebol – A Programmer’s Guide

60

Figure 2-5. Cursor dialect test.

Summary

Rebol is an incredibly simple yet powerful language. It makes it possible to
carry out complex operations with the minimum of code. It has many built-in
datatypes and facilitates writing very structured code. It also supports an
object-oriented approach. Finally, its capabilities in the fields of parsing and
dialecting make it profoundly different from other languages.

3

GUI, graphics and
sound

In the first chapters of this book, we mainly used the Rebol/Core version in
the examples. Being limited to displaying text, that version doesn’t allow
you to create any really interesting presentation effects. To build graphical
interfaces, drawings and generate sounds, there is a version called
Rebol/View.

Rebol/View is an extension of Rebol/Core. It does everything that
Rebol/Core does but also allows the design of graphic interfaces that are
completely platform independent. Your application does not require any
changes to work on a different system from the one on which it was
developed. In fact, there are even two versions of Rebol/View. The first,
called simply Rebol/View, is totally free. You can consider it to be a
graphical version of Rebol/Core.

Rebol – A Programmer’s Guide

62

The second, called Rebol/View/Pro, is the commercial version of the
language. If you buy it, you then have Rebol/View enhanced with many
extensions such as:

• calling functions from dynamic libraries (DLL under Windows, .so
files in Linux, etc.),

• powerful data encryption functions such as RSA, DH or DSA.

GCS and VID

To display graphical components on the screen, Rebol/View contains a
Graphical Compositing System. This very powerful engine not only allows
you to display graphics, text and images but also to apply special effects
such as colour graduations, mirror effects or modify the colour palette. One
can do this working directly with the GCS but then you have to do
everything by hand. The GCS represents the lower level functions of Rebol.
It is best to reserve their use for very specific applications such as the design
of personalised graphic components or the development of complex
multimedia products.

Happily for you, the designers of Rebol/View foresaw the need to avoid
having to reinvent the wheel with each application. The solution resides in
using a dialect called VID (Visual Interface Dialect). This makes it possible
to display and handle the principal graphical interface elements with just a
few instructions. It is important to remember that VID is just one dialect
amongst others. The great idea of Rebol/View is that everyone can develop
their own graphic dialect adapted to their own needs (business applications,
video games, interactive kiosks, etc.). VID is a generic dialect which allows
the very easy development of all types of application.

Basic concepts

The definition of a window’s contents is described as a list of settings with
the name of layout. It is actually a block of instructions for the VID
dialogue.

GUI, graphics and sound

 63

You can also mix Rebol code with the declaration of the different graphic
elements. Let’s start with a simple example; the following code displays a
window with the text “Hello” inside it:

view layout [vh1 "Hello"]

Figure 3-1. A first window under Mac OS X

It takes only one line of code to create a window with a text box inside it.
Now suppose you want to add a “Quit” button to let the user close the
application, the code then becomes:

view layout [
 vh1 "Hello"
 button "Quit" [quit]
]

Figure 3.2. A button added.

The instructions vh1 and button are called styles in the official Rebol
documentation. You can translate this term to the words “component”,
“graphic element” and possibly even “widget”. Rebol speaks about style
because the form and behaviour of such components are completely
modifiable by the user. The code for handling events is placed in a Rebol
code block. This code block can contain several lines and call functions.

Rebol – A Programmer’s Guide

64

Styles

The VID dialect provides a number of predefined graphic elements. There
are seventeen just for displaying text. The most practical are text for a
simple label, title and vh1 for titles. The word key lets you capture that
a user has pressed a key. The style button displays a button.

The styles toggle, rotary and choice are a button with two positions,
a rotary button and a drop-down list respectively.

The check and radio styles define a check box and a radio button.
field are area input fields.

The styles list and text-list let the user select one or more items from
a list. The slider style provides sliders. You can also use standard dialog
boxes such as a file selector or input boxes or user confirmation request.

In the graphics arena, the style image displays the BMP, GIF, JPEG and
PNG formats and applies special effects to them. The DRAW dialect draws
geometric shapes such as lines, circles, etc. It also provides graphic element
transparency that shows the excellent opportunities in the video game field
with Rebol/View, especially in networked games.

All these styles have properties so that you can dynamically change their
appearance. So that the changes are reflected on the screen, they must be re-
displayed with the word show.

Attributes

In fact, all the graphic elements of the VID use the same parameters and they
can be placed in an unspecified order.

GUI, graphics and sound

 65

According to the type of data, VID is able to know for which attribute a
parameter is intended:

• a character is text to be displayed on the screen,
• graphic co-ordinates (the pair! datatype) indicate the dimensions of

the object,
• a tuple! gives the colour of the element to be displayed,
• a file corresponds to an image,
• a character is a keyboard shortcut,
• a block is a sequence of code to be executed on receipt of an event.

Style layout

There are two ways to place graphic components at a certain position:

• you indicate a fixed position for each component This method is not
recommended at all (the many platforms on which Rebol/View don’t
all have the same graphic resolution),

• you define layout strategies. Then it is no longer a question of where
to specify the elements location but how they are to be placed on the
screen. For example, across indicate that the components should be
placed horizontally, one after another. On the other hand, below
requests the components to be displayed vertically. It is also possible
to define panels to group together graphic related components.

A dollar-euro converter

The following example is a dollar-euro converter. The complete code takes
only 628 bytes.

REBOL [
 title: "Dollar/Euro converter"
]

convert: function [value /dollar /euro] [sum] [
 sum: to-decimal value
 either dollar [
 sum: sum / 1.30
] [sum: sum * 1.30]
 price/text: copy (to-string sum)
 show price
]

Rebol – A Programmer’s Guide

66

view layout [
 price: field 200x20 ""
 across
 dollar: radio of 'currency true [convert/dollar price/text]
 text "Dollar"
 euro: radio of 'currency [convert/euro price/text]
 text "Euro"
 return
 button "Quit" 255.0.0 [quit]
 button "Calculate" [
 either dollar/data = true [
 convert/euro price/text
] [convert/dollar price/text]
]
]

Figure 3-3. A fully functional converter.

The small size of applications developed with Rebol/View enables them to
be easily downloaded over networks.

Image processing with VID

We will continue our discovery of Rebol/View’s Visual Interface Dialect by
using its graphical capabilities. VID is not limited to displaying buttons and
input fields, it also let you display images, change them and apply complex
special effects to them.

GUI, graphics and sound

 67

Using images

Rebol/View can use four of the most common image formats. First of all
there is Microsoft’s BMP format. Compatibility with this format allows you
to make use of a great number of existing images. In addition to this
Windows standard, Rebol/View support the two most widely used formats
on the web, JPEG and GIF and, also, the newer PNG format, conceived to
replace the GIF.

If an image is in one of these four formats, it only takes a single instruction
to load it into memory and make it available. We simply use the word load
followed by the file name. The access path of the file can be either be local
or a URL allowing an image to be fetched across a network. You have to
handle any other image types yourself (which is very complicated – so it is
best to use the supported types if at all possible).

myimage: load %tuxrebol3.gif

Now, the image has been converted to Rebol’s internal format in the form of
a list of binary values which can be looked at with the help of the word
mold and can be modified like any other series value in Rebol.

Displaying an image

Using the instruction image of the VID dialect, we can display the image in
a window on the screen. It isn’t even necessary to load the image in memory
before displaying it. In effect, if we supply a filename as a parameter to the
instruction image, it will retrieve the image from the file before displaying
it. On the other hand if the attribute is a variable containing an image, the
instruction will display it directly. In fact, it simply depends on whether we
want to store the image in memory. The following script displays an image
directly on the screen.

view layout [
 image %tuxrebol3.gif
]

Rebol – A Programmer’s Guide

68

Figure 3-4. Displaying an image.

It takes only a few lines of Rebol code to build a powerful visual display of
images. Let’s see how easy it is to select images in a dialogue box and
independently display them in other windows in Rebol/View.

We create a layout containing two buttons. The first allows the choice of
an image; the second closes the application.

The dialogue to select a file is a standard function in Rebol/View and is
called request-file. (There is a set of standard dialogues that you can
find out about by typing help request- in the console.) The filter
refinement filters the files that are displayed in the dialogue box. Here the
user can only select BMP, GIF, JPEG or PNG images. If the user clicks
“Cancel”, request-file returns the value none.

As the user has the ability to choose several files by using the CONTROL
key, we must display all of the images selected by using a foreach loop.
For each file chosen, the image is displayed in a window with a black
background:

REBOL [
 subject: "image display"
 author: "Olivier Auverlot"
]

GUI, graphics and sound

 69

view layout [
 button "Load" [

choice: request-file/filter [
“*.png” “*.gif” “*.jpg” “*.bmp”

]
 if not none? choice [
 foreach file choice [
 view/new layout [
 backdrop 0.0.0
 image file
]
]
]
]
 button "Quit" [quit]
]

Modifying images

Rebol/View can do much more than simply display images, it also allows
you to dynamically change them and apply complex special effects to them.

An image can be resized simply by providing the word image with the size
of the image as a pair! value.

We can apply a colour onto the image by simply supplying a RGB value as a
tuple!. Suppose we want to dye the image tuxrebol3.gif red and fix
its size at 50 by 50 pixels, the syntax would be:

view layout [
 image 50x50 255.0.0 %tuxrebol3.gif
]

Now suppose that we want to reduce the image to 50% of its real size, then
we must determine its new size based upon its original size. For this, we use
the size property of the image.

myimage: load %tuxrebol3.gif

new-size: make pair! reduce [
 (make integer! (myimage/size/x / 100) * 50)
 (make integer! (myimage/size/y / 100) * 50)
]

view layout [image new-size myimage]

Rebol – A Programmer’s Guide

70

Applying special effects

Without question the most visually impressive feature of Rebol/View is its
capacity to apply a whole host of special effects, inspired by the most
powerful image improvement software such as Photoshop or Gimp, not only
to an image but also to all graphic components (buttons, lists, edit fields, …).

So we can apply transparency, modify the colours, resize, crop, zoom, rotate,
mirror, change the luminosity, generate colour graduations or generate relief
effects. All this functionality is included in standard Rebol/View and is
available on all of the supported platforms. Multimedia programmers or
video-game makers have a new generation tool which is equally at home
networking and processing data as it is with animation and graphic special
effects. Rebol/View is well positioned in the markets for networked games,
interactive CD-ROMs and electronic terminals. For the first time, such
products will be compatible across multiple platforms without modification.

Special effects are activated by the effect attribute of a style. In the
examples we will use an image but remember that these operations can be
carried out to any graphic component. For the following examples, we will
torture Tux! The image tux.gif uses a blue base (0.0.255) to fix the
transparent zones. Let us start by placing it on a base coloured by applying a
transparency effect using the key attribute.

view layout [
 backdrop 96.128.128
 image %tux.gif effect [key 0.0.255]
]

Now we will give it a good shaking.

With the help of the rotate attribute, we can rotate an image. By using a
slider, the user can select the angle applied to poor Tux:

GUI, graphics and sound

 71

view layout [
 backdrop 96.128.128
 tux: image %tux.gif effect [key 0.0.255 rotate 0]
 pos: slider 100x20 [
 tux/effect/rotate: pick [0 90 180 270]

 ((make integer! (pos/data) * 3) + 1)
 show tux
]
]

Figure 3-5. Rotating an image

It is not really any more difficult to apply a relief effect to the Linux mascot.
For this, we are going to define a check-box "Relief" which depending on the
current state adds or removes the emboss effect applied to the image.

view layout [
 backdrop 96.128.128
 tux: image %tux.gif effect [key 0.0.255 rotate 0]
 across
 pos: slider 100x20 [
 tux/effect/rotate: pick [0 90 180 270] ((make
 integer! (pos/data) * 3) + 1)
 show tux
]
 relief: check "Relief" [
 either relief/data = true [
 append tux/effect [emboss]
] [remove (find tux/effect 'emboss)]
 show tux
]
 text "Relief"
]

Rebol – A Programmer’s Guide

72

Figure 3-6. Applying an effect.

Rebol/View has about thirty different effects which support the creation of
animations and complex graphic handling.

Once again, the power and speed of the Rebol/View GCS (Graphical
Compositing System) makes it a single, general-purpose tool. Whilst its
competitors require writing of hundreds of lines of code and the use of
additional libraries, Rebol is extremely concise and self-contained.

The DRAW dialect

Let’s continue to explore graphic programming with Rebol/View. We will
now look at the functions to draw geometric shapes on the screen. These
functions are part of the DRAW dialect which is an integral part of the
effect attribute of each graphic component. This may appear a little off-
putting or over-complicated but it is actually very powerful.

Let’s draw a line

The DRAW dialect is fact part of VID as a sub-dialect. You can only use it
by including it in the effect attribute of a style.

GUI, graphics and sound

 73

Contrary to VID, the order of the parameters is not specified: any
substitution or inversion of an attribute generates an error or causes the
DRAW code not to run.

You place the DRAW instructions in any style, even on top of an image or
button. In general, the most practical style for drawing is box because it
makes an excellent drawing board and can also be equipped with a timer.
Thanks to that, it is really easy to produce animations.

The colour drawn is defined by the pen instruction followed by the name of
the colour or its RGB code (3 octets representing red, green and blue).

To draw a line or place a dot, you use the line instruction followed by two
co-ordinates, as pair! types, for the start and end points. The co-ordinate
axes are Cartesian with the origin classically placed at the top left of the
component.

The instruction line-pattern, with appropriate pen settings, lets you
change the appearance of the line by using dashed and dotted lines. Before
you specify the pattern of the line, you must first set the pen to the two
colours in which you want the line to be drawn. Usually, we set the line to be
a single colour so we specify the first of the two colours to be none. This
sets the first colour to be totally transparent. (Be careful because this only
works if none is specified before the other colour). You then supply line-
pattern with an even number of integer parameters.

When you next draw a line the dialect uses the first colour for the number
of pixels specified by the first parameter, the second colour for the number
of pixels specified by the second parameter, then the first colour for the
number of pixels specified by the third parameter, and so on. (At the time of
writing, the Draw dialect only applies up to a maximum of four parameters.)

Rebol – A Programmer’s Guide

74

view layout [
 box 100x100 effect [
 draw [
 pen white
 line 0x0 100x100
 pen none white
 line-pattern 4 2 5 10
 line 0x100 100x0
 pen white
]
]
]

Other draw functions

You have a complete set of drawing instructions at your disposal. You can
draw a rectangle with the word box followed by two co-ordinates (of
datatype pair!), the first is the top left-hand point of the rectangle, the
second the bottom right-hand corner.

The circle command draws a circle defined by its centre and radius.

To fill a shape with colour, you simply use the fill-pen instruction
followed by a colour before drawing the shape. You can actually specify
fill-pen to use very complex colour graduations by supplying optional
parameters. (If you want an empty shape once you have set the fill-pen,
you must specifically set it to none). polygon is a powerful instruction
that plots straight-lines between the given co-ordinates. The geometric shape
is closed as polygon automatically joins the last point to the first. You can
fill the shape by simply set the fill-pen before drawing it.

view layout [
 box 300x200 effect [
 draw [
 pen white
 box 10x10 100x100
 circle 150x50 30
 polygon 200x10 290x60 270x90 210x110
 fill-pen red
 circle 150x140 40
 box 20x140 100x190
]
]
]

GUI, graphics and sound

 75

Figure 3-7. Using the DRAW dialect.

Adding text

The instruction text displays a character string at a specified co-ordinate.
The colour of the text is fixed by the instruction pen. It is also very simple
to create specially effects such as shading the text:

view layout [
 box 200x100 effect [
 draw [
 pen white
 line 0x0 200x100
 line 0x100 200x0
 pen black
 text 2x42 "Text added with DRAW"
 pen red
 text 0x40 "Text added with DRAW"
]
]
]

Figure 3-8. Displaying text with DRAW.

Rebol – A Programmer’s Guide

76

Manipulating images

In a drawing zone, you can also display BMP, GIF, JPEG and PNG images
with the help of the image instruction. You only need to provide a word
containing the image itself and the Draw dialect will do the rest. If you’d
prefer a little more control you can specify the top left-hand co-ordinate, the
top left and bottom right co-ordinates or the co-ordinates of all four corners
to specify where the image will be displayed. You can also supply the RGB
code for a colour to be rendered transparently.

img-tux: load %tux.bmp
monster: load %monstre.bmp

view layout [
 box 170x180 effect [
 draw [
 image img-tux 0x0
 image monster 30x96 0.0.255
]
]
]

Figure 3-9. Adding an image with transparency.

This ability to manipulate images enables you to very easily create sprites,
superimposed images that appear on the screen in front of a background.
This functionality is very helpful when it comes to developing video games.

GUI, graphics and sound

 77

Generating image files.

When you have finished your drawing, you can generate an image from it.
Such an image can remain in memory and be used in the same manner as any
other image (apply effects, display, assigned to a style, etc.). It can also be
saved to disk in one of two formats, PNG or BMP. You only have to use the
word save with the correct refinement (/bmp or /png) and to convert your
drawing into an image! type. You end up with a file that can be read by
other software.

view layout [
 mybox: box 100x100 effect [
 draw [
 pen white
 line 0x0 100x100
 line 0x100 100x0
]
]
 button "save" [save/png %test.png (make image! mybox)]
]

Using DRAW dynamically

Until now the examples we have seen have been very static. You are
probably asking yourself a number of questions: how to plot a series of
figures on a graph or how to make a sprite move within a frame? Don’t
panic! VID and DRAW are extremely flexible.

Generating DRAW instructions

In fact, DRAW instructions are simply a block of data. If you want to
dynamically generate instructions for a drawing, all you need to do is to
modify the content of the style’s effect/draw block.

To better understand this, we are going to draw a histogram from a series of
numbers. They are contained in a series and represent the height (in pixels)
of each rectangle:

numbers: [100 130 80 110 50 90]

Rebol – A Programmer’s Guide

78

When the user clicks on the "Trace" button, the script initialises the
graph/effect/draw block with the colour to be drawn and draws the
two axes (x and y). Then a foreach loop reads each value in turn and
calculates the co-ordinates of the rectangle to represent the data. On each
pass of the loop, the box is added to the graph/effect/draw block.
Once this operation has finished, all is left to do is to refresh the style called
graph. The histogram will then appear on the screen.

view layout [
 graph: box 200x200 effect [draw []]
 button "Trace" [
 pos-dep: 10x190
 graph/effect/draw: copy [
 pen white
 line 5x0 5x200
 line 0x190 200x190
]
 foreach value numbers [
 pos-fin: pos-dep + make pair! reduce [
 20 (value * -1)
]
 append graph/effect/draw reduce [
 'box pos-dep pos-fin
]
 pos-dep: pos-dep + 20x0
]
 show graph
]
]

Figure 3-10. A generated histogram

.

GUI, graphics and sound

 79

A little animation

With the help of the DRAW dialect, it is possible to create high-quality
animations. One of the reasons for this is that Rebol uses a virtual screen to
build screen displays. The word show copies this virtual screen to the
physical one. So there is no flickering. Moreover, VID offers the
programmer timers to set-up timeslots. Thanks to them you can, for example,
animate sprites every 5 tenths of a second. This makes it possible to achieve
animation speeds equivalent to the power of the computer running the script.

In VID, most styles have an integrated, independent timer. All that is needed
is to use the rate attribute to specify a time delay or the number of times
per second the style is to be activated. The following example draws a
random line ten times a second:

view layout [
 mybox: box 200x200 rate 10 effect [draw []] feel [
 engage: func [f a e] [
 if a = 'time [
 append mybox/effect/draw reduce [
 'pen (random 255.255.255)
 'line (random 200x200) (random
 200x200)
]
 show mybox
]
]
]
]

Figure 3-11. Drawing Random Lines.

Rebol – A Programmer’s Guide

80

You will have noticed, an event handler must be set up with the feel
attribute to detect and process a time event.

Handling events with VID

The VID dialect supports the easy, quick development of graphic user
interfaces that are fully independent from the executing platform. As you
have seen, you can easily position and display graphic components such as
buttons, text and images on the screen. The next stage is to interact with
these components to respond to users’ actions. We will now take a full look
at event-driven programming with Rebol.

Event-driven programming

A script using a graphic user interface works by having a loop which waits
for events produced by user actions (pressing a key, selecting a graphic
component, moving the mouse, etc.) as well as those generated by the system
(clock, receipt of data packets from the network, etc.). The heart of a VID
application consists of marshalling the correct component’s code to execute
depending on the event received. The dialect also allows you to completely
redefine the behaviour of a component so that you can create new styles
specifically adapted to your project.

Default behaviours

Each of VID’s many components has a default behaviour. It is a block of
code, enclosed between brackets, which is executed for a specific action. A
button, for example, evaluates its code when a user clicks on it. A radio
button or a check-box also reacts to the user clicking on it. On the other
hand, an input box activates its code each time the user presses the Enter
key. A slider modifies its value each time it is moved.

In the following example, a window displays a slider and a button. On each
change in the position of the cursor or click on the button, the value of the
slider is displayed (ranging from 0 to 1) in the console:

GUI, graphics and sound

 81

view layout [
 myslider: slider 100x20 [
 print myslider/data
]
 button "Value" [
 print myslider/data
]
]

Figure 3-12. Styles reacting to user actions.

You probably understand that this method is very simple but it isn’t the most
powerful. All the same it makes it possible to quickly cater for the basic
interaction between a user and an application. To go further, it is necessary
to dig a little deeper into the mechanics of event management in Rebol/View.

Tracking events

Each VID object has an attribute called feel for handling specific events.
The event handler applies to the specific object itself and not to any other
object based on the same style. So two buttons or two images can have
completely different behaviour. If you decide to modify the behaviour of a
style, you must create a new style derived from the original model (often
referred to as the prototype).
In the feel attribute you can place four functions, each one having a precise
role. The detect function intercepts all incoming events and distributes
them to the other three functions. engage lets you detect a mouse-click or a
time! event. over detects when the mouse pointer passes over the
component and also when it exits from the component. Finally, redraw
allows a component to be redrawn.

Rebol – A Programmer’s Guide

82

This last operation is automatic in VID but it is possible to de-activate it in
order to improve application performance or so that the programmer can
handle particular cases individually.

Each of these functions receives its parameters, which describe the event,
directly from Rebol/View’s Graphical Compositing System (GCS).

The information about the event is passed as an object in the face variable.
The action variable provides the type of event the GCS intercepted. The
position of the mouse pointer can be found in offset. The description of
the event is contained in the event object. The boolean variable over?
indicates if the mouse is inside or outside the component.

The code which follows is a complete skeleton for handling VID button
events. From this model, you can entirely redefine how it reacts to user
actions:

view layout [
 mybutton: button "Hello" feel [
 engage: func [face action event] [
]
 over: func [face over? offset] [
]
 detect: func [face event] [
]
 redraw: func [face action offset] [
]
]
]

At the moment, your "Hello" button seems inoperative. Actually, you have
redefined all of its reactions to user actions to do nothing. Suppose that you
want to display some text each time the mouse pointer is over the button or
when it is not, all you need to do is to modify the over function as follows:

over: func [face over? offset] [
 either over? [
 print "over"
] [print "outside"]
]

GUI, graphics and sound

 83

The event object

This object thoroughly describes the event intercepted by the GCS with
seven attributes.

You can tell what type of event has been trapped from the standard type
property. The mouse buttons provide the down, alt-down, and up events.
Moving the mouse produces a move event. Pressing a key on the keyboard
generates a key event. User changes to the display windows create
resize, close, active, inactive and offset events. Finally, a
timer with a regular interval starts a time event.

Once you have determined the type of event, you can use other properties of
the event object, which contain additional information about the event.

The offset property returns the position of the mouse. The key property
contains the value of the key which was pressed by the user. The state of the
control and shift keys may be found from the two properties bearing the
same name as the keys; they contain boolean values. The time property is a
timestamp of when the event occurred and finally the face property is an
object containing the component activated in the event.

As you can see, it is very easy to change the behaviour of a VID style. In a
few lines of code you can, for example, change the colour of a button when
the user moves the mouse over it or when the user clicks the mouse’s left
button. To do this, you must modify the engage and over methods of the
button and to handle the down event (the left mouse button pressed by the
user) and the parameter over?.

view layout [
 mybutton: button "Hello" feel [
 engage: func [face action event] [
 if event/type = 'down [
 face/color: 0.255.0
 show face
]
]
 over: func [face over? offset] [
 either over? [
 face/color: 255.0.0

Rebol – A Programmer’s Guide

84

] [face/color: 0.0.255]
 show face
]
 redraw: func [face action offset] [
]
]
]

Figure 3-13. The button colour is changed as the pointer passes over it.

Controlling Windows

For the windows in your application, the most effective method is to set up a
single handler for all of the events that they produce (opening, closing,
moving, etc.). With the help of the insert-event-func word, you
insert a function into the main GCS event monitoring loop. The aim of this is
to react to each of the events produced by your application windows. One of
two parameters the inserted function will receive is an event object which
lets you determine which window is affected (event/face) and the type
of event (event/type). The function must end with the word event to
allow the script to continue executing by starting the processing of any
events waiting in the queue. The word, remove-event-func, lets you
remove an event handler once it is not longer needed. The example below
displays all of the events of the window named wind:

display-events: function [face event] [] [
 if event/face = wind [prin [event/type " "]]
 event
]
insert-event-func :display-events

wind: layout [
 button "Quit" [
 remove-event-func :display-events
 quit
]
]
view/options wind 'resize

GUI, graphics and sound

 85

Figure 3-14. Some of the events intercepted.

Once again, Rebol remains faithful to one of its core concepts: to give total
freedom to the programmer. Rebol gives you very fine control over events in
your application.

Managing styles

The VID gives a perfect example of just how effective Rebol can be in use.
A few lines of code are all that is needed to develop a complex graphic
interface. The programmer has the freedom to personalise the numerous
standard styles and to add new ones. These elements can be gathered
together in true style sheets. VID allows the programmer to modify all
available styles: you have the means to adapt how they appear so that you
can create a unique look for your application.

If VID’s presentation is not convenient for you, nothing prevents your from
adding a touch of QNX, Aqua or even Windows to your script. Nothing here
is cast in stone; it can all be changed at ease.

Defining a style

A style is defined within the layout which will use it. The keyword
style is followed by the name and attributes of the style you wish to
create. Your style inherits the properties and methods from a specified model
(its prototype) but is different from it where you have specified changes.

Rebol – A Programmer’s Guide

86

To help understand, let’s start with something simple: our objective is to
define a style called red-button. It is similar to a standard button except
it is red with white text. You will “derive” the button style and change its
colours:

view layout [
 style red-button button red
 red-button “button1” [print “button1”]
 button “button2” [print “button2”]
 red-button “button3” [print “button3”]
]

Once the style has been defined in the layout, you can use it in just the
same way that you would use a standard VID style. The only constraint is
that you must define the new style at the beginning of each layout in
which it is used. In order to solve this problem, VID supports the creation of
style sheets to enable the separation of application logic and display settings.

Applying a style sheet

The principal of style sheets in Rebol is very close to that of CSS with
HTML. At the start of your applications or in a separate file, you describe
the appearance and behaviour of your personalised styles. You then have the
ability to connect one or more style sheets to different layouts in your
program. A style sheet is defined using the word stylize followed by a
block containing the description of its different styles.

This block is assigned to a word not only so that it can be identified but also
so it can be attached to a layout with the VID keyword styles.

Let’s take the previous example and add to it another style called red-
text which will be a simple label with red text. The style sheet bears the
name my-styles:

my-styles: stylize [
 red-button: button red
 red-text: text red
]

GUI, graphics and sound

 87

All you need to do now to use your new styles is to include your style sheet
in the layout in which you want to use them.

view layout [
 styles my-styles
 red-text “I am written in red text”
 red-button “Button1” [print “Button1”]
 button “Button2” [print “Button2”]
]

This method allows you to use many different style sheets in a single
application and, very helpfully, make the look of your software very flexible.
The ideal is to store your style sheets in files and then include them with the
help of the word do when your script is launched. Just modifying these style
sheets makes it possible to dramatically change the appearance of software.
Organising style sheets this way gives a company the chance to define
presentation standards for all its applications or to adapt the look and feel of
an application to a customer’s requirements.

Modifying style aspects

For a single specific need or in the case of creating a complex new style, you
can also make in-depth changes to a standard VID style. So it is possible to
change the attributes which define the contour of the style, the character font
used to display text or even the characteristics of a paragraph.

To change the border of a style, you must modify the attributes of the edge
block that exists for each VID component. The size attribute is a pair!
and fixes the width and height of the border of the component. With color,
you specify the border colour which is drawn as specified in the effect
attribute. This last attribute takes one of the values (‘bevel, ‘ibevel,
‘bezel, ‘ibezel, ‘nubs) which determines how the edge will be
drawn.

With the block named font, you can select the character font (using the
keyword name) from one of three fonts (font-serif, font-sans-
serif, font-fixed). The style parameter allows you to choose the
style of text (‘bold, ‘italic or ‘underline). size and color set
the character size and colour.

Rebol – A Programmer’s Guide

88

You can determine how the text will be aligned by using the align
parameter followed by one of the values ‘left, ‘right or ‘center.

Paragraph formatting is controlled by the para facet which takes a block of
parameters. You set the precise position at which the text is displayed with
the origin parameter. With scroll, you can allow horizontal or vertical
scrolling of the contents of a VID style. The tabs parameter can contain
one or more values to create tab stops in the text. Finally, wrap? is a
boolean value to set word wrapping on or off.

Let us look at an example to help understand better: the objective is to create
a new style called big-button. This one displays its imposingly sized
font with a relief effect at the edge. To do this, it is best to start with a simple
box style. This is probably the most neutral VID style and so can be used for
the creation of the majority of new styles. With it you have great freedom in
handling events. The definition of this box indicates the font to be used, the
text alignment and the appearance of the border.

my-styles: stylize [
 big-button: box font [
 name: font-serif
 size: 40
 align: ‘center
 valign: ‘middle
] edge [
 size: 10x10
 color: 192.192.192
 effect: ‘bevel
]
]

Now all you have to do is to include the style-sheet in your layout so that
you can use it.

view layout [
 styles my-styles
 backcolor 0.0.255
 big-button “Rebol !” 200x100 0.0.0
]

GUI, graphics and sound

 89

Defining a style’s behaviour

In spite of its changed appearance, the style you have defined adopts the
behaviour of its prototype. For the moment, your button reacts to any user
action in the same way as a standard box would.

For it to act like a real button, you have to define event handlers for this new
style.

Your objective is that the button is inverted when the left mouse button is
clicked and, at the same time, some Rebol code is executed. To achieve that,
you must redefine the engage method whose role is to signal the click and
release of the mouse button.

You change the height of the border by changing the effect property of
the edge facet of the currently active object (face). The code passed as a
parameter is executed by the Rebol do-face function.

my-styles: stylize [
 big-button: box font [
 name: font-serif
 size: 40
 align: ‘center
 valign: ‘middle
] edge [
 size: 10x10
 color: 192.192.192
 effect: ‘bevel
] feel [
 engage: func [face action event] [
 either event/type = ‘down [
 face/edge/effect: ‘ibevel
 do-face face none
] [
 face/edge/effect: ‘bevel
]
 show face
]
]
]

view layout [
 styles my-styles
 backcolor 0.0.255
 big-button “Rebol !” 200x100 0.0.0 [

Rebol – A Programmer’s Guide

90

 print “Super big button !”
]
]

Your style now reacts to user actions and executes the code when it is
pressed.

Rebol and sound

After studying the graphical capabilities of Rebol/View, you are now going
to discover what it offers in the sound arena. Rebol is able to read and
manipulate sounds samples allowing the development of multimedia
applications such as games, interactive CD-ROMs and information kiosks.
We will learn about this subject by developing a sound player, which will
enable us to apply our knowledge of VID.

Opening and closing a sound port

Rebol/View and Rebol/Command include a port called sound specifically
for playing sounds. This post must be opened with the word open and
closed with the word close. Be wary of this type of port as it can take a
little time before it’s activated by the system. Don’t hesitate to use the word
wait to set a short pause (two or three tenths of a second should be long
enough) before playing the first sound if you need to do that straight after
opening the port. Checking for an error as you open the port lets you find
out if the version of Rebol you are using has sound functionality. In this way
you can modify a boolean value to indicate whether your script is wired for
sound. For our example, if we cannot use the sound port, we will simply end
the script with an error message:

if error? try [
 sound-port: open sound://
 close sound-port
] [
 alert "You don’t have access to sound"
 quit
]

GUI, graphics and sound

 91

Loading and handling sound samples

Rebol can handle non-compacted (WAVeform) sound samples. A WAV file
is loaded into memory by the load word which generates an object with
five properties which can be both read and written:

• data contains the data which will be played by your machine’s sound
card,

• volume defines the output sound volume (between 0 and 1),
• channels specifies the number of sound channels (1 or 2),
• bits specifies the number of bits used for sampling. If the value is 8

bits, each value of the sample constitutes amplitude between 0 and
255. For 16 bits, the range of values extends from 0 to 65535.

• rate indicates the sampling frequency in hertz.

The quality of a sound sample is mainly dependent on the number of bits
used and the frequency of them. Sound sampled at 44100 Hz using 16 bits,
the norm for an audio CD, will be higher quality than one at 8000 Hz of 8
bits (close to the quality of a telephone line).

We can now start to create the principal screen of our WAV sound player.
The layout contains a “File” button for loading a sound sample into a
word called echantillon (French for sample):

button "Files" [
 files: request-file/filter "*.wav"
 if all [
 (not none? files)
 (not empty? files)
] [echantillon: load first files]
]

With the "Edit" button we can display a dialog box to allow the sound
properties to be changed. The user can then change the volume, select a
different number of channels, choose a different sampling quality and fix the
reading rate while using the sampling rate. The window only appears if a
sound is loaded in memory. The fields in the edit box are updated before
they are displayed.

Rebol – A Programmer’s Guide

92

button "Edit" [
 if not none? echantillon [
 volume/data: echantillon/volume
 either echantillon/channels = 1 [
 can1/data: true
 can2/data: false
] [can1/data: false can2/data: true]
 either echantillon/bits = 8 [
 bits8/data: true
 bits16/data: false
] [
 bits8/data: false
 bits16/data: true
]
 freq/text: echantillon/rate
 view/new/title editor "Editor"
]
]

The layout named editor contains a slider to adjust the volume and an
input box to set the frequency. The number of bits and which channel are
selected by radio buttons:

editor: layout [
 across
 text "Volume :"
 volume: slider 100x20
 return
 text "Number of channels:" return
 can1: radio of 'can text "1"
 can2: radio of 'can text "2" return
 text "Precision:" return
 bits8: radio of 'precis text "8 bits"
 bits16: radio of 'precis text "16 bits" return
 text "Frequency:" freq: field 50 return
 button "Cancel" [unview edition]
 button "Update" [
 echantillon/volume: volume/data
 either can1/data = true [
 echantillon/channels: 1
] [echantillon/channels: 2]
 either bits8/data = true [
 echantillon/bits: 8
] [echantillon/bits: 16]
 echantillon/rate: to-integer freq/text
 unview editor
]
]

GUI, graphics and sound

 93

Figure 3-15. The configuration box of the WAV player.

The “Cancel” button allows the user to close the dialog box without
changing the properties of the sound in memory. On the other hand, the
“Update” button applies the changes made by the user to the sample.

Playing Samples

The user of our WAV sound reader clicks on the “Play” button to start
playing sound samples. If the sample is loaded in memory, the data are
inserted into the sound card port.

button "Start" [
 if not none? echantillon [
 port-sound: open sound://
 wait 0.1
 insert port-sound sample
 wait port-sound
 close port-sound
]
]

Once inserted in the port, the sample is immediately played. The optional use
of the word wait tells the interpreter to wait until the end of the sound
sample before continuing to execute the script.

Rebol – A Programmer’s Guide

94

Graphic display of a sound sample

Our WAV file player is already able to read and play a sound. To improve its
look, we can display the sampled values as a real-time graph. The format of
the data stored in the data property of the object holding the sample, is a
model of simplicity. When the sample is an 8-bit one, each byte represents
an amplitude. If the sound is stereo, it consists of two channels. Even bytes
in the data, e.g.0 2 4 6 etc., are for the left channel. The sounds for the right
channel are the odd numbered bytes, e.g.1 3 5 7 etc.. For sounds sampled
with 16 bits, the logic is the same except each value is represented by two
bytes.

We will use a box style and the draw dialect to visualise the different sound
waves on the screen. To save time, the data is analysed when the WAV file
is loaded. Two lists (data-left and data-right) are used to store the
values extracted from the binary data in echantillon/data. First a
forskip loops traverses the data. The inner loop is executed one or two
times depending on the number of channels present in the file.

Generating a 16 bit value from two bytes is done by the simple operation:
(byte1 * 256) + byte2 (multiplying a binary value by 256 has the same effect
as shifting it eight bits to the left).

forskip son lg-package [
 canal: 1
 package: copy/part son lg-package
 loop echantillon/channels [
 either echantillon/bits = 8 [
 valeur: first package
] [
 valeur: ((first package) * 256) + (second package)
]
 either canal = 1 [
 insert tail data-right valeur
 canal: 2
] [insert tail data-left valeur]
 packet: skip packet next-channel
]
]

All that is left is for us to generate the graph using the Draw dialect. We will
build the trace-curve function to perform this operation.

GUI, graphics and sound

 95

Two refinements (/left and /right) tell the function which channel is
being displayed.

trace-curve: func [data /left /right] [
 either left [
 append canaux/effect/draw [pen 255.0.0]
 depy: 99
 mult: -1
] [
 append canaux/effect/draw [pen 0.255.0]
 depy: 101
 mult: 1
]
 data: at data (make integer! (sl-canaux/data / stp))
 repeat x 450 [
 xy1: make pair! reduce [x depy]
 finy: (100 + (mult * (make integer! ((first data) / stpy))))
 xy2: make pair! reduce [x finy]
 append canaux/effect/draw reduce ['line xy1 xy2]
 data: next data
]
]

Figure 3-16. Graphic display of a sound sample.

The complete version of this sound player is less the 4KB of code and can be
improved by the addition of new functionality such as cut and paste to
perform digital editing or applying effects (echo, reverb, etc.). This is further
proof of Rebol’s simplicity and incredible versatility.

Rebol – A Programmer’s Guide

96

Summary

Rebol/View allows the easy development of platform-independent graphic
user interfaces. The VID dialect can handle images, has many special effects
and supports the simple redefinition of both the appearance and behaviour of
graphic components. The sound options are limited but sufficient for many
multimedia projects.

4

Networking and the
Internet

Rebol is a messaging language intended for retrieving, manipulating and
distributing data over networks. For this reason, it has many network
programming tools.

Using TCP/IP protocols

Rebol is an excellent language for network programming. Without the need
for a single extension, the Rebol interpreter is capable of using the main
TCP/IP protocols. It also allows the definition of new network protocols. So
it is not only possible to develop a client or server which uses an existing
protocol but also one which uses a new protocol, adapted to your needs.

Rebol – A Programmer’s Guide

98

Protocols in Rebol

All versions of Rebol support ten common TCP/IP protocols. HTTP
(Hypertext Transport Protocol) allows documents to be read from the web.
Thanks to it, you can retrieve HTML documents, images, multi-media
documents and even start the execution of cgi scripts on a distant sever. FTP
(File Transfer Protocol) supports receiving and sending files with another
network-connected computer. Electronic mail is managed with the support of
the SMTP protocol for sending messages (Simple Mail Transport Protocol)
and the IMAP (Internet Message Access Protocol) and POP3 (Post Office
Protocol) protocols for receiving them. News on the Internet is read with the
NNTP (Network News Transmission Protocol) protocol. There are also
protocols for collecting information. It is possible to find the IP address of a
server by interrogating the domain name server (DNS) and vice-versa. The
“small” protocols which are Finger, Whois and Daytime make it possible to
obtain a user’s account information, administrative details of a domain name
and the date and time from another machine.

Network configuration

Before doing anything at the network level with Rebol, you must first make
sure your Rebol interpreter is correctly configured. If it’s not, there is little
chance that you will be able to reach the web or receive your electronic mail.
If you didn’t supply you network details to Rebol when you installed it, you
must use the set-net word whose parameter is a block containing six
values. You must put in this list:

• Your electronic mail address,
• The name or the IP address of the server for sending mail,
• The name or the IP address of the server for receiving mail,
• The name or IP address of a proxy,
• The port number of the proxy,
• The proxy type.

A proxy is an application which connects its clients to the internet. It is a
method of releasing http requests to the internet and allowing the responses
back to the computer which sent the request.

Networking and the Internet

 99

If you don’t want to (you don’t want to send email from Rebol) or don’t need
to (your computer is directly connected to the internet) supply a parameter,
substitute it with the value none.

set-net [
 olivier.auverlot@domaine.fr
 smtp.domaine.fr
 pop3.domaine.fr
 proxy.domaine.fr
 8080
 generic
]

Rebol supports four different proxy types:

• socks,
• socks4,
• socks5,
• generic.

Sending and receiving email

You can now send and receive electronic mail. To do this you simply use the
words send and read.

We can send a short message to a mail box with the command send
olivier.auverlot@domaine.fr "Cuckoo I am a message"

If the body of the message contains a carriage return, you must enclose the
character string between "{" and "}" which indicates a multi-line string:

send olivier.auverlot@domaine.fr {
 Cuckoo
 I am a message
}

By using the header refinement, you can add information such as a
subject. The extra parameter for this refinement is an object whose various
properties correspond to the many items that can be specified in an email
header.

Rebol – A Programmer’s Guide

100

header: make system/standard/email [
 Subject: "message subject"
]
send/header olivier.auverlot@domaine.fr "hello"

Many internet services providers have recently started to use Extended
Simple Mail Transfer Protocol (ESMTP) as a measure to improve security
and combat spam. The current versions of Rebol include support for ESMTP
through adding two new parameters to set-net; they are the account name
and password:

set-net [
 olivier.auverlot@domaine.fr
 smtp.domaine.fr
 pop3.domaine.fr
 proxy.domaine.fr
 8080
 generic
 olivier
 homer
]

If you don’t supply the account name and password, Rebol will request them
when you try to send a message. (You should, of course, be very careful not
to save your password in a Rebol source or text file).

To read your messages, all you need to do is use the word read followed by
a URL consisting of the protocol (POP3 or IMAP), your account name, your
password and the name of the mail server:

print read pop://olivier:homer@pop3.domaine.fr

If your email account name is your full email address including the
@domain, it isn’t possible to use this simple form to read mail. You can have
to use the slightly longer, but more readable, method of defining a mailbox:

mailbox: [
 scheme: ‘pop
 host: “pop3.domaine.fr”
 user: “olivier.auverlot@domaine.fr”
 pass: “homer”
]

print read mailbox

Networking and the Internet

 101

Each message is received in the form of a multi-line character string which is
place in a list. There are many ways to easily manage sending and receiving
mails with Rebol. Any application can quickly be extended to exchange
messages with people (alarms, automated reports,…) or other applications.

Accessing web resources

With the help of the HTTP and FTP protocols, you can read and send
documents over a network. This lets us use Rebol as a navigator to retrieve
HTML or XML files. This feature facilitates the construction of agents
designed to search and harvest information. In fact, all you need to do is to
specify a URL to read a resource on the network. The following example
displays the contents of the homepage of Rebol Technologies:

print read http://www.rebol.com

By assigning the result of the request to a character string by using the word
copy, you can carry out searches on it and extract information from it. With
load/markup, the file received is analysed by the Rebol interpreter. You
then will get a block composed of HTML or XML (tag!) tags and character
strings.

With FTP, you can both send and receive files. The two words used are
read and write. The URL passed as a parameter contains the user account
and password needed to establish the connection.

With Rebol, the operations needed to manage distant files are just the same
as those for local ones. In the example that follows, we will recover a file
called rapport.txt from an FTP server and display it on the screen:

print read ftp://olivier:passwd@ftp.domaine.fr/docs/rapport.txt

And the other protocols?

With Rebol, all the protocols follow the same model; there are no special
cases or exceptions. The complete set of protocols is based on a single
syntax making then highly intuitive to use.

Rebol – A Programmer’s Guide

102

Suppose you want to find out the IP address of a machine. You simply use
the syntax ip-address: read dns://webserver

Another example? You want to know the date and time of a server on the
network. The syntax is evident:

print read daytime://myserver

Clients and servers

If there is one domain where Rebol is really impressive, it is probably the
ease of developing client server applications using TCP or UDP network
protocols.

To write a client, that is a program sending data to a server and waiting for a
response, you first open a socket (the combination of an IP address and a
port).

Then second, you insert the information to be transmitted to the server and
then receive the answer. The last stage is to close the socket in order to
release it.

REBOL [
 Subject: "client TCP"
]

; the script opens a connection to the machine at 172.29.143.1
; at port 8000/tcp
p: open tcp://172.29.143.1:8000
; a request (terminated by a carriage return) is sent
insert p "hello^/"
; the response is stored in a variable
response: copy ""
read-io p response 255
print response
close p

Writing a server doesn’t pose any real problems. Just open a listening port
and wait until some data is received. When data arrives, you process it and
return a response to the client.

Networking and the Internet

 103

REBOL [
 Subject: "TCP server"
]
; open the port
p: open tcp://:8000
; the server enters an infinite loop
forever [
 wait p
 ; a connection is detected
 conn: first p
 ; read the request
 request: copy ""
 read-io conn request 255
 print ["request ->" request]
 ; send the response
 insert conn "OK^/"
 ; close the connection with the client
 close conn
]

Creating network protocols in Rebol

Designing network protocols is probably one of the most exciting aspects of
the Rebol language. Thanks to them, you can interface you applications with
TCP/IP, exchange data, create peer-to-peer communities or use web
services.

By default, all Rebol versions contain a group of protocols covering a broad
field of applications. With Rebol/Core and Rebol/View, you have ten
network protocols ready for use (HTTP, POP, etc.). The commercial
versions of Rebol provide other more specialised network protocols oriented
towards e-business, in particular protocols for using the major DataBase
Management Systems (DBMS), such as MySQL and Oracle, and those
which provide secure data exchange (HTTPS). If however, you can’t find
what you want amongst these protocols, it is fully possible to create a new
protocol that can be added to the existing ones that can be used in the same
way as the standard ones. By checking out the different Rebol web sites, you
will be able to find new protocols which you can extend (access to databases,
telnet, SNMP, etc.).

Rebol – A Programmer’s Guide

104

Figure 4-1. Many protocols are available at www.rebol.org.

You are probably thinking that this is really interesting but also very
complicated, not at all! Rebol again demonstrates its excellent compromise
between ease and power. Developing new network protocols is really within
everybody’s range.

The standard protocols

To understand the workings of network protocols in Rebol, it is best to study
those included in the interpreter. Rebol is a meta-language, parts of Rebol
are written in Rebol and this is the case with protocols. The different
protocols are stored in the schemes property of the system object. To
save them on to your hard disk, all you need to do is enter the following
instructions into the console:

echo %protocols.txt
probe system/schemes
echo none

Networking and the Internet

 105

Figure 4-2. The protocols included in Rebol.

You then get a textfile containing the source of all the protocols in Rebol.
Each one of them is an object which inherits properties and methods from a
root object, root-protocol.

The root protocol

To view the code of the root-protocol, you need to type the command
source root-protocol in the console. This object, upon which all of
Rebol’s network protocols are based, contains the model for a fully
functioning protocol.

It is already able to start a connection, insert data into and read data from a
TCP or UDP port and to stop a connection to free up any resources used. In
fact, all the programmer needs to do to make a new protocol is to decide
whether it should use a TCP or UDP port. The most surprising example is
probably the daytime protocol within Rebol. Its implementation takes only
one line of code.

make Root-Protocol [net-utils/net-install Daytime self 13]

This single line is sufficient to generate an object derived from root-
protocol. The only modification that is absolutely necessary is, in fact, to
the net-util/net-install method.

Rebol – A Programmer’s Guide

106

This one has three functions since it specifies the port used, the name of the
protocol and, especially, inserts the new protocol into the property
system/schemes.

Obviously, it is possible for you to develop more advanced protocols and in
that case, it will probably be necessary for you to know and modify the
different properties and methods contained in the root-protocol object.
You will quickly see that each of them fulfils a very precise role.

Properties of the root-protocol object

The root-protocol object defines four properties which are port-
flag, open-check, close-check and write-check. The first,
port-flag, is probably the most difficult to understand since it allows you
to specify the underlying communications protocol, TCP or UDP, to be used
for exchanging data.

There are two modes for working with network protocols in Rebol: direct
access or controlled access. With a direct access port
(system/standard/port-flags/direct), the data are accessible
character by character or line by line. Each time data is taken from the port it
is immediately removed to allow access to the following data. This mode is
particularly well suited to handling large volumes of information.

The controlled mode (system/standard/port-flags/pass-thru)
gives greater freedom to the programmer in exchange for extra work. In
effect, it is left to the developer to explicitly manage the receipt and storing
of data. Information is generally held in a property of the protocol, so it is
necessary to redefine all of the methods present so that they return all data
collected to the program. The behaviour of ports can be further refined by
applying a set of applicable constants using the binary operator or. So to set
a port to work in controlled mode with binary data, it is enough to use the
syntax:

port-flags: system/standard/port-flags/pass-thru or 32.

Networking and the Internet

 107

The properties open-check, write-check and close-check make it
easy to automate the process when negotiating connection to a distant
process, when writing data or closing a connection. The various stages of the
negotiation are specified using a block containing the values to be
transmitted and the data expected in return. Thus the block [“bye” [
100 200]] tells the client to transmit the string “bye” and wait for the
return values 100 or 200 before continuing. The sending and receipt of these
values is not the programmer’s responsibility since the methods of the root-
protocol object deal with it all with the help of net-utils/confirm.

Methods of the root-protocol object

The root-protocol object contains 10 methods which take the port as
their parameter. Each of them has a specific role in the working of the
protocol.

The init method sets up the URL of the server to which the client must be
connected. This method initialises the user, pass, host, port-id,
path and target properties of the port object.

The open-proto method starts the connection to the server. This complex
method deals with many operations such as proxy support. By default,
Rebol’s network protocols use TCP but is possible to opt for UDP by
specifying the /sub-protocol refinement with the parameter, ‘udp, at
the time this method is called.

open-proto is an important method but it isn’t the true entry point of a
protocol. In effect it is open which does that. By default, the open method
actually calls open-proto. This default behaviour is seldom sufficient and
you will often have to modify this method as intended by the designers.

The close method is called once the connection has ended and frees any
resources used by the connection.

Rebol – A Programmer’s Guide

108

The write and read methods allow writing or reading data to or from a
port and are invoked when a script uses the words write-io and read-
io. The get-sub-port method returns the port used for communications
between the client and the server. The get-modes and set-modes
methods provide read and write access to the port’s properties. Finally, the
awake method is called when the receipt of data in the port is detected.

Implementing Echo

To better understand writing network protocols with Rebol, we are now
going to study implementing the echo protocol. Defined by RFC 862, this
service is very useful for finding out if a machine is connected to the
network and even evaluating network performance. This protocol is quite
straightforward; it is based on sending a character string from a client and
receiving it back from the server. In Rebol, you will implement an echo
protocol which sends the string “hello” to a distant server and waits for its
response. Once this is received, the protocol client returns the time taken
making it possible to monitor network performance.

The protocol will be added to the list of Rebol network protocols and will be
usable by providing a URL specifying the protocol name (echo) and either
the IP address or the domain name of the server.

The first step consists of generating an object inherited from root-
protocol and setting the value of its properties. It would be a waste of
time to modify open-check, write-check or close-check since no
negotiation is needed to connect to the server with this protocol On the other
hand, the values of port-flags of system/standard/port-
flags/pass-thru must be set in order to work in controlled mode.

Which are the methods that need to be added or modified when the word
read is applied to a protocol?

In fact, read calls three methods which are open, copy and close.

Networking and the Internet

 109

The open method calls open-proto and it isn’t necessary to modify its
behaviour for the echo protocol. The close shuts the TCP or UDP port
used for the connection and also doesn’t need to be modified. So you only
need to add one method, copy, which has the job of sending and receiving
character strings to and from the port. Be aware that you will redefine copy
in the context of the protocol and that means using the word copy will cause
the copy method you will have defined to be called and not the copy in the
global context. Before modifying it, you must save the copy word by
simply creating another word (sys-copy). Then the “new” copy doesn’t
pose any real problems.

The port to be used is passed as a parameter to the method and then all that is
needed is to insert the character string and wait for it to be returned by the
server. As there are no special end of string characters in this case, the
read-io word is used to wait for the receipt of 5 characters. The method
then finishes its work by returning the time taken for the whole process.

To add the echo protocol to the list of those known by Rebol, set the name of
the protocol and, especially, specify the TCP port number used, it is
necessary to complete the protocol declaration with the instruction net-
utils/net-install.

echo-protocol: make root-protocol [
 port-flags: system/standard/port-flags/pass-thru
 sys-copy: get in system/words 'copy

 copy: func [port /local reponse] [
 t1: now/time/precise
 reponse: sys-copy ""
 insert port/sub-port "hello"
 read-io port/sub-port reponse 5
 (now/time/precise - t1)
]

 net-utils/net-install echo self 7
]

Once the protocol is loaded in the Rebol interpreter, simply entering read
echo://server-name is enough to find out if the server is available and
how long is the delay.

Rebol – A Programmer’s Guide

110

Figure 4-3. Using the echo protocol.

Developing a gopher protocol

The gopher protocol was developed by Minnesota University. Defined in
RFC 1436, it constitutes a distributed information system. It not only
provides access to data (documents and files) but also to applications (telnet,
3270 terminal) through a tree structure. Based on the client/server model, the
way gopher works is very simple. The client sends a request to TCP port 70
of the server. This indicates that the client wants to read a document on the
server or a description of the contents of a directory. The end of the request
is signified through the use of the CR and LF characters. In the case that the
server returns the content of a file, the data is terminated by the CR and LF
characters. For the description of the contents of a directory, each element is
described in a character string terminated by a carriage return and the CR
and LF characters mark the end of the response.

To use gopher with Rebol, the protocol client will provide two different
methods. A programmer will be able to use read followed by a URL
containing the name of the protocol (gopher), the name or IP address of the
gopher server, and finally the path to the file requested.

Networking and the Internet

 111

The other method consists of opening a port using the gopher protocol with
the word open, inserting the request in this port and then reading the answer
before closing the port (close).

As with the echo protocol, you must use the system/standard/port-
flags/pass-thru value for the port-flag property. The path
property is intended for storing the client request. The filetype property
contains the types of element recognised by gopher. So if the server returns
that the element test.txt is type “0”, the client protocol knows that it is a
file.

The methods insert and copy send both the two client requests via the
send-cmd method. In effect, the insert method is called when you use
the insert word in the global context, it is not if you use read.

In this case, only the open, copy and close methods are used; it is
necessary to depend on copy to send the request. It just should be prevented
from doing so twice. This is controlled through send-cmd and using the
/path refinement. Once the command has been sent in the communications
port (port/sub-port), the data are read by the copy method. If the last
character of the client request is a “/”, the data received by the client will be
a description of the contents of a directory. The list-directory method
handles the result. If the request was for a file, the contents of the response
are returned by copy.

gopher-protocol: make root-protocol [

 port-flags: system/standard/port-flags/pass-thru

 sys-copy: get in system/words 'copy
 sys-insert: get in system/words 'insert
 sys-close: get in system/words 'close

 filepath: none

 filetype: [
 #"0" "FILE"
 #"1" "DIRECTORY"
 #"2" "CSOPHONEBOOK"
 #"3" "ERROR"
 #"4" "BINHEX"
 #"5" "BINDOS"

Rebol – A Programmer’s Guide

112

 #"6" "UUENCODE"
 #"7" "INDEX"
 #"8" "TELNET"
 #"9" "BIN"
 #"+" "REDUNDANTSERVER"
 #"T" "TERM3270"
 #"g" "GIF"
 #"I" "IMAGE"
 #"s" "AUDIO"
 #"M" "MIME"
 #";" "ANIMATION"
 #"h" "HTML"
]

 send-cmd: func [port /path data] [
 if none? filepath [
 either not path [
 either any [
 (none? port/path)
 (port/path = "/")
] [
 filepath: sys-copy ""
] [
 filepath: sys-copy port/path
 if not none? port/target [
 append filepath port/target
]
]
] [filepath: sys-copy data]
 sys-insert port/sub-port filepath
]
]

 list-directory: func [data /local content] [
 content: sys-copy []
 foreach file data [
 file: parse file ""
 append/only content reduce [
 select filetype (first file/1)
 sys-copy/part (at file/1 2) ((length?
 file/1) - 1)
 sys-copy/part (at file/2 2) ((length?
 file/2) - 1)
 to-tuple file/3
 to-integer file/4
]
]
 content
]

 insert: func [port data] [send-cmd/path port data]

 copy: func [port /local item buffer result] [
 send-cmd port

Networking and the Internet

 113

 buffer: sys-copy port/sub-port
 either (length? filepath) > 0 [
 either (last filepath) = #"/" [
 result: list-directory buffer
] [result: sys-copy buffer]
] [result: list-directory buffer]
]

 close: func [port] [
 filepath: none
 sys-close port/sub-port
]

 net-utils/net-install gopher self 70
]

Figure 4-4. Using the gopher protocol.

Rebol allows the development of network protocols in just a few tens of lines
of code. This characteristic makes it an ideal language for network
applications and information exchange. You can now expand your Rebol
interpreter with many existing protocols and, why not, even invent some to
meet your needs.

Rebol and CGI scripts

We now shift our attention to developing Web applications on an http server.
With the help of Rebol/Core and Rebol/Command, you can design CGI
scripts, programs that are run on an http server whose graphic user interface
consists of HTML pages displayed in a browser.

Rebol – A Programmer’s Guide

114

The overall picture

A web application is a software program installed on an http server. The
client machines connect to this application with a browser. The operating
principle is based on the request/answer paradigm. The client queries the
server with an http request and the server generally responds with an HTML
page. What is great about this technology is that you don’t have to install the
application on the client desktop.

Everything is centralised on some machines which can easily be well cared
for by the system administrators. Moreover, using an n-tier architecture
(client, http server, database server) prevents the clients directly accessing
the data. Only the HTTP server is configured for connecting with the DBMS.
This solution provides a number of advantages for travelling users;
especially those separated from their normal workstation.

If you want to develop a shopping mall or an information site on the Internet,
CGI are an easy and quick way to develop a web application.

GCI overview

A user obtains information in a web page with the help of an HTML form.
On clicking the submit button on a form (submit), the data in the form are
transmitted to the CGI script specified in a URL. This program can receive
the data in one of two methods:

• The GET method indicates that the parameters will be transmitted in
the URL by the browser,

• The POST method signifies that the data are transmitted to the CGI
separately.

The choice of one or another method depends on the context. The GET
method limits the length of data transmitted to a URL and it is visible in the
web browser. With POST, you are not limited by size and the data are
hidden from the user. On the other hand, the extraction of the data by the
CGI script is a little more difficult.

Networking and the Internet

 115

Once the parameters are received, the CGI script can do what it wants. Most
often, this type of application connects to a database to save or retrieve
information but nothing prevents you from sending emails or to reach files
on the server. Your freedom depends on the rights granted to you by the
machine’s system administrator.

In all cases, the work of a CGI ends by generating a document whose format
is determined by its MIME type: an HTML page to confirm the requested
operation was successful or a PDF assembled by the Web server to allow the
user to print it, etc.

How to write CGI scripts in Rebol?

First of all, you must configure your web server so that it allows the CGI
scripts to be run. With Apache, it is necessary to review the ScriptAlias and
AddHandler directives. You must also save your code in a directory
authorised for CGI scripts. The main Web servers all have a cgi-bin
directory dedicated to this task.

Let us start with something very simple, displaying a small text string in the
browser’s window. On a UNIX or Mac OS X system, you must use the first
line of your script to associate your CGI script with the Rebol interpreter.
The syntax is: #!/usr/bin/rebol –cs. The -c option forces the
interpreter to run in CGI mode. As for the -s option, it turns Rebol file
security off. (If you are using Apache on a Windows system, you can use a
Windows specific version #!c:/rebol/rebol.exe –cs).

You must then specify the type of document (Content-Type) intended for
the client browser. This is part of the http header and is separated from the
body of the document by two carriage returns. What follows it is the Rebol
code to be run.

#!/usr/bin/rebol -cs

REBOL []
print "Content-Type: text/plain^/"
print "Hello !"

Rebol – A Programmer’s Guide

116

This file, called test.cgi, is marked as an executable file on Unix and
Mac OS X systems with the command chmod +x test.cgi. All that is
left is for you to test the script with your browser. The URL should look
something like this http://<server_name>/cgi-bin/test.cgi.

Reading parameters

Suppose you now want to send the contents of an HTML form to your CGI
script. This poses the problem of reading the information sent by the
browser. For that you have a group of environment variables accessible with
the help of Rebol’s system/options/cgi object. Each of its properties
maps to one of the http server’s environment variables. The only exception is
the other-headers property which allows the use of various
characteristics of the HTTP protocol such as cookies. The following CGI
script displays all of the variables in your browser:

REBOL []
print "Content-Type: text/plain^/"
print mold system/options/cgi

Figure 4-5. CGI environment variables.

Networking and the Internet

 117

To understand the use of these variables, you will build a small web
application in which the user enters his name. The server responds with a
greeting page. For example, if the user types "Olivier" and "Auverlot", the
server generates a page containing "Hello Olivier Auverlot". You must first,
design the HTML form to capture the user’s name and save it in a directory
in the tree structure of your HTTP server.
<html>
<body>
<form name="myform" method="get"
action="http://server.domaine.org/cgi-bin/hello.cgi">
<input name="firstname" type="field" value="">

<input name="name" type="field" value="">

<input type="submit" value="Submit">
</form>
</body>
</html>

This HTML page defines a simple form and once the user clicks the
“Submit’ button, the contents are transmitted to the hello.cgi script
using the GET method.

Figure 4-6. Submitting data to an http server.

On the server, the script must generate an HTML page based on the contents
of the QUERY-STRING variable. The data transmitted by the browser are in
MIME format and are not directly usable. In this example, the QUERY-
STRING variable contains "firstname=olivier&name=auverlot".

Rebol – A Programmer’s Guide

118

To ease your workload, Rebol contains the word decode-cgi which
creates an object from a MIME format character string: each of its properties
corresponds to a field in the form.

rebol []
print "content-type: text/html^/"
info: make object! decode-cgi system/options/cgi/query-string
print "<html><body>"
print ["hello " info/firstname info/name]
print "</body></html>"

Figure 4-7. The output of the CGI script.

By using the REQUEST-METHOD variable, your CGI script can determine
the method of data transmission used by the client machine. Simply check
the contents of this variable to automatically adapt your script to one or other
of the two methods. If the content of the form is transmitted using the POST
method, the CGI script must also read the number of bytes specified in the
CONTENT-LENGTH property from the standard input file.

rebol []
print "content-type: text/html^/"
print "<html><body>"
either system/options/cgi/request-method = "get" [
 data: system/options/cgi/query-string
] [
 data: copy ""
 length: to-integer system/options/cgi/content-length
 until [
 buffer: copy ""

Networking and the Internet

 119

 read-io system/ports/input buffer (to-integer
 system/options/cgi/content-length)
 append data buffer
 ((length? data) = length)
]
]
info: make object! decode-cgi data
print "<html><body>"
print ["hello " info/firstname info/name]
print "</body></html>"

Figure 4-8. The transmitted with the POST method is not visible in the URL.

Writing CGI scripts in Rebol is not at all difficult. It is a simple, robust
technology with which web applications can be rapidly developed.

Producing dynamic web documents

CGI aren’t the only way to execute Rebol code on a web server. Magic!, an
extension to the Apache web server written in Rebol, lets you place Rebol
instructions inside your HTML pages. Just like PHP, JSP and ASP, Magic!
executes Rebol code on the web server. This is totally transparent to the
client and enables the very quick development of interactive websites. The
main advantage of this solution is that it isn’t necessary to set the rights of
each user to execute CGI scripts.

Dynamic pages designed with Magic! are just the same as other documents
to the web server and are stored in the same directory as static html pages.

Rebol – A Programmer’s Guide

120

How Magic! works

Magic! takes the form of an extension to the Apache HTTP server. Being
written in Rebol, it works on all the platforms supported by Rebol/Core and
also can use the extra features of View/Pro and Rebol/Command if one of
them is present. Magic! is, in fact, a simple, short CGI that contains a
complete set of functions to take all of the hard work out of developing
dynamic pages. The mechanism it uses is very simple: when the Apache
server encounters a *.rhtml page, it executes the magic.cgi script which
analyses the document and executes and Rebol code found inside it. The
final result is transmitted to the client which only sees a simple HTML page.
Using Magic! you are not restricted to just HTML pages, you can also
produce documents in other formats, such as an XML document, an image or
even a pdf.

Installation

Magic! and its French documentation are available from
http://www.auverlot.fr/Fichiers.html. The magic.cgi script needs to be
placed in the cgi-bin of your Apache server with the correct execution
rights. You may also need to change the shebang line (first line) in the
magic.cgi file so that it correctly describes the file path to your Rebol
interpreter.

The rest of the work to install Magic! consists of configuring Apache so that
it can manage its newfound capabilities. For this, you must modify Apache’s
httpd.conf file. The first stage consists of authorising the use of CGI
scripts in order to make magic.cgi available for work.

So you must declare the default directory for CGI scripts and signify the file
extension to be used by them:

ScriptAlias /cgi-bin/ "/Library/WebServer/CGI-Executables/"
AddHandler cgi-script .cgi

Networking and the Internet

 121

After that, you can now modify the httpd.conf file so that it recognises
the Magic! file extension (.rhtml). This is done with the Addhandler
directive, you assign the “magic” event to files with the rhtml extension and
through the Action directive you tell Apache that all files raising the “magic”
event must be re-directed to the magic.cgi script.

AddHandler magic .rhtml
Action magic /cgi-bin/magic.cgi

You could also change the setting of the DirectoryIndex directive in
order to add the index.rhmtl page to the sites default pages. This simple
change enables you to set up a dynamic home page.

 DirectoryIndex index.rhtml index.html

All that is left to do now is to re-start the Apache server to apply the changes
you’ve just made to the configuration. To do this, Linux RedHat users
should use the service httpd restart command. On other systems
(MacOS X, BSD or other Linux distributions), you use apachectl
restart.

When the static becomes dynamic

To test the Magic! installation, the most effective method is to type your first
dynamic paged called test.rhtml. This looks like a normal HTML page
except that the document contains two new tags: <rebol> and </rebol>.
Between these tags, a simple line of Rebol code that displays the current
time.

 <html>
 <head></head>
 <body>
 <rebol>
 print now/time
 </rebol>
 </body>
 </html>

Obviously, you can insert as many <rebol></rebol> blocks as you want
in a RHTML page.

Rebol – A Programmer’s Guide

122

Rebol code can also be placed at the beginning and end of the document. The
following example demonstrates that it is easy to separate the definition of a
function from its use:

 <rebol>
 current-time: does [print now/time]
 </rebol>
 <html>
 <head></head>
 <body>
 <rebol> current-time </rebol>
 </body>
 </html>

It is common in web applications to transmit the data entered in a form to a
CGI script or dynamic page. Magic! supports this operation with the help of
a dedicated object named vars. Each property in this object corresponds to
a field in the transmitted form. Also Magic! automatically detects the data
transmission method used by the form (GET or POST). For the programmer,
this means reading the data is totally transparent. The following example
consists of an HTML form in which the name and first name of the user are
entered. The data are transmitted to the page post.rhtml using the POST
method:

 <html>
 <head></head>
 <body>
 <form name=”info” method=”post” action=”post.rhtml”>
 Name:<input type=”field” name=”name”>

 First Name:<input type=”field” name=”first-name”>

 <input type=”submit” value=”Submit”>
 </form>
 </body>
 </html>

The destination page can then display the data received and accessible
through the vars object:

 <html>
 <head></head>
 <body>
 <rebol>
 print [“hello ” vars/first-name “ “ vars/name]
 </rebol>
 </body>
 </html>

Networking and the Internet

 123

As you can already see, Magic! enormously facilitates the work of the
programmer but its possibilities don’t stop there. It provides a number of
other functions dedicated to dynamic page support.

Magic! functionality

Magic! is a genuine toolbox for web developers. It actually adds a set of new
words to the Rebol dictionary allowing shared code libraries, protecting the
web server by controlling user’s access, modifying the MIME type of
generated documents, setting and reading cookies and, finally, managing
sessions.

Library functions

One of Magic!’s most helpful functions is probably its library word
which allows Rebol code sections to be stored in separate scripts. With it the
duplication of code in different files can be avoided, so it facilitates the
sharing of software components between developers. To implement this
function, all that is needed is to create a library directory and inform Magic!
of its access path by setting the m-library-path variable in the
magic.cgi file. So if you want all developers of a Magic! based system to
have access to SoftInnov’s free MySQL protocol, you simply save a copy of
mysql-protocol.r in the library directory. The following example is a
RHTML page using that protocol to access a database.

 <html>
 <head></head>
 <body>
 <rebol>
 library %mysql-protocol.r
 db: open mysql://olivier:homer@localhost/mysql
 insert db {select * from user}
 print mold copy db
 close db
 </rebol>
 </body>
 </html>

Rebol – A Programmer’s Guide

124

Controlling embedded Rebol code

Security is an essential characteristic of Magic!. It is very important to
control programmer’s actions so that cannot compromise server stability or
run mavolent scripts which read or delete data which doesn’t belong to them.
To resolve these problems, dynamic pages designed with Magic! conform to
a strict security policy by default:

• dictionary words cannot be redefined,
• script can read files in the library directory,
• scripts can read and write files in the current directory,
• all other directories and files in the file system hierarchy are

inaccessible.

This basic policy is contained in the magic.cgi file and can easily be
adapted to your specific needs. You should also know that any Rebol code
contained in a Magic! page is closely supervised to intercept any possible
execution errors.

Figure 4-9. An execution error handled by Magic!.

If there is a problem the evaluation of the Rebol code is immediately stopped
and an error message returned for the browser to display.

Handling MIME types

If you want to generate anything other than an HTML page, you should
select a different MIME type by modifying the contents of the HTTP header
returned to the client. Thanks to this option, you can produce XML, ASCII
data, an image, or even a PDF document.

Networking and the Internet

 125

To specify the MIME type, you use the word header followed by a
character string containing the HTTP content type you want to use.

The following example shows how easy it is to produce a PDF document
with the help of Gabriele Santilli’s pdf-maker library (available from his
rebsite http://web.tiscalinet.it/rebol/index.r). To test it, don’t forget to save a
copy of the pdf-maker.r file in the Magic! library directory.

As the generated file is a PDF document, the content of the dynamic page is
a single <rebol> tag as HTML tags are of no use.

 <rebol>

library %pdf-maker.r
 header "Content-type: application/pdf"
 print to-string layout-pdf [
 [
 textbox ["I am a PDF document"]
 circle 50 250 20

]
]
 </rebol>

Figure 4-10. Generating PDF documents.

Rebol – A Programmer’s Guide

126

Managing cookies

Cookies can be managed with the setcookie and getcookie words.
They are intended for sending and receiving cookies respectively. These two
words can be used at any point in a RHTML page and directly modify the
http header generated by Magic!. setcookie uses two mandatory
parameters which are the name of the cookie and its value. You can precisely
specify setcookie’s behaviour through refinements such as /expire
which sets the length of a cookies’ validity, /domain and /path which
indicate the field to which the cookie is attached and an access path,
/secure in order to avoid sending the cookie to an insecure server.
getcookie is much easier to use as it only takes one parameter, the name
of the cookie for which you want the value.

The following example is a RHTML page which generates a cookie called
test, setting the creation time to the time of the session and allowing
access from all URLs of the origination server. The value of this cookie is
modified by assigning a random number. With the help of getcookie, the
current content of the cookie is retrieved and displayed by the RHTML page.

<html>
<head></head>
<body>
 <rebol>
 random/seed now/time/precise
 v: random 100
 setcookie/path "test" v "/"
 </rebol>
 The value of the cookie is:<rebol>print getcookie "test"</rebol>
 </body>
 </html>

Managing sessions

Magic! is a considerable help with one important aspect of writing web
applications in Rebol by providing support for sessions. The objective of
these is to make it possible for a program to identify a user and store data
that can be used in various pages of the web application that they access.

Networking and the Internet

 127

This mechanism serves to compensate for an architectural choice made by
the originators of the http protocol: the fact that HTTP is “stateless” and web
servers forget every request once they have responded to them. One can sum
up the situation in a single, simple sentence: a web application user does not
exist between two pages. The idea of sessions consists of allocating an
identifier to a user and to recover it in one way or another with each of their
requests. Once the user has a reference and is known, it becomes possible to
store data on the server and simplify the design of the application by
avoiding the use of hidden variables (fields hidden inside HTML forms) and
other similar tricks.

Magic! stores session variables in an object stored in the directory referred to
by the m-sessions-path word in magic.cgi. A unique object is
created for each user; the filename is assigned a unique name: the
MAGICSESSID.

To create a session, you use the session-start word which generates a
session identifier. Using the /cookie refinement, the MAGICSESSID will
be automatically transmitted at each interaction between the client and the
server via a cookie.

By using the refinement /expire, you can specify the time allotted to the
session, overriding the default value. This determines the length of time
without user activity before the session is considered inactive and can be
destroyed. You can force a session to be cancelled can with the word
session-destroy. To verify that a session has been started, you can use
the word session? which returns a boolean value.

With the session-vars word, you can create session variables and assign
an initial value to them. Once generated, these variables are accessible in
different pages of your application with the help of a dedicated object called
session each property of which corresponds to a session variable.

In the example that follows, the dynamic page checks if a session is already
active and, if not, starts a new session which will end after ten minutes of
inactivity. The MAGICSESSID of the new session is automatically
transmitted to the cookie.

Rebol – A Programmer’s Guide

128

A session variable, last-visit is also declared. The script then displays
the user identity and value of the last-visit which contains the time the
user last visited the page. The current time is then saved in the session
variable.

 <html>
 <head></head>
 <body>
 <rebol>
 if not session? [
 session-start/cookie/expire 0:10:00
 session-vars [[last-visit: ""]]
]
 print ["Your MAGICSESSID is " MAGICSESSID "
"]
 print ["The time of your last visit was " session/last-visit]
 session/last-visit: now/time
 </rebol>
 </body>
 </html>

Figure 4-11. The time of the last visit is saved in the session variable.

That is all there is to creating dynamic web pages with Rebol and Magic!.
The combination facilitates the quick and easy development of web
applications as it relieves the programmer from a great number of the
troublesome details of doing so.

Handling XML documents

Do you really need XML when you’re using Rebol? The answer to this
question is not as obvious as it first seems. Indeed, on paper, Rebol and
XML are more competitors than partners as they each are based on their own
universal format for organising and storing data.

Networking and the Internet

 129

The problem of interoperability

Rebol is a meta language and a Rebol script initially is just a data structure
whose elements become instructions only at the time of evaluation. That
means that Rebol’s syntax makes it possible to write scripts, databases or
configuration files. The block format is perfectly adapted to storing data and
transporting it via the TCP/IP protocols. The following example illustrates
the use of Rebol as a format for storing information:

[
 expiry-date: 15/1/2003
 filename: %journal.txt
 users: [
 [“Olivier” category: 3]
]
]

If Rebol and XML play in the same field, what is the interest in making them
work together?

The problem is simply that not everyone uses Rebol to develop their
information systems. An organisation can of course choose IOS as a server,
develop web applications with Rebol/Command and use Rebol native format
blocks for storing and transporting data. The problem arises when it wishes
to communicate with another organisation whose business applications use
other technologies. In this case, XML is quite simply the only solution.

Rebol is closed and includes only the functionality necessary to exchange
data between its different versions. However choosing Rebol does not cut
you off from the rest of the world. Rebol understands and speaks XML, the
inverse is not true…

Rebol’s integrated parser

The Rebol interpreter includes a parser which can transform an XML
document into a group of easily usable blocks. The XML document is also
translated into Rebol native formats to optimise its use. In fact, you only
need to know one word: parse-xml. It takes a single parameter of a string
of data formatted according to the XML specifications.

Rebol – A Programmer’s Guide

130

The parser is of the non-validating type. This means that it checks the syntax
of the document but not the validity of the data contained in it. If a DTD
(Document Type Definition) is specified in the XMLcode, it will simply be
ignored.

Let’s start by creating an XML file called contacts.xml with the help of
a simple text editor. This document contains a list of people identified by
their name and first name.

<?xml version=”1.0” encoding=”iso-8859-1” ?>

<contacts>
 <person sex=”female”>
 <name>Dziubak</name>
 <firstname>Nathalie</firstname>
 </person>
 <person sex=”male”>
 <name>Auverlot</name>
 <firstname>Olivier</firstname>
 </person>
</contacts>

To transmit this file to the Rebol interpreter, all you need to type is:

parse-xml read %contacts.xml

The word read reads the XML file and returns the contents as a character
string which is passed to Rebol’s XML parser. The XML data is transcribed
to Rebol blocks which are displayed on the screen.

How to use the data?

Before extracting the information from these blocks, you must assign the
result of the XML parser to a word. Once this operation is finished, you can
simply use the standard Rebol words for handling data lists. Contrary to
other languages, Rebol does not have libraries such as DOM or SAX for the
simple reason that they are not of great use to Rebol. In effect, once the
parser has analysed a file, Rebol does not handle the XML any longer, just
the resulting Rebol data structures.

Networking and the Internet

 131

In the memory of the Rebol interpreter, the data of the contacts.xml file
are stored in the following way:

[document none [["contacts" none ["^/^-" ["person" ["sex" "female"]
["^/^-^-" ["name" none ["Dziubak"]] "^/^-^-" ["firstname" none
["Nathalie"]] "^/^-"]] "^/^-" ["person" ["sex" "male"] ["^/^-^-" ["name"
none ["Auverlot"]] "^/^-^-" ["firstname" none ["Olivier"]] "^/^-"]]
"^/"]]]]

At the first glance, one feels a little depressed by this display of a tangle of
blocks and carriage returns indicated by the “^/” control characters.

Don’t worry, it is not very difficult to understand and, especially, this data
organisation is very simple to handle in Rebol. In fact, this list of blocks is
composed according to the following rules:

• each XML entity is represented by a list composed of three values
organised in the model [element attributes content],

• the word document corresponds to the root of the XML tree,
• attributes are presented in the form of attribute name – value pairs,
• if one of more attributes are present, they are integrated in the list,
• the absence of attributes in an XML tag is indicated by the value

none,
• the carriage return characters (“^/”) are intended to improve the

display of the data when the print word is used. You can simply
ignore them during analysis of the document tree structure.

From these rules, you can write a script to access the data in the contacts.xml
file. This program displays the name and first name of each person indicated.
For each person, the code displays a message showing the value of the
attribute from the <person> tag indicating their sex.

The script uses a recursive procedure, analyse, which takes the block to be
traversed as a parameter. The block is assigned the word data, from which
you can deduce that the first, second and third elements correspond to the
XML tag, to the list of attributes and the value of the contents of the tag.
With the help of simple tests, you can also display the data extracted for the
XML document. It is also possible to assign the results to words for later use.

Rebol – A Programmer’s Guide

132

REBOL [
 subject: "Traverse contacts.xml"
]

analyse: function [data] [value] [
 if block? data [
 if data/1 = "person" [
 print ["New person" data/2]
]
 if any [
 data/1 = "name"
 data/1 = "firstname"
] [print data/3]
 if not none? data/3 [
 value: data/3
 if (length? value) > 1 [
 forall value [
 if block? value [
 analyse first value
]
]
]
]
]
]

To use the analyse function, all you need to do is call it with a parameter
of a block containing the data from the XML file. This can be done with a
simple line of code:

analyse first third parse-xml read %contacts.xml

The guts of the parser

The Rebol XML is itself written in Rebol. The command source parse-
xml, entered into the Rebol console, will show you that calling the word
parse-xml actually calls the parse-xml method of an object called
xml-language. You can then use the command source xml-
language to discover the contents of this object which contains the
properties and methods of the XML parser.

Note that you have the possibility to modify behaviour of the XML parser to
adapt it to your own needs. The properties, methods and rules can indeed be
redefined as you care.

Networking and the Internet

 133

Also, the xml-language/verbose property which contains a boolean
value, permits the selection (or not) of a mode in which the XML parser
displays its activity as it parses the XML data. The xml-
language/check-version method is also very interesting since its
deactivation makes it possible to avoid displaying the version number
specified in the XML file header.

xml-language/verbose: false
xml-language/check-version: false

A better XML parser

As the code of the XML parser is accessible, some programmers have tried
to improve its functionality. This is the case with Gavin F.McKenzie who
developed an improved version which can be found via the Internet
(http://www.rebol.org). His version supports cdata sections indicating tags
to be ignored during analysis and can recognise the elements of an internal
DTD.

Before testing his version, you must modify the contacts.xml document
in order to add new elements such as an internal DTD and a CDATA section.

<?xml version="1.0" encoding="iso-8859-1" ?>
<!DOCTYPE contacts [
<!ELEMENT contacts (person+)>
<!ELEMENT person (nane,firstname)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ATTLIST person sex (male|female) #REQUIRED>
]>
<contacts>
 <person sex="female">
 <name>Dziubak</name>
 <firstname>Nathalie</firstname>
 </person>
 <![CDATA[TEXT NOT USED BY THE XML PARSER]]>
 <person sex="male">
 <name>Auverlot</name>
 <firstname>Olivier</firstname>
 </person>
</contacts>

To use Gavin F. McKenzie’s XML parser, you must include the library
script xml-parse.r in your script by using do.

Rebol – A Programmer’s Guide

134

Then all that you need to do is use parse-xml+ against the XML file,
simply using the command parse-xml+ read %contacts.xml.

Compared to the standard Rebol XML parser, parse-xml+ provides more
information about the document and its analysis is more precise. The DTD is
stored in the element subset of the document block. The cdata
sections become simple comments.

For extra information, Gavin F. McKenzie proposed an original solution
which consists of converting an XML document XML into a tree structure
made up of objects. The library script is called xml-object.r which must
be included in your scripts with do. The following instructions transform
your contacts.xml document into a group of objects in the context of the
obj-xml object:

obj-xml: make object! xml-to-object parse-xml+ read %contacts.xml

The root element of the XML tree corresponds to the document object, you
can deduce the XML version from the obj-xml/document/version
property and the DTD can be obtained via the obj-
xml/document/subset property. For each of the sub-objects, the
property value? lets you know the value of the XML element. So it
becomes very simple to extract the names of all the people in the list of
contacts:

foreach person obj-xml/document/contacts/person [
 print person/name/value?
]

If an element contains a combination of sub-elements and text, the
content? property lets you retrieve the different values in a block. The
XML tags are represented by words and the information as character strings.
To test this property, you can extract the contents of the element
<contacts> in this way:

print mold obj-xml/document/contacts/content?

This object approach to XML documents makes it very easy for the
programmer wanting to extract information from it.

Networking and the Internet

 135

Generating XML

Using XML with Rebol is not restricted to just reading files. In numerous
situations, it is necessary to generate XML documents from Rebol data
structures. Whilst this functionality isn’t part of the basic dictionary, it isn’t
difficult to implement.

Suppose that you work for a company which has its spare parts catalogue
structured in Rebol blocks. Ideally these items should be transformed using a
to-xml function in the following way:

to-xml [
 catalogue [
 part [ref “243a” name “nut”]
 part [ref “784c” name “bolt”]
]
]

We will write this function. Progressively through its construction, the XML
document will be saved in the variable docxml. The function traverses the
data block two elements at time. The first value always corresponds to an
XML element and causes the generation of an XML opening tag with the
to-tag word. If the second value is a character string, the data is appended
to docxml and a closing tag is added. On the other hand, if a block is
encountered, the to-xml function is called again in a recursive fashion to
traverse the whole data tree.

docxml: copy {<?xml version="1.0" encoding="iso-8891-1" ?>^/}

to-xml: function [blk] [] [
 forskip blk 2 [
 append docxml to-tag first blk
 either block? second blk [
 to-xml second blk
] [
 append docxml form second blk
]
 append docxml to-tag join "/" first blk
]
 docxml
]

Rebol – A Programmer’s Guide

136

As you can see, it is extremely easy to import and export XML formatted
data with Rebol. Within the framework of internet applications, the use of
XML is of obvious interest in many cases. You will not have any difficulty
in generating XML bound for a web browser or even remote procedures
using protocols such as SOAP or XML/RPC.

Using Web Services

We are now in the age of Web Services, that is the remote use of software
distributed across many servers. There are several methods to use such an
architecture. If the available SOAP support for Rebol at
(http://compkarori.com/soap) is not yet totally comprehensive, Maarten
Koopmans’s Rugby is an effective broker, the latest version is available at
http://www.hmkdesign.dk/rebol/page0/page0.html and a very powerful
XML-RPC library called RebXR has been developed by Andreas Bolka
(http://earl.strain.at). Rebol Technologies has recently released an
experimental version of Rebol/Services specifically designed for developing
web services in Rebol.

Introducing XML-RPC

XML-RPC (Remote Procedure Call) is a communications protocol resulting
from the work of Dave Winer. It uses an HTTP like transport layer and XML
for encoding data. Based on the request/response model, it allows a client to
use a distant service whatever technology is used on the client and server. To
find out more, you can consult the XML-RPC website (www.xmlrpc.com)
which gathers documents, tools and a list of available services.

Using XML-RPC

To use XML-RPC with Rebol, it is necessary to download the latest archive
from Andreas Bolka’s site. This allows you to write XML-RPC services
based on cgi technology as well as clients in a minimum number of lines of
code. This library uses Gavin F. McKenzie’s XML parser which you must
include in your projects.

Networking and the Internet

 137

To write a client, you will need to use five files which are xml-object.r,
xml-parser.r, xmlrpc-client.r, xmlrpc-marshaler.r and
xml-writer.r. For Rebol, a service corresponds to an object which is
inherited from xmlrpc-client.

Using the set-server method, you must provide the URL of the server
providing the service. Any proxy used can be indicated using the set-
proxy method. Once the configuration is complete, all there is left to do is
request execution of the remote service using the exec method. It takes a
block containing the name of the remote method and the list of parameters
required by it. In the following example, you use the covers.wiw.org service
which is a database of song covered by other artists:

remote: make xmlrpc-client []
remote/set-proxy tcp://mon-proxy.domaine.org:8080
remote/set-server http://covers.wiw.org:80/RPC.php
print mold remote/exec [covers.Covered “peter gabriel”]

When calling the method covers.Covered, the code searches for the
name of artists who have covered songs performed by Peter Gabriel. You are
returned a standard Rebol block which you can manipulate with standard
Rebol words.

Simple and effective, RebXR is a perfect example of the how Rebol and
XML complement each other.

The Rebol/View plugin

The availability of a browser plugin version was a long-awaited event in the
Rebol programming community. Its existence creates many possibilities for
developing X-internet applications. This vision of an active network in
which lightweight applications, dialects and data are readily exchanged
between machines can finally become a widely used reality.

Small yet powerful

Such a product obviously bears comparison with Java and its applets.

Rebol – A Programmer’s Guide

138

However this plugin has many advantages that can make it a future star of
the internet. The principle difference between the Rebol plugin and Java is
the massive difference in size since the plugin is only 600 kb.

This lightweight software can be downloaded and installed in a few seconds
on a client machine. Even if the user only has a slow dial-up connection,
deploying the plugin does not really pose any difficulty. Don’t think for a
minute that the small size of the plugin is due to limited functionality! The
plugin has all the functionality of the latest version of Rebol/View and thus
provides all its possibilities; network protocols, user interfaces, graphics,
animation and sound. The programmer has full access to the richness and
versatility of Rebol. It is no longer just a matter of adding some cute, small
animation to a web page but creating full applications within HTML
documents.

Figure 4-12. The plugin allows the creation of full applications.

These reblets have the advantage of being extremely compact and can be
downloaded in a few seconds. Their operation is made safe by a virtual
machine which uses far less resources than that of Java. Contrary to applets,
loading speed and performance should no longer be a barrier.

Networking and the Internet

 139

Inserting the plugin in an HTML page

To test the Rebol plugin, you need a machine running Microsoft Windows.
The supported browsers are Internet Explorer, Firefox, Mozilla and Opera.
For the moment, the plugin is available for these configurations which are
considered a priority by Rebol Technologies. The choice is justified by the
fact the Microsoft Windows is currently the most used operating system and,
initially, the objective is to provide the product to the maximum number of
people. Unix and Mac users and those in love with free software should be
reassured that ports of the plugin to Linux and Mac OS X are planned.

Using the plugin simply requires inserting an <object> tag within an
HTML page. This tag refers to a component downloaded by the browser
which contains the Rebol/View 1.3 interpreter. With the first remote use of
the plugin, the user is invited to accept its installation with the help of a
single click. The browser is then ready to carry out the Rebol script indicated
in the HTML page.

<object id="myplugin" width="200" height="100"
classid="CLSID:9DDFB297-9ED8-421d-B2AC-372A0F36E6C5"
codebase="http://www.rebol.com/plugin/rebolb5.cab#Version=0,5,0,0">
<param name="LaunchURL" value="http://localhost/script1.r">
</object>

The <object> tag uses various attributes to provide control over a number
of aspects of the plugin. The id attributes contains the name the programmer
has given to the plug-in in the HTML page. The width and height
attributes represent the width and height of the window to be used by the
plugin. The classid is the signature of the plugin which, obviously,
should not be changed. The codebase attributes gives the address from
where the plugin can be downloaded if it hasn’t already been installed or
needs updating. The LaunchURL attribute within the <param> tag gives
the location of the Rebol reblet that is to be executed by the plugin.

In the listing above, the HTML page requests the execution of the program
script1.r. This is simply a traditional Rebol script using VID (Visual
Interface Dialect) to describe its graphic interface.

Rebol – A Programmer’s Guide

140

For example, all that is needed to display some text in the plugin window is
the following code:

REBOL [
 author: "Olivier Auverlot"
]
view layout/size [title "Reblet !"] 300x100

Configuration Parameters

The plugin provides a number of configuration options that can be accessed
via the <param> tag. With BgColor, you can set the background colour.
To do this, you simply provide a hexadecimal value of the RGB components
just as you can specific colours in HTML or CSS. Normally, the value used
is the same one used for the background of the HTML page that contains the
Reblet.

It is even possible to transmit data to a Reblet to configure its operation. For
this, you have the Args parameter which contains a list of values which is
read by the Reblet before it runs. The values contained in this attribute can
be dynamically generated using a server-side script or program (CGI, page
RHTML or PHP, JSP or Servlet, etc.). To read the contents of the Args
parameter, the method is the same as that used to read parameters passed to
the interpreter from the command line. You just access the
system/options/args property.

The following example sets the background colour of the plugin and is
passed a list of programming languages via the Args parameter.

<html>
<head><title>Rebol plugin test</title></head>
<body>
<object id="myplugin"
classid="CLSID:9DDFB297-9ED8-421d-B2AC-372A0F36E6C5"
codebase="http://www.rebol.com/plugin/rebolb5.cab#Version=0,5,0,0"
width="200" height="200">
<param name="LaunchURL" value="http://localhost/script2.r">
<param name="BgColor" value="#000000">
<param name="Args" value="Rebol Java Perl Python Ruby">
</object>
</body>
</html>

Networking and the Internet

 141

Reading the data from the command line and displaying it in a list only takes
a handful of lines of code. After verifying the presence of the data in the
system/options/args property, the language names are separated
from one another using the standard separation character (a space). The
different strings are placed in a block and then displayed using the text-
list style.

if not none? system/options/args [
 languages: parse system/options/args ""
]
view layout/size [
 text-list 150x150 data languages
] 300x200

Figure 4-13. Running a Reblet in a browser.

A third and final parameter, called Version, is also available. This
corresponds to a number of properties available in the Rebol plugin to
optimise the transfer of data between the client and the server.

Cache, proxy and compression

In order to make reblets as interactive as possible, Rebol equipped its plugin
with an astute caching mechanism to make it possible to optimise the
downloading of reblets over the network. When a reblet is used for the first
times, its code is stored in a temporary folder on the client computer and
within a directory tree dedicated to Rebol.

Rebol – A Programmer’s Guide

142

So under Windows with the Internet Explorer browser, you can find the
stored reblets in the c:\windows\temp\rebol\plugin\ie\0\public\
folder. The scripts are stored in folders named after the server from which
they were downloaded. In order to refresh these scripts should they have
been updated on the server, the Rebol plugin uses a parameter called Version
with the following syntax:

<param name="Version" value="3.0.0">

If the value of this attribute is higher than the version number of the reblet
held in the cache, the reblet on the server is considered to be a new version
and will be downloaded. If it is not, the stored reblet will be executed. This
easy method has many advantages. By using the Version parameter, the
developer of a web page containing a reblet can ensure the latest version is
used by all users. This cache makes it possible to considerably reduce
network traffic by limiting downloads only to reblet updates. Finally, the
start-up time of the reblet is much faster as it is stored locally.

The presence of the cache also offers new possibilities to the developers of
browser-hosted applications. In effect, the cache can also be thought of as
filespace reserved for the Rebol plugin. Files can be created and read in this
dedicated tree structure.

This only applies to the dedicated Rebol directories and nowhere else on the
user’s hard disk. There is no question of reading or writing files outside the
dedicated directory structure without Rebol’s security manager requesting
the user’s authorisation. The only accessible directory is the cache.

Networking and the Internet

 143

Figure 4-14. The plugin’s local cache

In this way a reblet can create temporary files, store data on the local disk
and even generate HTML or pdf documents. The following example displays
a form to capture the user’s name and first name. Once the button "Save" is
selected, the data are saved on the client in the file called data.txt. This
file is created in the same folder as the reblet.

view layout/size [
across
lab "Name:" name: field "" return
lab "First Name:" firstname: field "" return
btn "Save" [
write %data.txt reduce [
(get-face name) " " (get-face firstname)
]
]
] 400x200

To complement the cache, the Rebol plugin provides other tools to
considerably reduce network traffic and reduce reblet start-up time.

These are actually all mechanisms available in all versions of Rebol but
which take a new dimension under the plugin. For instance, read-thru
allows optimised reading of documents over a network. Thanks to this, a
reblet can easily read the contents of a file at a specified URL. read-thru
also uses the Rebol plugin cache. After connecting to the server, read-
thru checks the local cache to see if the requested file is already there. If
so, the file is read directly from the cache on the client machine.

Rebol – A Programmer’s Guide

144

For example, a reblet can download images and store them in the local
cache. With the next use of the reblet, it will not be necessary to download
the images again. It is well worth noting that if you use read-thru the
data is automatically saved in the cache. On the other hand, if certain
information must remain hidden on the server, the programmer can always
use read and decide what does and what does not need to be saved on the
client themselves.

The Rebol plugin also includes the compress and decompress words
for compressing and expanding data. The size of the resources needed to run
a reblet (images, sounds, etc.) can be significantly reduced and hence reduce
their download time. To compress your files, all you need to use is a Rebol
interpreter. The following command compresses the image img.bmp and
creates a file called img.dat which can then be saved on the web server:

write/binary %img.dat compress read/binary %img.bmp

You can now write a reblet which downloads it, decompresses it, saves it in
the plugin cache and displays it in a window in the browser:

img: load to-binary decompress read-thru http://localhost/img.dat
view layout/size [
 origin 0x0
 image 179x250 img
] 179x250

As usual, Rebol does so much with the minimum of code.

It is even possible to further reduce the size of the script by using the
/expand refinement of load-thru to avoid using the word
decompress.

Interacting with the Browser

It is possible to interact with the contents of the web page hosting a reblet by
accessing the DOM (Document Object Model). This makes it possible to
read or modify certain aspects of the environment the reblet is running in. In
fact, all of this is made possible by calling a generic JavaScript function
whose task is simply to execute JavaScript code provided by the reblet.

Networking and the Internet

 145

This function must be called evaluate and be stored in the page containing
the plugin:

function evaluate(code) {
 return eval(code);
}

This function performs and returns the result of JavaScript code passed to it
as a parameter. In the plugin code, the call of the evaluate() function is made
possible using the do-browser word whose only argument is the
JavaScript code to be passed to the evaluate() function. This word returns the
result of the JavaScript code. To better understand, here is a reblet that finds
the name and version number of the browsers it is running under. For this,
the appName and appVersion properties of the JavaScript Navigator
object must be accessed. The HTML page containing the call to the reblet
also contains the JavaScript which is stored between the <head></head>
tags.

<html>
<head>
<title>Rebol plugin test</title>
<script language="javascript">
 function evaluate(code) {
 return eval(code);
 }
</script>
</head>
<body>
<object id="myplugin"
classid="CLSID:9DDFB297-9ED8-421d-B2AC-372A0F36E6C5"
codebase="http://www.rebol.com/plugin/rebolb5.cab#Version=0,5,0,0"
width="100" height="50">
<param name="LaunchURL" value="http://localhost/script6.r">
</object>
</body>
</html>

The reblet layout contains a simple button that when pressed calls the
JavaScript evaluate() function twice to request the evaluation of the
navigator.appName and navigator.appVersion properties.

Rebol – A Programmer’s Guide

146

Once the information has been collected, it is displayed using a dialog box.

view layout/size [
 backdrop 255.255.255
 btn "Browser ?" [
 app-name: do-browser {navigator.appName}
 app-version: do-browser {navigator.appVersion}
 alert join "You are using " [
 app-name " " app-version
]
]
] 100x50

Figure 4-15. Displaying the Browser details.

This mode of operation is simple and has the advantage of not imposing any
limitations. Anything that can be done in JavaScript can be done with the
Rebol plugin. This feature gives the Rebol plugin access to all the resources
of the browser.

Through this method, the plugin can read or modify the values of an HTML
form’s fields, open or close browser windows, consult the navigation history,
handle cookies, etc.

By including all the functionality of Rebol/View in a browser plugin, Rebol
has certainly made a great coup. Because of its freedom and portability, the
plugin resolves the problems of distributing Rebol applications whilst
providing the full functionality on client workstations, be they used by
professionals or the general public. This light and innovative solution should
attract many developers.

Networking and the Internet

 147

Summary

Rebol is truly a language dedicated to network programming. With it, you
can access the resources of the Web, define your own data exchange
protocols and develop both client/server and web applications. Using reblets,
the Internet takes a very different form; that of an organic network composed
of nodes exchanging information and applications.

5

Rebol for pros

Rebol has many features to attract professional developers. It has a version
dedicated to e-business and another to groupware. Its versatility, conciseness
and portability make it an ideal tool for rapid software development.

Rebol/Command

The Rebol language is currently available in five different versions, each one
targeted at a specific use.

Rebol/Core is principally used for network utilities and CGI scripts.
Rebol/View provides for the development of graphical client applications.
The Rebol/SDK supports the development of commercial applications that
can be distributed in executable form. Rebol/IOS is intended for groupware.
Rebol/Command is intended for developing servers for e-business systems.

Rebol – Programmer’s Guide

150

Concentrated power

Rebol/Command is available for a number of operating systems (Linux,
Windows, AIX, etc.). The current version is 2.5.6. It is functionally
equivalent across all platforms, just like Rebol/Core and Rebol/View. You
have the ability to develop an application without needing to worry about
which platform it will run on. Software can be written under Windows and
run, unchanged, on Linux.

In a few hundred kilobytes of the Rebol/Command interpreter you find not
only all of the words and protocols of Rebol/Core but also an impressive
number of extensions which make this product incredibly productive. For
web applications intended to be run over the internet or an intranet, there is
support for SSL (Secure Sockets Layer) for secure data exchange and
FastCGI for developing high-performance applications. Rebol/Command
also includes access to the principal database management systems available
in the market, the ability to call native code libraries, launching external
applications via the host system Shell and the main encryption algorithms.

Database access

The first of Rebol/Command’s many talents is the ease with which you can
communicate with a DBMS. It takes only six lines of code to open a
connection, to send a request SQL, to receive the answer and close the
connection. Depending on the platform it is running on, Rebol/Command
unfortunately doesn’t have access to all the same basic databases. Whilst all
versions of Rebol/Command natively support Oracle and MySQL, only the
Windows version has access to the ODBC protocol. So if you use a different
database (Informix, PostgresSQL, SyBase, IBM DB2, etc.), for the moment
you must use a Windows machine (9x, Me, NT, 2000, XP).

Database access is achieved with the help of three Rebol protocols called
oracle, mysql and odbc. So all you need to do to communicate with a
database is to use a port. The first stage consists of opening a connection
with parameters transmitted in the form of a URL. The parameters will be
different depending on the type of database you use.

Rebol for pros

 151

For example, in the case of ODBC you will have to supply the data source
name (DSN) whereas for MySQL you need to give the database name.

Suppose you want to connect to a MySQL database named "test" hosted on
the machine at 172.29.143.1 on your network. You must, of course, supply a
user name ("homer") and password ("duff"). The connection is established in
the following manner:

db: open mysql://homer:duff@172.29.143.1/test

You can now establish a port by using the word first. After that, you
transmit your SQL requests to the database with the word insert and get
the results back from the database with the Rebol word copy. Once these
operations have been completed you must close the connection by closing
the two communications ports:

p: first db
insert p "SELECT * FROM myfile"
print copy p
close p
close db

This example returns all the rows in the myfile table in the form of a block of
blocks which you can then process with Rebol functions. Rebol/Command
also supports more complex database operations such as transactions and
accessing table and field definitions.

Shell access

The shell is your system’s command interpreter. In Linux, it is normally bash
(Bourne Again SHell). It allows you to communicate with your machine
without the need for a graphical user interface.

A shell provides internal commands (echo, set, etc.) and lets you launch
external applications. Rebol/Command makes it possible for developers to
interact with the shell through the call word. Suppose that you are running
Rebol on Linux, you can obtain the contents of the root directory by using
the command call "ls /".

Rebol – Programmer’s Guide

152

This word has some very interesting refinements. With /error, you can
recover the error code returned by the shell. You can also redirect standard
input and output streams with /input and /output. With /wait, it is
possible to synchronise the execution of different processes: a task will only
be launched once another has finished.

For those of you who haven’t bought a copy of Rebol/Command yet, this
feature has been included in Rebol/Core and Rebol/View since the release of
versions 2.6 and 1.3 respectively.

Using dynamic libraries

A dynamic library is a collection of native functions (and possibly data)
which can be shared between applications on the same machine. Library
functions are marked either public or private and are correspondingly
accessible or hidden from applications. The goal is to avoid having to
include the same code directly in every application which uses it. This not
only reduces their memory usage but also makes updates easier: it is
sufficient to update a library so that all software using it is updated
simultaneously.

On Windows, dynamic libraries have the DLL file type. As for Tux fans,
they find them with the equally famous SO file type.

Rebol/Command can use native code functions in these dynamic libraries
which are usually developed in C, C++, Pascal or even Visual Basic. The
steps are rather simple: you must first include the library by using the
library refinement of the word load, and then declare the different
functions you want to use with the routine! datatype. The functions are
then regarded as belonging to the standard Rebol dictionary.

Thanks to dynamic libraries, you can re-use native code functions developed
for another project, improve the performance of your application by coding
critical sections in native code, and especially extending Rebol’s capabilities
by integrating libraries such as those authorising access to a LDAP directory
or a DBMS not directly supported by Command.

Rebol for pros

 153

Even better news for those of you who haven’t bought a copy of
Rebol/Command yet, library access has been included in Rebol/View with
the release of version 2.7.6.

Data encryption

Data encryption is one of the most interesting aspects of Rebol/Command.
Thanks to it, you can encrypt and decrypt information and hence safely
transmit it over a network or the internet. The interpreter has a special port
named crypt whose function is to transform the data according to the
selected algorithm. You can use algorithms based on a traditional
symmetrical key and also the RSA (Rivest, Shamir and Adelman) algorithm
using a pair of keys (private and public). It is also possible to apply a digital
signature (DSA) in order to authenticate data. The DH algorithm (Diffie
Hellman) is used in the process of authorising connection of outside devices
to a network. For all these different cases, Rebol/Command provides the
tools needed to generate the keys used. Using these features, you can
transmit sensitive information over a network with optimal safety.

In spite of its small size, Rebol/Command is an extremely powerful tool. It
has all the functionality needed to quickly write e-business applications in a
minimum of code. If by chance a required function is missing, you have the
alternative of using external applications via the shell access, or better still to
include dynamic native code libraries in your project.

Rebol, CGI scripts and MySQL

How to access a database when you don’t have Rebol/Command? Indeed,
the free versions (Core and View) cannot send SQL requests to a relational
database. Happily, the situation is not completely desperate.

With Rebol being a network programming language based on TCP/IP, the
solution lies in writing a dedicated communications protocol. Nenad
Rakocevic has created and made available an excellent protocol, MySQL.

Rebol – Programmer’s Guide

154

Introducing the MySQL protocol

Nenad Rakocevic’s MySQL protocol works on all versions of Rebol. Used
in conjunction with Rebol/Core, it lets you write compact CGI scripts that
can interact with the well known MySQL DBMS.

With Rebol/View, you can write office automation applications accessing
MySQL or Reblets (distributed network applications). Nenad’s protocol is
free and can even be integrated into commercial applications. The protocol is
totally independent from the executing platform and so can be used on many
operating systems (Linux, Mac OS X, Windows, etc.).

If you don’t want to buy Rebol/Command, using Rebol/Core and MySQL
provides an excellent alternative for developing e-business applications.

Downloading and installing the protocol

Nenad Rakocevic’s MySQL protocol is available for downloading from
http://softinnov.org/rebol/mysql.shtml. (You can also find a link to his
similar PostgresQL protocol on this page.)

The protocol is contained in a ZIP archive which contains a comprehensive
developer’s guide.

Figure 5-1. The contents of the MySQL protocol folder.

Among the new files on your hard drive, the two most important are
mysql-usage.html and mysql-protocol.r.

Rebol for pros

 155

The first is the complete documentation of the protocol, the second the code
to include in your application to be able to communicate with MySQL. To
include it in your program, you simply run the script containing the protocol
by using the word do followed by path to the file containing the protocol.
Once the protocol is loaded, it displayed the message “MySQL protocol
loaded” in the Rebol console. You can now check that the new protocol is
available by using the command print mold first
system/schemes.

Using the protocol

Now all that is left is to test the protocol. For this, you will create a small
MySQL database called musicdb which contains only one table discs.
Its purpose is to store details of your record collection. It consists of five
fields:

CREATE TABLE discs (
 num SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 artist CHAR(60),
 title CHAR(60),
 year SMALLINT,
 PRIMARY KEY (num)
)

The database will reside on a Linux server with the IP address of
172.29.143.1. With the help of a Rebol script, you are going to load this table
with data. The data representing your disc collection are contained in a block
called, data.

Each sub-block within the data block corresponds to a disc and holds the
name of the artist, the title and the year the disc was published.

The connection to the database is made by using the open instruction
followed by the name of the protocol and a URL in which you specify the
user name and password (olivier:homer), the IP address (or name) of
the server hosting the MySQL DBMS and the name of the database. This
instruction then returns a port into which you can insert SQL instructions and
retrieve data.

Rebol – Programmer’s Guide

156

To load the discs table, all you need to do is to cycle through the data
block with a foreach loop and then use the SQL instruction insert
into.

The protocol provides a great convenience for programmers by allowing the
substitution of "?" for the values of variables passed as parameters (the first
question mark is the first variable and so forth). This cuts down on the
construction of a complex string when using application parameters. At the
end of the process, don’t forget to close the port with the close instruction
to release it.

#!/Applications/core/rebol -qs
REBOL []
do %/Library/rebol/mysql-protocol.r

data: [
 ["Leonard Cohen" "Leonard Cohen in concert" 1994]
 ["Sarah McLachlan" "Remixed" 2001]
 ["Jean-Louis Murat" "Muragostang" 2000]
 ["Leonard Cohen" "Ten new songs" 2001]
 ["Peter Gabriel" "Us" 1992]

["Huong Thanh" "Moon and Wind" 1999]
]

db: open mysql://olivier:homer@172.29.143.1/musicdb
foreach elem data [
 insert db ["insert into discs values (0,?,?,?)"
 elem/1 elem/2 elem/3]
]
close db

Integration in a CGI script

To query your disk catalogue, you are going to write a short CGI script
called music.cgi. The user must select an artist from a dropdown menu to
get a list of the artist’s albums.

The only difficulty with this script is to properly handle the information
received from the form. The script is recursive and any parameter will be
sent to it on its first execution. To determine the receipt of an artist’s name,
you must use error handling: the code tries to read the information supplied
and assigns the result to the variable, artist-name.

Rebol for pros

 157

If the script is unable to find the artist field from the input data, it
considers that no parameter was transmitted and initialises artist with the
value none.

REBOL []
do %/Library/rebol/mysql-protocol.r
print "Content-type: text/html^/"
print {
 <HTML>
 <HEAD><TITLE>Music</TITLE></HEAD>
 <BODY>
 <H1>Disk catalogue</H1>
}
if error? try [
 query: make object! decode-cgi system/options/cgi/query-string
 artist-name: query/artist
] [artist-name: none]

In any case, you should see a selectable drop-down list containing the names
of the artists in the database.

To avoid duplicates, the SQL request uses the distinct option and names
obtained are sorted in alphabetic order (order by).

Because the application doesn’t know how many artists are in the database,
and it could be a very large number, the data are read one by one from the
port by using the word first. They are dynamically added to the HTML
form.

print {
<FORM name='catalogue' action='music.cgi' method='GET'>
<SELECT name='artist' onChange="catalogue.submit();">
<OPTION>Choose an artist
}
db: open mysql://olivier:homer@172.29.143.1/musicdb
insert db [
 "select distinct artist from discs order by artist"
]
while [not empty? (name: first db)] [
 print join "<OPTION>" name
]
print "</SELECT></FORM>"

The last stage consists of querying the database if an artist has been selected.

Rebol – Programmer’s Guide

158

There is no need to reopen a connection as you are always connected to the
MySQL database. The result of the select request is assigned to the
variable discs which is a block of blocks containing a block for each line
in the response.

An HTML table is built and the data is displayed in it by using a foreach
loop. All that is left to do is close the database connection and to complete
the construction of the HTML page.

if not none? artist-name [
 insert db [
 "select title,year from discs where artist=?"

artist-name
]

 discs: copy db
 print ["
" nom-artiste "
<TABLE>"]
 foreach d discs [
 print ["<TR><TD>" d/1 "</TD><TD>" d/2 "</TD></TR>"]
]
 print "</TABLE>"
]
close db
print "</BODY></HTML>"

Thanks to the tremendous work of Nenad Rakocevic, your CGI scripts,
written with Rebol/Core are now capable of interacting with a MySQL
database. As you may have noticed, performing SQL queries and reading the
data are easy.

Data encryption

The primary goal of Rebol is to facilitate the transport of data between
heterogeneous computer systems. Moving information over networks
requires taking into account a crucial factor: security. A communications
language must have the necessary tools to ensure confidentiality and
integrity of data. To this end, there are many of the major encryption
algorithms available in Rebol/View/Pro, Rebol/SDK, Rebol/Command and
Rebol/IOS.

Rebol for pros

 159

Symmetric key encryption

This type of encryption is based on a single key. The recipient decrypts the
message with the same key that the sender used to encrypt it. This method is
very simple but it has a significant disadvantage: transporting the key. In
fact, for the sender and recipient to have the same key, at one time or
another, the key must have travelled between the two users. Additionally, for
all users who have the same key, this technique does not authenticate the
documents or even verify the integrity of data. Nevertheless, this method is
extremely fast and if you know the limitations, it can be used effectively in
certain circumstances.

Figure 5-2. Symmetric key encryption is simple and fast.

Rebol includes a protocol named crypt for data encryption.

You simply define encryption parameters and enter data into port to encrypt
and decrypt information. The following example encrypts a message input
by the user.

First a 128-bit key (16 bytes) is generated from a string.

the-key: checksum/secure "RebollobeRReboll"

Then the user is asked to input a message:

msg: ask "Your secret message: "

Next a port is defined using the 'encrypt function of the crypt protocol.
The algorithm can be either of the 'blowfish, or 'rijndael types.

Rebol – Programmer’s Guide

160

The padding property ensures compatibility with other encryption
applications

cp: make port! [
 scheme: 'crypt
 algorithm: 'blowfish
 direction: 'encrypt
 strength: 128
 key: the-key
 padding: true
]

The message is encrypted when it is inserted into the cp port. You simply
use the word copy to retrieve the encryption results.

open cp
insert cp msg
update cp
encrypted-msg: copy cp
close cp
print mold encrypted-msg

To decrypt the message, you must use the same method (and especially the
same key!) by changing the action of the protocol to 'decrypt.

cp: make port! [
 scheme: 'crypt
 algorithm: 'blowfish
 direction: 'decrypt
 strength: 128
 key: the-key
 padding: true
]

open cp
insert cp encrypted-msg
update cp
print mold to-string copy cp
close cp

RSA encryption

RSA (Rivest, Shamir and Adelman) encryption is based on the use of two
keys linked to one another by a mathematical relationship:

• the private key is never revealed or transmitted,
• the public key is sent to all recipients.

Rebol for pros

 161

This algorithm not only protects the contents of a message but also
authenticates its author. To encrypt a message, the sender encrypts the
message with the recipient's public key (which is known to all). The latter
decrypts the message with their private key. The authentication of the
message is made possible by the confidentiality of the private key. If the
sender uses his private key to encrypt the message, the recipient has no
choice but to use the sender’s public key to access information. If the
message is successfully decrypted, it proves the message was sent by the
named sender. This method also avoids repudiation: issuers cannot claim that
they didn’t send a message.

One aspect of RSA encryption is that the length of the message cannot
exceed the length of the keys. Also RSA is slower than symmetric
algorithms. For these reasons, the main practical use of RSA encryption is to
exchange temporary keys for use with symmetric algorithms and the
“signing” of documents.

Figure 5-3. RSA uses both a private and a public key.

For storing the two keys, Rebol uses an object created by the word rsa-
make-key. Then the keys can be generated (rsa-generate-key) by
specifying the length of the keys and a prime number to be used by the
algorithm. The properties n and d of the object containing the keys are the
public key and private key respectively.

Rebol – Programmer’s Guide

162

The word rsa-encrypt can then use these two keys to encrypt and
decrypt data.

keys: rsa-make-key
rsa-generate-key keys 1024 3
print ["public key: " (mold keys/n)]
print ["private key: " (mold keys/d)]

msg: ask "Your message : "

msg-code: rsa-encrypt/private keys (to-binary msg)
print mold msg-code
msg-decode: rsa-encrypt/decrypt keys msg-code
print mold to-string msg-decode

Diffie Hellman

The D-H algorithm can establish secure connections over open networks.
The principle is also based on generating two keys. Each side has a private
key that is never broadcast or moved. They also have public keys whose
purpose is to be used between the machines between which secure
communications must be established.

Figure 5-4. Generation of two keys with D-H

Following the exchange of public keys, the two correspondents generate a
session key to be used for symmetric encryption between the two parties.

Rebol for pros

 163

The use of this encryption method is dictated simply because of its speed:
symmetric encryption allows both parties to encrypt and decrypt data in real
time.

Using the D-H algorithm is very simple with Rebol. Generating the two keys
for a correspondent is done using the word dh-make-key with the
/generate refinement. The arguments are the key length and a number to
seed the key generation. You then need to generate a key pair with the word
dh-generate-key.

keys: dh-make-key/generate 128 2
dh-generate-key keys

The final step is to generate a session key from your private key and the
public key received from your correspondent

; the variable key-other-server contains
; the public key of the correspondent
Session-key: dh-compute-key keys key-other-server

From now, simply use the symmetric encryption method from the beginning
of the chapter. The two correspondents will have independently generated
the identical session key and can now safely exchange information.

Signing your documents with DSA

DSA (Digital Signature Algorithm) allows a document to have a digital
signature. It also relies on the use of private and public keys. It is very simple
to use as the sender uses their private key to attach their signature to the
document. To authenticate the document, the recipient uses the public key of
the sender. If there is a match, the recipient can be certain of the author.
Don’t get confused about the purpose of DSA: it is not here to protect the
contents of a message, only to provide a service to authenticate a document’s
author. For this reason, DSA is not applied to all data but only a portion of it.
Anyway, the algorithm cannot be used to encrypt text that is the same length
or longer than the key. Because of this, it is generally used on the checksum
of a message. The keys are generated with the words, dsa-make-key and
dsa-generate-key.

Rebol – Programmer’s Guide

164

A signature is created with dsa-make-signature and verified by dsa-
verify-signature which returns a simple boolean value.

data: checksum/secure "message to which the signature will be applied"

my-key: dsa-make-key/generate 1024
dsa-generate-key my-key
signature: dsa-make-signature/sign my-key data
print mold signature
print dsa-verify-signature key data signature

Figure 5-5. Keys and DSA signature verification.

As you can see, at the end of this rapid overview of the encryption
technologies available in Rebol, it has the best available tools to ensure the
safety of your data as it travels over networks.

Rebol/IOS

Rebol/IOS (Internet Operating System) is the Rebol application server.
Echoing the features of the other versions of the language (Core, View and
Command), it allows the creation of a community of users who can easily
share documents and applications. Rebol/IOS is an extremely deep product
but still incredibly lightweight. It is the sublimation of Rebol concepts: the
materialisation of a vibrant, interactive and dynamic Internet.

IOS: a concept lacking exposure

Rebol/IOS allows a group of people to exchange, manipulate and share
information.

Rebol for pros

 165

Using the HTTP transport protocol, it can be used both on intranets and the
Internet. Users connect to the server via a dedicated client called Link, which
gives a genuine working environment that can be described as a virtual
office. Identified by their user account, they can not only send data to and
retrieve data from the server but also use the applications it hosts.

The main feature of IOS, apart from the fact that you can totally avoid a
cumbersome browser, is that it inherently employs the concept of
synchronisation. Whenever a client connects, its environment is updated to
reflect all changes made on the server. So if a Rebol application, which is
referred to as a reblet, or even the Rebol/Link client itself changes, the client
automatically retrieves and installs the new versions.

This mirroring mechanism and the fact that reblets are executed under
Rebol/Link on the client, gives the user the choice of working either on-line
or off-line. In the latter case, the client will synchronise any changes made by
the user when it next connects to the server. A mobile user can connect to
their IOS server from time-to-time and update their data. During the day,
they can work in their virtual office using Rebol applications. At night, the
user simply connects to the IOS server which automatically uploads their
data and updates their working environment if necessary. For the
programmer as well as the user, all these operations are made totally
transparent and, above all, are carried out safely.

An ultra-secure system

The people from Rebol have really focussed on the security of information
transferred between Link clients and the application server. It isn’t necessary
to add anything to the product: IOS really knows how to manage its security.

The first thing to know is that a Link client is dedicated to which server it
can connect. Both client and server include a certificate which blocks
unauthorised attempts to connect. A Link client of company A can never
connect to company B’s IOS server (unless of course, both parties want such
connections).

Rebol – Programmer’s Guide

166

Once a connection is established, a Link client and its server share a session
key whose exchange is based on the RSA (Rivest, Shamir and Adelman)
model. This means that all exchanges between the machines will be
automatically encrypted. A person may try snooping on your network, but
they will learn nothing.

If you push the standard configuration a little further, you can filter IP
addresses and TCP ports from which machines are allowed to connect to the
server. You can even encrypt data that is stored on the client and server.
Rebol/IOS also uses various methods to ensure data integrity such as SHA1
checksums.

On the server, a user has certain rights determined by their username. User
identification is based on a classical login with password. Each user can have
different rights and they can customise their work environment. You can
hide documents and applications from certain users: they will never know
the hidden documents or applications existed and have no way of finding
out. Moreover, all user and server actions are recorded in a log file that lets
you monitor IOS activity and helps you resolve possible problems.

The Rebol/Serve server

The heart of IOS is the server called REBOL/Serve. This product can be
installed in five minutes and is available for Windows and Linux.

The ZIP archive of the Windows version contains five directories. The server
itself is in the rebol-serve directory and is called, in case you couldn’t
guess, rebol-serve.exe. It is a simple executable of around 680K. To
activate it, simply type the command rebol-serve.exe -wqs. Of course,
you can create a batch file to launch it or, on Unix systems, use the command
files provided in the scripts directory. Simply enter the shell commands
server start or server stop to start or stop the IOS server.

Rebol for pros

 167

Figure 5-6. The server in action.

Once the server is running, you must install the proxy. This small application
of around 35K is in the proxy directory in both source and compiled
versions. The different files are for GNU Make and Microsoft Developer
Studio, so you can build this program for another platform.

What is the purpose of this proxy? In fact, for IOS to run over the Internet,
you need a Web server. It can be almost any Web server; the only condition
is that it supports persistent HTTP connections. Rest assured, the two market
leaders (Apache and Microsoft IIS) do this very well and are perfectly suited
to IOS. The proxy programs goal is to act as an intermediary between Link
clients connecting via HTTP to the webserver and IOS which uses a specific
TCP port. The proxy is a simple, tiny CGI script, you must place it in the
virtual cgi-bin directory of your Web server.

It is very interesting to note the HTTP server and, by extension, the CGI
script, do not need to run on the same machine as the IOS server. You can
put together a Linux/Apache server to receive connections from clients and a
Windows 2000 server hosting Rebol/IOS.

The architecture is very flexible and allows you to use the best products to
meet your needs.

Rebol – Programmer’s Guide

168

The Rebol/Link client

Once the server is working, it will only connect with a Rebol/Link client. It
is a lightweight application of about 500K in its Windows version. The
configuration needed for it to run well is only a 200 MHz microprocessor, 64
Mbytes of RAM and around 4Mbytes of disk space. Not exactly bloatware!
(It has been reported that Rebol/Link runs happily under Wine on Linux).
Even with a simple modem, Rebol/Link can be downloaded in a few
seconds.

The Rebol/Link client contains its own installation procedure. The latter
allows the user to enter their account name and password and information
about the network to which it belongs (mail server and proxy).

Once launched, Rebol/Link takes the form of a desktop divided into three
zones:

• the top of the screen contains a button bar which allows you to access
commonly-used applications,

• the left columns lists the folders for different types of activity,
• the main area of the screen is used to display icons of applications,

folders and files.

Figure 5-7. Link client organisation.

Rebol for pros

 169

This desktop can be heavily personalised and the graphics adapted to the
requirements of a company or organisation. You can change its colours or
add a logo. For the administrator, this work consists of creating a skin which
will be automatically downloaded to clients when they next synchronise.

Using Rebol/Link is very intuitive because it is totally mouse-driven. The
user has only to click on the various icons representing the features available.
The right mouse button lets you change properties of a document and is also
used to publish information on the IOS server. These documents can be files,
possibly grouped in folders, hypertext links to HTML pages or applications
written in Rebol which run on the client. If you use office documents (Word,
Excel, Visio, PDF, etc.), Rebol/Link will use the file associations (.doc etc.)
and launch the appropriate application to open the file (on condition that it is
available on the user’s machine).

Apart from sharing documents within a work group, the primary role of
Rebol/Link is obviously to run applications written in Rebol, these are called
Reblets.

Reblets

These ultra-light applications are the heart of the Rebol strategy known as
the X-Internet. This is not simply the distribution of HTML pages but that of
genuine software. Each client Reblet becomes an active part of the network
and can exchange information with other members of the community. The
applications no longer function solely on the server but are built using a
distributed architecture. There are actually three different methods for the
division of roles between client and server:

• A reblet may be run exclusively by the client,
• A reblet may be run on both the client and the server: in this case, the

reblet uses what is called a post function which is located on the
server in the applications directory,

• A reblet may also trigger the execution of external programs on the
server and use the subsequent results.

Rebol – Programmer’s Guide

170

This integration of the client and server in the process of manipulating and
presenting information, results in the burden on the network and server being
considerably reducing in comparison with today’s conventional solutions
(scripts CGI, servlet, JSP, PHP, etc.).

To demonstrate the capabilities of its solution and to position Rebol/IOS in
the field of collaborative work, Rebol provides a dozen reblets ready for use
and personalisation. The source code of each of them is available and you
can freely adapt them to your needs.

Many areas are covered by these reblets and they make IOS a real hub in a
network. For instance, in place of normally less secure messaging, the
Messenger application allows two user to participate in a direct or deferred
dialogue (all messages are archived and therefore you keep the history of
your conversations). With Conference, you can create themes for discussion
and several users can exchange their views simultaneously. For the nostalgic,
Rebol/IOS includes a small reblet for sending messages via the classic
SMTP protocol.

Figure 5-8. The Conference reblet.

Rebol for pros

 171

In the light-weight office domain, you have a shared contact manager of
which everybody can both view and maintain the contents. A shared
calendar (Calendar) and basic project manager (Taskmaster) facilitate the co-
ordination of work between different people.

Another very practical application is the Who reblet. This shows who is
connected to the server, their availability and location. By simply clicking on
one of a few visible buttons, you can inform the members of your
community, if you are available, busy, in a meeting or have simply gone
home. It is even possible for your colleagues to find out where you are: Who
shows whether you are connected from your office or your home.

Figure 5-9. Taskmaster is a simple project manager.

There are numerous reblets and Rebol Technologies announces new ones
when they become available; some are included with the server, some are
sold separately. You can monitor product sales by using the Sales
application. Survey is designed for organising polls which users can
participate. You can create curves and histogram from data sources with
Plot. Presenter is a program allowing the broadcasting of interactive
presentation on a network. These are just a few examples from the list of IOS
applications.

Rebol – Programmer’s Guide

172

Anyway, if you do not find what your are looking for in the list of
applications, there is nothing to stop you modifying the applications or
developing your own reblets, fully adapted to your needs.

Administration tools

Reblets are so versatile that they are even used to administer the server. You
just login to the "admin" account to get access to the Rebol/IOS management
functions. An administrator can connect from any computer with a Link
client.

Amongst the many tools available, the three main ones are, without a doubt,
Alert for sending messages to all users, User-admin for managing user
accounts and Reg-edit for updating filesets (explained below).

An administrator can broadcast a message to every user who is connected to
the server with Alert. On the client desktop, a window will automatically
open to display the alert message. This function is very useful to warn users
of an important event such as a warning that the machine or a service will be
unavailable.

With User-admin, you have an excellent tool for creating and managing user
accounts. For each of them, you must enter a name and email address. You
can also connect a user to one or more groups and define specific rights for
each of the nine base criteria available. The system is very flexible and
allows very fine control over each user’s rights. You can also import users
from another Rebol/IOS system with the help of a simple Rebol script. It is
even possible to automatically incorporate elements from LDAP directory
services.

Rebol for pros

 173

Figure 5-10. Managing user accounts.

Reg-edit is used to administer Rebol/IOS filesets, the file system used by the
server.

Each file manipulated, whether an application or data, belongs to a fileset
which defines the files characteristics, access rights, the use to which it can
be put and much other information including which icon is to be used on the
Link desktop. Publishing a reblet on the server using the POST function,
boils down to creating a new fileset on the server.

Figure 5-11. Managing the registry database.

Rebol – Programmer’s Guide

174

Rebol/IOS is a stunning product with no real equivalent. Simply use it for a
few seconds to understand that Carl Sassenrath has created a platform to
revolutionise the use of the Internet. Capable of integrating with an existing
environment and slowly replacing it, Rebol/IOS can become the heart of an
information system. The delivery of solutions built around a Rebol/IOS
server, specifically configured in terms of look and function, according to the
specific needs of an organisation is undoubtedly a future market for
developers.

Managing Rebol projects

The Rebol language is so compact that you can write your programs with a
minimum number of lines of code generally in a single script. But for more
ambitious projects, the maintenance needs often require the project to be
split into multiple files. You must then use the Prebol source manager.

The Prebol preprocessor

The Prebol utility is a preprocessor for Rebol code. It allows the automatic
construction of a Rebol script from a set of resources such as files containing
Rebol code, data or multimedia files (images, sounds, etc.).

This generation can be static or dynamic according to a set of programmer-
defined parameters, the development environment or even the target runtime
environment.

Prebol also allows the optimisation of Rebol code as it minimises the size of
the script to be distributed. To do this the utility removes unnecessary
characters such as metadata in any files included, comments and some end of
line characters. The aim of these operations is to provide a concise file which
can be easily distributed via the Internet. Prebol is an essential tool for the
Rebol developer.

Rebol for pros

 175

Installation and use

Before installing Prebol on your machine, you must first get it. You have the
choice between paid and free versions. Owners of the commercial
Rebol/SDK (Software Development Kit) have this utility in two forms: a
binary executable in the bin folder and a script in the source folder. To
invoke it from the command line, you should use the command prerebol
followed by the name of the script source and the name of the file to be
generated.

prerebol project.r program.r

As an alternative to executing it from the shell, you can also use the script
prebol.r followed by the same arguments. It is also possible to invoke it
directly from the Rebol console by using the do word with the /args
refinement, the syntax is then do/args %prebol.r [%project.r
%program.r].

Figure 5-12. Using Rebol’s preprocessor.

The SDK comes with a number of different programs to encapsulate a script.
(That is to create an executable binary from the script). These automatically
call prerebol whenever a script is transformed into a binary. The use of
prerebol through commands is not necessary when you test your projects
in the different Rebol environments (Rebol/base, Rebol/face, Rebol/cmd,
etc.).

Rebol – Programmer’s Guide

176

Figure 5-13. The preprocessor documentation.

If you do not work with Rebol/SDK but use the free versions of Rebol (Core
and View), you can simply download the prebol.r from
www.reboltech.com/library/scripts. Then you get a Rebol script performing
the same functions as the commercial version. The usage is the same and so
are the results. Please note that the commercial version is version number 2.0
and is lighter and faster than the free one, version 1.0. In fact, the differences
are not noticeable to the visible eye and all the examples that follow are
based on the free version of the preprocessor.

Including files

To illustrate the use of the Rebol preprocessor, you are going to develop a
script, very freely inspired by the game of 421. It is to roll three dice to
obtain the values 4, 2, 1. This program, developed with Rebol/View, is
composed of two scripts: the main programme called main.r and a library
named launch.r. The application is also built with some graphics files in
PNG format and two text files to facilitate the localisation of the product in
English or French.

Rebol for pros

 177

The various functions of the program are in the main.r file. These include
all the resources necessary to build a single working script, called 421.r,
which can be easily distributed over the Internet.

Figure 5-14. The 421 game.

To include data, Prebol has four commands which are #include,
#include-binary, #include-files and #include-string.
These instructions take a file type (file!) parameter or, in the case of
include-files, a directory and a block containing file names. It is also
possible to use Rebol expressions enclosed in brackets. In that case, the
result of the evaluation is used as the parameter.

To include the launch.r library, you simply insert the command,
#include %launch.r, in your script. Images are inserted with the
#include-binary or #include-files commands. Obviously, you
can use other types of data such as sound files. In fact, these commands
simply insert binary data, whatever the format. For the 421 project, the
images are the application title (titre.png) and six images for the
different faces of a dice. These files are stored in a sub-directory called
pics in the directory which contains the project. The title is imported with
the statement titre.png: load #include-binary (join
%pics/ %titre.png). Here we used an expression which will be
evaluated by Rebol to build the file path. When the preprocessor is used, the
contents of binary files are converted to base 64 and inserted in the generated
file. When evaluating the script, the data will be loaded in the word
titre.png.

Rebol – Programmer’s Guide

178

For the different faces of the dice, you are going to use the #include-
files directive. It allows you to include several files from a directory in a
single operation.

#include-files %pics [
 cube1.png
 cube2.png
 cube3.png
 cube4.png
 cube5.png
 cube6.png
]

For each file in the list, this command produces a pair of values composed of
the file name (resource identifier) and the file contents. To automatically
create words containing data, you can use the foreach instruction which
allows you to traverse the series and assign all values to words.

We must use the result of the preprocessor to recover each identifier and its
corresponding value. The resources are easily added to the Rebol dictionary
with set.

foreach [word data] #include-files %pics [
 cube1.png
 cube2.png
 cube3.png
 cube4.png
 cube5.png
 cube6.png
] [set word load data]

Evaluation and conditions

To localise the application, you’ll have to conditionally include a file with
the button titles. If you generate the French version, it will be the fr.txt
file. If the product is going to be in English, it will be en.txt. To indicate
the language to be used to the preprocessor, you must use a variable which
will be evaluated as the product is built. For this you have the #do
command.

Rebol for pros

 179

This instruction is very powerful as it allows the execution of Rebol code
from Prebol. It allows parameters to be set, files to be deleted, data to be sent
to a FTP or HTTP server, a file journal to be constructed, etc.

For your project, you are going to use this command to simply initialise the
variable lang with the value “fr” or “en”.

#do [lang: "fr"]

For conditions, you have both the commands #if and #either. They
work on the same principles as the words if and either of Rebol. A block
is evaluated and if the result is true, the following block is executed. The
#either instruction adds a third block which is only evaluated if the value
returned is false. In your project, you are going to set the word launch-
txt, which is the button title, to the character string contained in the
fr.txt or the en.txt file.

launch-txt: #either [lang = "fr"] [
 #include-string %fr.txt
] [#include-string %en.txt]

All that remains is to generate your script with the help of Prebol. You will
get a file of around 16k bytes containing your application code and the
resources it needs to work. This single file can now be broadcast over the
Internet.

Summary

Rebol is versatile language perfectly suitable for writing network
applications or office software. Rebol/Command is dedicated to e-Business.
Rebol/IOS is a groupware platform that astonishes with its ease of use and
possible extension. It is also possible to use the free versions of Rebol to
develop web applications.

6
Rebol for geeks

Rebol is a fascinating language which allows the use of original and efficient
technologies with breathtaking ease. Deploying virtual desktops over the
Internet and programming Unix and Windows applications are commonplace
activities for the Rebol programmer.

Rebol and virtual desktops

You can build virtual offices to disseminate information or applications over
the Internet or your company intranet with Rebol/View. It is one of the major
revolutions introduced by Rebol.

A work environment

With Rebol/View, each user can access a connection point giving entry to
private or public services. These are Rebol programs downloaded over the
network from an HTTP server: they are known as Reblets.

Rebol – A programmer’s guide

182

Each person in a company or organisation, either static or nomadic, can have
a range of services without the need to install applications on the client
machine. A virtual office can not only provide access to data files (text,
XML documents, etc.) but also to classic web services (local or remote
HTML documents, intranet applications, etc.). Again, the tool is innovative
yet flexible enough to fit into an existing architecture. It isn’t necessary to
change everything at once, your intranet’s different services can be
progressively migrated to a Rebol/View virtual office which then gradually
becomes your work environment.

The Rebol/View desktop organisation

At the top of the Rebol/View screen, you will find shortcuts such as “User”
to set the configuration for the user or "Goto" to access a virtual office via its
URL. These various headings can be customised through the services.r
file in the desktop directory of the Rebol/View file tree. At the bottom of
the window, you will find an area designed to display status information. On
the left, the Rebol/View console is accessible by a simple click of the mouse
button. There is also an icon, with the default settings, for the Rebol.com
directory which opens the doors of the World Wide Reb. You can add
further shortcuts to this window pane by editing the bookmarks.r file
which is also in the desktop folder. As an exercise, edit this file with a
simple text editor and give it the following content :

REBOL [Title: "Bookmarks" Type: 'index]
folder "REBOL.com" http://www.rebol.com/index.r
folder "Local site" %local/index.r
folder "rebsite" http://172.29.143.1/rebsite/index.r
file "Console" console icon console

Now on launching Rebol/View, two new directories will appear. The "Local
site" folder allows you to access files in the local Rebol/View directory. The
second is a link to a rebsite that you’re going to put in place on an http server
whose IP address is 172.29.143.1.

At the bottom right of the window, you will find the current mode of
working of Rebol/View. If it is "local" mode, you click on it to change to
connected mode. Otherwise your desktop will be unable to communicate
with the server.

Rebol for geeks

 183

The file index

You just store the files that make up your virtual office on the HTTP server.
The file structure is defined by the files named index.r. In each sub-
directory there is an index.r file which defines the content of that
directory. These files should include in their Rebol header that they are of
the 'index type. As an exercise, you can create an index.r file
indicating the name of your desktop and the links available. A welcome text
message is contained in the file called welcome.txt. One entry loads a
reblet, another links to a website’s homepage. In this last case, Rebol/View
displays the HTML document with the help of the machine’s default
browser. A GIF image is used to “decorate the office” but many other effects
are possible.

REBOL [type: 'index]
title "My rebsite"
backdrop %fond.gif
file "Welcome" %welcome.txt
file "A Reblet" %reblet.r info "an example Reblet"
link "My Website" http://www.mywebsite.org

The reblet is a tiny script which displays some text in a window :

REBOL []
view/title layout [title "A Reblet !"] "A Reblet"

Using a virtual office, you can actually boost your intranet and transform it
into an intelligent, interactive tool.

Unix programming with Rebol

Rebol is present on many platforms, most of whom are members of the great
Unix family.

The Core, View and Command interpreters are available for Linux,
FreeBSD, OpenBSD, Solaris and Mac OS X. These systems have many
features that Rebol is quite capable of exploiting to produce high-
performance applications.

Rebol – A programmer’s guide

184

This section is devoted to Unix programming using Rebol. We are going to
discover how to effectively display in a console, manage the keyboard,
interface a Rebol application with the shell, obtain and define file access
rights, and to communicate through pipes and sockets.

Displaying data in a console

In the Unix world, three types of interface can be seen by the user. Under X-
Windows, applications can use modern graphic components such as
windows and buttons with the help of a mouse. Other programs, such as
webmin, run in a web browser; their interfaces are built in HTML.
Developing both these types of software is easy with Rebol. The View
evaluator has a powerful dialect called VID which allows for the
construction of advanced graphical applications with minimal code. For web
applications, Rebol supports standard CGI, FastCGI and handles tags and
transmission settings with ease. These two aspects of developing with Rebol
have already been covered in this book. They are not solely related to the
Unix platform and, for that reason, are not covered in this chapter.

That leaves the third type of user interface, the good old, reliable text mode
with a simple console or simple telnet client. One might think that this type
of software has been totally surpassed but, on Unix, this is not yet the case.
Many utilities and even some heavy management applications still use
character based interfaces. These provide many advantages such as speed of
display, the reduced cost and low maintenance terminal, low consumption of
network bandwidth and economical use of the server’s processing power.

To display character strings on the screen, Rebol provides the words print
and prin. The only difference between them is that print adds a newline
after the data has been displayed. These two words take a single argument
that can be of different types. If the argument is a list, its contents are
automatically evaluated before they are displayed.

Rebol also includes different control characters such as #”^/’” to insert a
carriage return or #”^(tab)” for a tab character. It is also possible to
change the width of a tab with the help of the property
system/console/tab-size.

Rebol for geeks

 185

The following example displays a person’s first and last names on two lines
using 8 character tabs:

system/console/tab-size: 8
last-name: "Bridge"
first-name: "Peter"
print ["Name:^(tab)" last-name "^/First Name:^(tab)" first-name]

Happily for us, Rebol’s display capabilities are not limited to just this. To
embellish the presentation of your applications, Rebol allows the display of
character sequences that will be interpreted by the terminal. These
commands can clear the screen, move the cursor, change the text’s
appearance and even use colour. These character sequences all begin with
the ASCII character code 27 followed by the “[“ character, or in Rebol
"^(1B)[" .

Knowing this, it is possible for us to clear the console screen, position the
cursor at the tenth column of the fourth line and display a short message:

ESC: "^(1B)["
prin join ESC "J"
prin join ESC ["4;10H"]
prin "Hello !"

By using the sequence “7n”, you can also get the number of rows and
columns in the console. This involves creating a port using the built-in
‘console protocol.

Once the sequence is sent, reading the third element of this port returns a
result formatted with the number of lines separated from the number of
columns by a “;” (semi-colon) and the string is terminated with a capital “R”.

cons: open/no-wait/binary [scheme: 'console]
print "^(1B)[7n"
pos: parse next next to-string copy cons ";R"
close cons
print make pair! reduce [
 (to-integer second pos) (to-integer first pos)
]

Rebol – A programmer’s guide

186

You can easily put in place an advanced interface using these control
sequences. You can also change the appearance of text and use bold,
underlined, italic and even flashing characters.

To make menus or input fields, it is possible to reverse the text and
background colours using the code “7M”. The following example displays
the different effects that are possible. If the use of these sequences pose no
technical difficulties, keep in mind that the results may differ depending on
the capability of the terminal being used.

ESC: "^(1B)["

styles: [
 ["Bold" "1m"]
 ["Normal" "2m"]
 ["Italic" "3m"]
 ["Underlined" "4m"]
 ["Flashing" "5m"]
 ["Inverted" "7m"]
]

prin join ESC "J" ; clear the screen

foreach ele styles [
 print [(join ESC second ele) (first ele) (join ESC "0m")]
]

Figure 6-1. The various control sequence effects.

To further improve the appearance of your applications, you can choose
from a list of eight predefined colours (black, red, green, yellow, blue,
magenta, cyan and white).

Rebol for geeks

 187

For each of them, you must use a specific character sequence that differs
depending on whether you want to change the colour of the text or its
background. The following example illustrates the different possibilities you
can achieve by displaying the different available colours.

ESC: "^(1B)["

text-colour: [
 ["Black" "30m"] ["Red" "31m"] ["Green" "32m"]
 ["Yellow" "33m"] ["Blue" "34m"] ["Magenta" "35m"]
 ["Cyan" "36m"] ["White" "37m"]
]

background-colour: [
 ["Black" "40m"] ["Red" "41m"] ["Green" "42m"]
 ["Yellow" "43m"] ["Blue" "44m"] ["Magenta" "45m"]
 ["Cyan" "46m"] ["White" "47m"]
]

prin join ESC "J" ; Clear the screen

foreach bc background-colour [
 prin join ESC (second bc)
 foreach tc text-colour [
 prin join ESC [(second tc) (first tc)]
]
 prin #"^/" ; carriage return
]

Figure 6-2. The text and background colours can be changed.

If the screens of your application are complex and require numerous
operations to be displayed, it is necessary to optimise them.

Rebol – A programmer’s guide

188

In terms of speed, the easiest gain is obtained by avoiding the use of the
print and prin words for each control sequence sent to the screen..

The idea is to build the screen in a buffer and to display its contents with a
single call of the print word. The following example illustrates this
method by demonstrating an improved version of the previous example:

buffer: copy ""
insert tail buffer join ESC "J" ; clear the screen
foreach bc background-colour [
 insert tail buffer join ESC (second bc)
 foreach tc text-colour [
 insert tail buffer join ESC [(second tc) (first tc)]
]
 insert tail buffer #"^/" ; carriage return
]
prin buffer

Another very logical approach that is extremely effective is to only update
those parts of the screen whose contents have been changed. By avoiding the
automatic redisplay of the whole screen for each change, your application
will be more responsive and may even create less network traffic.

Managing the keyboard

We now know how to display information. The next step is to make our
applications react to keyboard actions. For keyboard entry captured by the
“Return” key, Rebol provides the input and ask words which wait for the
entry of characters from the standard input peripheral (stdin).

These two words have a refinement /hide for capturing confidential
information (an asterisk is displayed instead of the character pressed). ask
takes an argument that is a question to be posed to the user.

print "What is your last name:"
last-name: input
first-name: ask "What is your first name:"
mdp: ask/hide "Your password? "

The word confirm requests a user to confirm an action.

Rebol for geeks

 189

By default, the response must be “Y” or “N” but the refinement /with
allows the specification of two characters to symbolise acceptance or refusal.
The result returned is a boolean value.

confirm/with "(A)ccept or (D)ecline " ["a" "d"]

To supplement these simple functions, the Rebol interpreter offers other
features to manage the keyboard at a lower level. For instance, it is possible
to disable the ESC key to restrain a user from stopping execution of an
application. For this, all you need to do is to set the break property of the
system/console object to false. You can also manage the main
control keys on the keyboard. Take care though, all keyboards are not
identical (try to find the Mac “apple” key on a PC!). For this reason, the
Rebol interpreter identifies a group of keys common to the various operating
systems under which it runs. In addition to displayable characters, the
console recognises the enter, tab, del, up, down, right, left and insert keys.

To manage your keyboard more precisely, you must use the ‘console
protocol to get the code from the actual keys when pressed. Once the port is
open, the application can enter an infinite loop and wait for a key to be
pressed with the help of the word input? Which returns the boolean value
true if a new keystroke has been captured. Reading the port retrieves a
string whose length depends on which key was pressed. If the sequence does
not start with the control character ^(1B), it is a single character or a special
key such as tab, enter or del. If the sequence starts with ^(1B) and the second
character is also ^(1B), the script has detected the use of the ESC key. The
third and last case is the use of the insert, up, end and the arrow keys. The
following script illustrates this type of keyboard management and can easily
be adapted to any type of project.

system/console/break: false
cons: open/no-wait/binary [scheme: 'console]
forever [
 until [input?]
 touch: copy cons
 either (first touch) <> #"^(1B)" [
 switch/default (first touch) [
 8 [print "DEL"]
 9 [print "TAB"]
 13 [print "ENTER"]
 127 [print "DEL"]

Rebol – A programmer’s guide

190

] [print to-char first touch]
] [
 either (second touch) = 27 [
 print "ESC"
] [
 switch (third touch) [
 50 [print "INSERT"]
 65 [print "UP"]
 66 [print "DOWN"]
 67 [print "RIGHT"]
 68 [print "LEFT"]
 101 [print "END"]
]
]
]
]
close cons

Rebol assures your code is compatible across different platforms by
supporting a limited number of keystrokes. Sticking to this selection
guarantees that your applications work perfectly on the numerous systems on
which Rebol runs.

Integration with the Unix environment

Rebol applications fit perfectly into the Unix environment and during their
execution nothing distinguishes them from applications written in the most
popular Unix languages such as C or Perl. For a Rebol script to be
recognised as an executable program, you must insert a shebang as first line
in its file. (That is the “#!” directive followed by the access path of the Rebol
interpreter and the arguments you want to pass to Rebol). The arguments
normally passed to Rebol are usually -q and -s to prevent Rebol from
displaying its start-up information and to disable the built-in security
manager. You must also set the execution rights of your script with the
classic chmod +x.

Unix applications often receive arguments passed from the command line.
With Rebol, these are stored in the options object of the system object.
The args property contains none if no command line arguments were
provided. In the other case, it contains a list of n elements. To find the
number of parameters, you simply use the word length? Which returns the
length of a value.

Rebol for geeks

 191

The following example verifies the possible presence of arguments passed to
the script and, if there are, display the number of arguments and their
respective values.

if not none? system/options/args [
 print [
 "Number of arguments:"
 (length? system/options/args)
]
 foreach arg system/options/args [print arg]
]

Figure 6-3. Arguments passed from the command line.

With the help of the system/options object, you can obtain precise
information about the environment in which your application is running. The
path property returns the current directory. With home, you can determine
the directory access path of the user. Finally, the boot property contains the
location of the Rebol interpreter in the file system.

Accessing system environment variables is possible by using the get-env
word. It takes a single parameter which is the name of the desired
environment variable. So the syntax get-env "SHELL" returns the path to
the shell. Since you’re on Unix, don’t forget that you must strictly adhere to
the correct upper and lower case characters of the environment variable
names. If get-env can’t provide a result, it returns the none value.

The redirection of the standard output device (stdout) to a file is also possible
with the help of the word echo. This sends the characters displayed on the
screen to a file whose name is passed as a parameter. In Rebol, file and
filepath names must start with the “%” character.

Rebol – A programmer’s guide

192

So, if you want to save the screen display in a file called test.txt in the
directory /var/tmp, all you need to do is to insert the command echo
%/var/tmp/test.txt in your application. From now on, all the data
displayed on the screen will be saved in the file test.txt. To deactivate
this redirection, you use the syntax echo none.

Files and access rights

Managing files is one of the principal activities of Unix programmers.

By using the word info?, you can find the last modification date of a file,
its size in bytes and whether it is a file or a directory. This word returns a
simple object composed of three properties which are size, date and
type.

To get this information about the file test.txt, you simply use print
mold info? %test.txt.

Access to various elements of the Unix file tree is regulated through access
rights which can be determined through the word get-modes. Rebol
programmers have access to this through a port pointing at the resource
being studied.

The following example retrieves the name of the owner of the file
test.txt by using ‘owner-name as the argument.

p: open %test.txt
print get-modes p 'owner-name
close p

The different attributes can be found by using the value ‘file-modes as
the argument of get-modes. The list obtained is extremely comprehensive
as you have rights over the file for the owner, for their group and for other
users. The information also contains the name of the owner, their group, UID
(User ID), GID (Group ID) and even the complete access path to the file.
The following script displays all the properties of the file test.txt.

Rebol for geeks

 193

p: open %test.txt
d: get-modes p 'file-modes

forall d [
 print [(first d) " = " get-modes p (first d)]
]

close p

Figure 6-4. Rebol allows the consultation and modification of access rights .

With set-modes, you can modify the rights of a file. This words uses two
parameters which are the port pointing at the file to be manipulated and a
block containing the attributes to be modified or added.

The following example modifies the access rights of the file test.txt by
giving write access to members of the owner’s group and other users.

p: open %test.txt
set-modes p [
 group-write: true
 world-write: true
]
close p

Through the use of a port to handle file access rights, Rebol provides an
interface with a high level of abstraction compared to the operating system
and hardware platform.

Rebol – A programmer’s guide

194

The programmer is not penalised in any way by this architecture which
leaves him or her in total control of operations and allowing them to easily
access the power of Unix system access rights.

Here Rebol remains true to itself by demonstrating that a tool can remain
simple to use.

Shell access

If you wish to launch external applications such as the powerful Unix
commands, you must use the shell of the operating system. This feature has
always been available in the commercial versions of rebol but has also been
included in the latest free versions. In Rebol, it’s the word call which
allows dialogue with the shell. It takes a single argument which is a string of
the path of executable files to be launched. The parameter is directly
transmitted to the shell, the syntax of this path must conform to the standards
of the host platform and not to those of the Rebol interpreter. For example,
the command call “ls -l” displays a list of the files in the current
directory. Likewise, to call the executable test stored in
/usr/local/bin, the syntax is call “/usr/local/bin/test”.

Figure 6-5. Call controls the execution of external applications.

Rebol for geeks

 195

There are many refinements that make this word a very flexible tool. With
/info, the word call returns an object whose property id is the PID of
the process launched. To capture the display of the shell, you use the
/console refinement.

Synchronising tasks is also possible with the /wait refinement which
obliges the interpreter to wait until the process launched finishes before
continuing to process the script. Finally, the refinements /input and
/output authorise the use of Unix redirections. Assuming that you want to
count the number of lines in a file with the Unix command wc, the Rebol
syntax will be call/input “wc -l” %test.txt (which corresponds
to wc -l < test.txt). To redirect data written to the standard output
device (stdout) to a Rebol variable, you only need to use /output. For
example, redirecting and storing the results of the files present in the current
directory in a variable buf you write call/output “ls -l” buf.
Obviously, these refinements can be used together to exploit the tremendous
potential of the Unix shell.

Inter-process communication

Exchanging data between applications is a fundamental part of Unix
programming. Rebol allows these operations with the help of anonymous
pipes and sockets.

Pipes are unidirectional communications mechanisms. Defined by the
S_IFIFO type in POSIX, A pipe is simply a file system node which is
composed of two separate entries in the file table. These entries can be both
read and written. Two Unix processes can exchange information according
to a sender-receiver model. The dataflow is a continuous flow of characters
since the receiver cannot distinguish between the different transmissions
from the sender. Moreover, the first data inserted into a pipe are always the
first to be read. Once the data is read, the information collected is removed
from the pipe to free traffic along it. It is therefore not possible to have direct
access to information contained in the pipe: the data must be stored by the
recipient before being processed.

Rebol – A programmer’s guide

196

To read and write data in an anonymous pipe, Rebol provides input and
output ports of the system/ports object. Information is read by
sampling data in system/ports/input as it becomes available. So, if
we want our Rebol script myscript.r to read and display the data
produced by the Unix command ls -l (using the syntax ls -
l|myscript.r), the code needed is a simple loop reading the input
port:

while [
 my-line: pick system/ports/input 1
] [print my-line]

Writing data to an anonymous pipe is hardly more difficult then reading
from one. A Rebol script can transmit data to another Unix application with
great ease. All that is needed is to insert the data in the
system/ports/output port. The following example illustrates this
through the use of the Unix instruction./myscript.r|more. The latter
has the effect of displaying the data passed through a pipe on the screen:

data: {
 a message transmitted
 via an anonymous pipe
}
insert system/ports/output data

If anonymous pipes are a simple and effective way to transmit data between
applications, they remain limited to exchanging data between programs
running on the same machine. To establish inter-process communications
based on a distributed architecture, Unix systems offer an elegant mechanism
which uses the TCP/IP protocols and which is referred to by the term socket.
Introduced in Berkeley Unix distributions, sockets are two-way points of
communication by which a process can send and receive data. As a dedicated
network language, Rebol considerably reduces the work of the programmer
in writing servers and clients which use the TCP or UDP protocols.

Creating a TCP server begins with declaring the listening socket to be used
to receive connection requests. In Rebol, a socket is represented by an object
of the type port! and is created by using open followed by a URL. The
latter contains the port number used to receive client connections.

Rebol for geeks

 197

To study the structure of a socket and to learn about the different properties
available, all you have to do is use the syntax print mold followed by the
name of the socket.

Figure 6-6. A TCP socket is represented by a object of the type port!.

Once the socket is opened, the script can then enter an infinite loop and wait
for requests from clients by using the word wait. Once a contact is
established, the client socket is returned as the first element of the listening
socket and data received are recovered with the help of the word read-io.
Responses from the server are transmitted to the client by inserting the
information into the connected socket. The latter may then be released with
the word close. The following example is a small TCP server which listens
on port 9000. It receives a character string, reverse its contents and return it
to the client. A carriage return is used by the client to signify that the
transmission of the string is finished.

Rebol – A programmer’s guide

198

p: open tcp://:9000
forever [
 wait p
 conn: first p
 buffer: copy ""
 until [
 data: copy ""
 read-io conn data 255
 append buffer data
 found? find data "^/"
]
 insert conn (head reverse buffer)
 close conn
]

The work of the client begins with declaring a socket with the help of a URL
containing the name or IP address of the machine hosting the server and the
port on which the server is listening. Again, Rebol considers the socket to be
an object of the type port!. Sending data to the server is simply achieved
by inserting the information into the port and reading it is done with copy.
Connections are closed with the word close. The following example is a
client for the server shown above. The user types a string of characters which
are transmitted to the server. The response from the server is displayed upon
the screen before the connection is closed.

forever [
 p: open tcp://localhost:9000
 txt: ask "#"
 insert p join txt "^/"
 print copy p
 close p
]

Generally, it is the TCP protocol which is used to exchange data between
processes. It provides a reliable data transport mechanism. If speed is the
determining criteria, Rebol also supports the UDP protocol who use is
practically identical except for the description of the socket. This protocol
also makes it possible to use broadcast and multicast to deliver information
to multiple machines.

Finally, remember that Rebol incorporates many different high-level
protocols such as HTTP, SMTP and FTP and it is even possible to create
your own protocols with the help of the root object called root-
protocol.

Rebol for geeks

 199

Managing Unix signals

By using sockets with Rebol you can quickly develop background server
processes. These daemons generally need to communicate both with the
system and users in order to be able to receive commands such as “stop” or
“restart”.

To achieve such operations, Unix systems offer an ingenious mechanism
known by the term signal. You have access to a set of signals that can be
issued by one process to another which either have a predefined function or
one that is left to the discretion of the programmer.

A signal is identified by a positive number and a unique symbolic name. An
event is associated with each of them but a signal may well be transmitted to
another process without the event being produced. The different signals
available on a UNIX system are listed in the signal.h header file of the C
compiler for the machine.

Signal Number Description
SIGHUP 1 Problem on the terminal or stop a child process by the

parent process.
SIGINT 2 The process was stopped by the use of the ctrl+c key

combination.
SIGQUIT 3 Identical to a SIGINT except save the memory state in

the current directory.
SIGTERM 15 Stop the process.
SIGUSR1 16 User definable signal.
SIGUSR2 17 User definable signal.

List of managed signals.

Signals are an important aspect for developing under Unix. In effect, they
can warn an application that a significant event has occurred, the application
must react appropriately.

Rebol – A programmer’s guide

200

For example, if the ctrl + c key sequence is pressed by the user to stop
execution of the active program, then it must properly closedown saving any
data that it was processing. Daemons must generally respond to orders
transmitted via Unix commands such as kill or signal. If the order is to
stop or restart, the program must be able to properly execute the order that it
was sent.

Therefore managing signals in an application requires setting up an event
manager which reacts to signals received.

In Rebol, you have at your disposal a dedicated protocol called system (not
to be confused with the system object which has quite a different role).
The protocol allows Rebol to handle the arrival of the SIGHUP, SIGINT,
SIGQUIT, SIGTERM, SIGUSR1 and SIGUSR2 signals. In order to use this
protocol a system port must be opened with the word open. Once this has
been completed, you can define a filter to specify signals to be intercepted by
an event handler. The word set-modes takes two parameters which are the
port being used and a block in which the signal property is present. This
property receives a value which is a block containing the different signal
traits. If all signals are to be handled, the get-modes returns a list of them
in the word ‘signal-names.

Once the filter is defined, you can now add this event handler to those
already present in Rebol. Simply add the port that handles signals into the
block system/ports/wait-list. The function enable-system-
trap carries out these different operations and activates the signal listener
in the Rebol interpreter.

enable-system-trap: does [
 system/ports/system: open [scheme: 'system]
 set-modes system/ports/system [
 signal: get-modes system/ports/system 'signal-names
]

append system/ports/wait-list system/ports/system

To find out if a signal has been trapped by your Rebol script, all you have to
do is periodically check the contents of the system/ports/system port.

Rebol for geeks

 201

If a signal has arrived, the message received will be a block composed of two
elements which are the word ‘signal and the name of the signal.

The function check-system-trap performs this operation and displays
the name of the signal captured on the screen:

check-system-trap: func [/local msg] [
 while [msg: pick system/ports/system 1] [
 print form second msg
]
]
enable-system-trap

forever [check-system-trap]

Figure 6-7. The Rebol script detects signals transmitted by the Unix kill command.

Handling signals demonstrates the ease with which the Rebol interpreter is
able to communicate with its host’s run-time system. Such ease is present
when a Rebol script interfaces with functions and data structures in dynamic
libraries.

Rebol – A programmer’s guide

202

Interfacing with dynamic libraries

Previously only Rebol/IOS, Rebol/View/Pro, Rebol/SDK and
Rebol/Command could interface with native code dynamic libraries. Since
the release of Rebol 2.7.6, Rebol/View can also access external dynamic
libraries. This means Rebol scripts can declare and call functions written in
languages such as C or C++. Some parts of scripts can be optimised by
calling native functions whose execution speed is much faster than
interpreted Rebol code. Rebol can not only take advantage of features in the
operating system API but also enjoy the many specialised libraries (image
generation, producing pdf documents, connecting to database engines, etc.).
Such an library is used so that Rebol can connect to use the Berkeley DB
(http://www.cs.unm.edu/~whip) and DyBase database engines
(http://www.garret.ru/~knizhnik/dybase.html).

Rebol includes everything that is necessary to easily and quickly write
library wrappers. The first step is to load the dynamic library whose
functions will be used. This operation is performed with the word load with
its /library refinement which returns an identifier. Declaring the different
functions is done using the routine! datatype with the declaration of the
function’s input parameters, its return value, the identifier of the library
containing the function and the name of the function within the dynamic
library. The word obtained is added to the dictionary and has the same
attributes as all other words. You can even provide documentation so that the
help word will provide information about its use. The only difference
being, recognising that it is a native function, its source code is not visible.
Finally, when the dynamic library is no longer needed, you can reclaim the
memory it occupied by using the word free followed by the name of its
identifier.

To better understand how this works, we will add the word get-nprocs to
the Rebol dictionary. It will use a function in the standard libc library to
find the number of processors on a machine. This function doesn’t take any
input parameters and returns only a simple integer.

Rebol for geeks

 203

lib-so: load/library %libc.so.6

get-nprocs: make routine! [
 return: [integer!]
] lib-so "get_nprocs"

print ["Number of processors:" get-nprocs]

free lib-so

Providing parameters for a native function does not pose any great difficulty
as long as they comply with the mapping of C and Rebol datatypes.

C Language Rebol
Char Char !
Short Integer !
Long Integer!
Int Integer!

Float Decimal!
Double Decimal!
Struct* Struct!
Char* String!

Rebol and C equivalent datatypes

The following example declares the put-env word which adds a variable
to the execution environment. Note also that the word is documented to be
interrogated using the help word:

lib-so: load/library %libc.so.6

put-env: make routine! [
 “Adds a variable in the environnement"
 new-value [string!]
 return: [integer!]
] lib-so "putenv"

put-env "MYVARIABLE=test"
print get-env "MYVARIABLE"

free lib-so

Rebol – A programmer’s guide

204

Figure 6-8. The word put-env is added to the Rebol dictionary.

Obviously, some declarations are much more complex than the preceding
examples. Numerous functions use structures to receive or return data. For
this reason, Rebol includes the struct! datatype. If we want to use the
getpwuid function from libc to find out information about the user
identified by his UID, we must declare a structure to receive the returned
data.:

lib-so: load/library %libc.so.6

get-uid: make routine! [
 return: [integer!]
] lib-so "getuid"

getpwuid: make routine! [
 uid [integer!]
 return: [struct! [
 pw_name [string!]
 pw_passwd [string!]
 pw_uid [integer!]
 pw_gid [integer!]
 pw_gecos [string!]
 pw_dir [string!]
 pw_shell [string!]
]]
] lib-so "getpwuid"

my-uid: get-uid
print ["My UID is: " my-uid]
me: getpwuid my-uid
print ["My Login is:" me/pw_name]

free lib-so

Rebol for geeks

 205

This section has demonstrated the ease with which Rebol is able to exploit
the speed of a specific platform and its excellent integration with the Unix
environment. With minimum code, Rebol permits the easy development of
light, powerful applications which can be thoroughly integrated into their
operating environment. The language’s versatility makes it a tool of choice
on all Unix systems.

Databases with RebDB

RebDB was, and is still being, developed by Ashley Trüter. It’s a database
engine that can be directly integrated into a Rebol application and also used
in the client/server model via TCP/IP. Lightweight and free, RebDB is even
free to use when the end product is of a commercial nature. You can
download it from Ashley’s website http://www.dobeash.com/RebDB/ in the
form of a simple zip archive. The project is carefully documented since a
database guide and an SQL guide are available on the author’s site. The
documents quickly show that RebDB is not a toy but a remarkable product
with a wealth of features available to developers. Compatible with all Rebol
versions, it offers the ability to create data tables, manipulate information
using SQL-like syntax and even distribute data by working in client-server
mode. With RebDB, any Rebol application can therefore embed a real
database engine that weighs only seventy kb. Written entirely in Rebol, this
engine is highly optimised by building on the language’s strong points. It
also takes advantage of the language’s portability and can operate in the
same way on any of the platforms supported by Rebol.

Getting started with RebDB

RebDB consists of three Rebol scripts; db.r is the main database engine, db-
client.r is the client module when implementing in client/server mode and
SQL.r which provides SQL console access to RebDB databases. By default,
RebDB stores databases in the directory from which the engine was loaded.
This can be changed but in order to take advantage of RebDB’s automated
recovery features it is best to stick with the default behaviour. Therefore it is
generally best to create a directory which includes a copy of all the RebDB
scripts for each of your databases.

Rebol – A programmer’s guide

206

Once you’ve done that, all that is needed to load the database engine is do
%filepath/db.r where filepath is the file path of the database
directory relative to the current directory.

Figure 6-9. Loading the RebDB protocol.

Once this simple operation is completed, a set of new words, prefixed with
the characters “db-”, is added to the dictionary of your interpreter. You can
list these words by entering the command help db- in the Rebol console.
The most effective way to learn about RebDB is to work directly in the
console to see how each of the functions performs. The results of each data
request or maintenance command are redirected to the console to be
displayed.

Tables and fields

To organise and store data, RebDB uses the traditional model of tables. In
these tables each column is a field and each row is a record (composed of
one or more fields). The number of tables that can be created is limited only
by the memory capacity of your machine. In effect, although RebDB uses
files for data backup, it stores all the information in memory in order to
minimise processing time. RebDB is therefore very effective for databases
with small records.

Rebol for geeks

 207

On the other hand, if your databases are made up of many thousands of
gigabytes, it would be better to turn to tested and tried alternatives such as
MySQL or PostgreSQL.

One aspect of RebDB that gives it the speed to handle many rows of data is
that when a table changes it doesn’t automatically save the table to disk.
Instead, it writes the changes to a log file and leaves it up to the programmer
to save tables to disk by using the command db-commit followed by the
table name. If your program finishes without saving tables changes, the
database can be quickly recovered by using the command db-replay
followed by the name of the table. If the database is held in the same
directory as the db.r script, RebDB automatically issues a db-replay
command on start-up to recover any uncommitted changes.

If, at any time, you want to undo any changes to the database that you
haven’t yet committed, you can do so easily with the help of the db-
rollback command which takes a table name as its parameter.

All you need to do to create a table is use the word db-create followed by
the name of the table and a list of its columns. You don’t have to bother
specifying the field type or length. In Rebol, values not variables have types.
RebDB is built to take full advantage of this. Neither is there a need to
specify keys or indexes with RebDB. Its optimised, in-memory approach
makes them redundant.

Why not use this introduction to RebDB to set up a small DVD management
application? Start by creating two tables that will be useful, that is a dvd
table and a styles nomenclature table.

db-create dvd [key title style director duration description]
db-create styles [key name]

Once these two table have been created, you should see some new files in
your current directory. The files with the extension .dat contain data, whilst
those with the .ctl extension contain the structure of the tables. For each
table, you must have both a .ctl file and a .dat file. You can check the
structure of a table by using db-describe. It provides a Rebol block
showing the name and type of each column.

Rebol – A programmer’s guide

208

Figure 6-10. Checking the structure of a table.

You will have noticed that the types of all the columns in the table have been
set to none!. Column types are more informational than mandatory as in
standard SQL databases. They reflect the types of the values in the first row
of the table as we’ll see below. In fact, RebDB will happily let you mix types
in a column. Though if you do, don’t be surprised when RebDB’s built-in
aggregating functions like sum and avg give strange results.

Figure 6-11. The structure of a table once a row has been added.

With db-close, the table indicated is unloaded from memory. RebDB
includes a safety mechanism that only allows you to close tables that have
not been changed since they last saved.

The word db-drop completely erases a table. Beware, the effects of this
word are irreversible and your data will be permanently lost.

Manipulating data

Manipulating data in tables is entrusted to a set of words designated to
inserting, modifying, selecting or deleting information. When not working in
client-server mode, RebDB doesn't allow the user to write queries using
SQL. But rest assured, the syntax chosen for the various words remain very
close to SQL in both spirit and form. It takes only a few minutes to get
comfortable with these new words.

Rebol for geeks

 209

Thus db-insert allows the insertion of a new row in a table. This word
takes two arguments which are the name of the table and a block containing
the values that are to be inserted into it. With db-update, you can change
one or more fields in a given table. The /where refinement allows you to
determine which records will be modified according to a Rebol expression
which must evaluate to a Boolean value. Deleting data is entrusted to db-
delete which works on a given table and also applies a Rebol Boolean
expression in order to determine which data is to be erased. Finally, db-
select searches for information in a table. Its two arguments are the names
of the selected columns and the name of the table to be searched. This words
allows the use of the word * to select all the fields in a table. Many
refinements are available such as /where to make a conditional selection or
/order and /desc to sort the data. The result is a block containing the
data in each file for different rows.

Putting it to work

To better understand how RebDB works, you are going to build an
application to manage a DVD collection with the help of Rebol/View. You
have already created the dvd and styles tables used by your product. The
script MyDVD begins by loading RebDB and verifying the presence of the
database. In cases where the database does not exist, this code will build the
database and initialise the styles nomenclature using predefined values.
Inside the argument to the db-insert command, the use of the word
'next indicates the value of the field is to be automatically incremented
for each new record.

do %~/RebDBTest/db.r

if not exists? %dvd.dat [
 if error? try [
 db-create dvd [key title style director duration description]
 db-create styles [key name]
 foreach styledvd [
 "Action" "Adventure" "Humour"
 "Music" "Kids"] [
 db-insert styles compose [next (styledvd)]
]
 db-commit styles
] [
 alert "Unable to create the database"

Rebol – A programmer’s guide

210

 quit
]
]

Your application should allow many operations. Four arrow buttons allow
navigation through the database. The user can go directly to the first or last
record and also go forwards and backwards one record at a time. To simulate
a slider, the block collection is initialised by word init-slider.

init-slider: func [/refresh /filter styl] [
 either not filter [
 collection: db-select rowid dvd
] [collection: db-select/where rowid dvd compose
 [style = (styl)]]
 if not refresh [
 either (length? collection) > 0 [
 slider: 1
 modif: true
 aff-dvd
] [
 modif: false ; by default, we have inserted a new record
 slider: none
]
]
]

Given that the user can filter films by style, this word uses the /filter
refinement which provides the appropriate selection of the DVDs. The
collection block contains the line number of each record (rowid).
When the user clicks on one of the arrow buttons, the slider variable is
updated.. The various fields are displayed using aff-dvd. It retrieves the
data by using slider as an index to the collections block and then
retrieving the record with that rowid.

Rebol for geeks

 211

Figure 6-12. The graphic interface of the“MyDVD” application.

Another database query retrieves the style of the DVD by interrogating the
nomenclature table. The updating of each field is performed using a
innovation introduced in View version 1.3: “accessors’. These are the words
set-face, get-face and clear-face which directly access the value
of a graphical component.

aff-dvd: func [/local data] [
 data: db-select/where * dvd compose [

rowid = (pick collection slider)
]
 set-face style-dvd db-select/where name styles compose [

cle = (data/3)
]
 set-face title data/2
 set-face director data/4
 set-face duration data/5
 set-face description data/6
 modif: true
]

Editing and saving

Inserting or modifying a record takes place within the layout defining the
graphical interface of your application. The “Save” button performs a db-
update or a db-insert depending on the value of the boolean variable
modif. In both cases, the program conservatively issues a db-commit to
save the data to disk.

Rebol – A programmer’s guide

212

It must also search the styles table to find the key value of the style
selected by the user in order to properly update the style field in the dvd
table. The string-based search requires the use of a simple Rebol expression.

btn-enter "Save" [
 if error? try [
 either modif [
 db-update/where dvd [
 title style director
 duration description
] compose [
 (get-face title)
 (first db-select/where key styles compose [name = (get-face style-
dvd)])
 (get-face director) (to-time get-face duration)
 (get-face description)
] compose [rowid = (pick collection slider)]
] [
 db-insert dvd reduce [
 'next (get-face title)
 (first db-select/where key styles compose [name = (get-face style-
dvd)])
 (get-face director)
 (to-time get-face duration) (get-face description)
]
 init-slider/refresh
 slider: length? collection
]
] [alert "Unable to save"]
]

Deleting a record requires use of db-delete. The /where refinement
allows you to select which line is to be deleted. The value of key is found
by selecting the active element in the collection block. Depending on
the case, the software displays either the record before the one that was
deleted (or the new first record if it was the first record that was deleted) or
empty fields. In the latter case, they are two possibilities to manage. In
effect, it is possible that the database no longer contains any records and also
that no records match the style chosen by the user.

btn "Erase" [
 if not none? slider [
 db-delete/where dvd compose [
 key = (first db-select/where key dvd compose [
 rowid = (pick collection slider)
])
]
 db-commit dvd

Rebol for geeks

 213

 init-slider/refresh
 either (length? collection) > 0 [
 slider: slider - 1
 if slider = 0 [slider: 1]
 aff-dvd
] [
 slider: none
 empty-fields
]
]
]

Publishing your database on the web

Why not share your DVD collection with friends and dynamically display
your collection’s different titles on your website? RebDB has a client-server
mode that makes this very easy. This allows for simultaneous connections to
the database, avoids loading tables for each client connected and has a SQL
dialect that is quite close to the original. This latter includes the main
commands SQL (select, insert, delete and update). It is thus
possible to write complex queries such as:

select [title director]
from dvd
where [duration < 2:00]
order by title desc

Installation takes only the creation of a rebdb directory and copying the
RebDB libraries and your database files. Then you must write a short script
to launch the RebDB server using the word listen. You are free to choose
which TCP port to use.

REBOL [subject: "Launch RebDB server"]
do %db.r
listen tcp://:10000

Once this script is launched, the RebDB server waits for connections from
clients. Now all that is left is to write the dynamic page. To make you life
easy, you will use the Magic! library. First, copy the RebDB files to the
Magic! directory dedicated to data storage and sharing libraries. The
dvd.rhtml page requires the RebDB client library to be available as well
as the Magic! HTML components in order to present the data easily.

Rebol – A programmer’s guide

214

The request to the database is issued using the word db-request followed
by a URL and the request itself.

<html>
<head>
<link rel="stylesheet" type="text/css" href="magic.css">
</head>
<body>
<rebol>
 library %db-client.r
 library %html.r
 data: db-request tcp://192.168.0.1:10000 [
 select [title director duration description] from dvd
]
 block: copy []
 forskip data 4 [
 append/only block reduce [data/1 data/2 data/3 data/4]
]
 html/datagrid block
</rebol>
</body>
</html>

The result of the request is assigned to the variable data and is then
reformatted to match the data structure expected by the datagrid HTML
component of Magic!.

Figure 6-13. MyDVD display in a browser.

RebDB is an effective solution for managing small Rebol databases and,
most importantly, it helps to avoid the use of efficient but heavyweight,
multidimensional products such as MySQL or PostgreSQL in small projects.

Rebol for geeks

 215

Not needing any configuration on the local machine, platform independent,
compatible with all Rebol versions, useable in local or client/server mode, it
simplifies the work of the programmer when data handling and storage
becomes complex.

Summary

Rebol is full of original technologies. It’s virtual offices can distribute
applications and information over the Internet. In the Unix programming
domain, Rebol has numerous interfaces to exploit the features and power of
these operating systems. With RebDB, it is possible to develop n-tier
applications written entirely in Rebol.

7

Practical applications

This chapter consists of a number of workshops to allow you to apply the
knowledge you’ve acquired by now. These case studies focus on the
foundations to build a video game, on developing a chat program, on writing
a MySQL administration console, and finally on creating a reblet for
Rebol/IOS.

Writing a raycasting engine with View

Rebol is a general language. You can write practically any program in Rebol.
It is lightweight, handles data very effectively and possesses undeniable
qualities in the field of network programming. It is also a gifted language in
the graphics and animation fields. The GCS (Graphical Compositing System)
is a truly platform-independent multimedia library. To illustrate its
capabilities, you are going to make a real raycasting engine in only 3 kb of
code.

Rebol – A programmer’s guide

218

What is raycasting?

Put simply, raycasting is one of the most intriguing aspects in the field of
video games. Your memory may help you better understand... Some of you
will remember a game called Wolfstein, that emerged in the 1990s. It was
the first game where the player was immersed within its environment. Your
character moves through a maze with the animation of the walls and NPC
(non-player characters) done in real time.

Given the performance of machines of that time (Intel 286 and 386), it was
simply incredible! How did John Carmack, the game’s author, perform this
miracle? Well the answer is simple: by cheating.

It looks real to me!

In fact, raycasting is a huge and great deception because it doesn’t use a 3D
algorithm at all. The player moves around a 2D universe whose screen
visualisation is produced by launching rays.

The player is just moving around a two-dimensional table where each cell
can be empty or represent a virtual cube defined by colour or texture. You
simply define a field of vision whose width is usually set at 90 degrees,
matching the minimum capability of a human being. Once this cone is
created, you launch 90 rays to find the first intersection with a wall. All that
is left is to determine the height of the wall segment depending on the
distance and to draw it on the screen.

Practical applications

 219

Figure 7-1. The inside view of the labyrinth.

In Wolfstein (and also our engine), the walls are designed to be symmetrical
to the x-axis which represents the horizon. This algorithm has the advantage
of simplicity but does not allow the player to look up or down.

Starting with the foundations

Before anything else, you must define the surface of the game and a number
of variables and utility functions. The labyrinth (laby) is defined by a list of
blocks (each block corresponds to a line of the table). If the value of a box is
non-zero, this means that the box contains a cube.

To find the colour of this cube’s walls, just look in the list initialised with the
16 colours of the famous but ancient Qbasic (palette). You also need to
fix the player position (px and py), the distance covered in one step
(stride), the direction of travel in degrees (heading) and the number of
degrees when turning (turn). To speed up calculations, you also define a
list containing the cosine values (ctable) for a certain number of angles.
The function get-angle allows the extraction of a value from this table.

Rebol – A programmer’s guide

220

REBOL [
 subject: "raycasting engine"
 version: 0.7
]
px: 9 * 1024
py: 11 * 1024
stride: 5
heading: 0
turn: 10
laby: [
 [8 7 8 7 8 7 8 7 8 7 8 7]
 [7 0 0 0 0 0 0 0 13 0 0 8]
 [8 0 0 0 12 0 0 0 14 0 9 7]
 [7 0 0 0 12 0 4 0 13 0 0 8]
 [8 0 4 11 11 0 3 0 0 0 0 7]
 [7 0 3 0 12 3 4 3 4 3 0 8]
 [8 0 4 0 0 0 3 0 3 0 0 7]
 [7 0 3 0 0 0 4 0 4 0 9 8]
 [8 0 4 0 0 0 0 0 0 0 0 7]
 [7 0 5 6 5 6 0 0 0 0 0 8]
 [8 0 0 0 0 0 0 0 0 0 0 7]
 [8 7 8 7 8 7 8 7 8 7 8 7]
]

ctable: []
for a 0 (359 + 180) 1 [
 append ctable to-integer (((cosine a) * 1024) / 10)
]

palette: [
 0.0.128 0.128.0 0.128.128
 0.0.128 128.0.128 128.128.0 192.192.192
 128.128.128 0.0.255 0.255.0 255.255.0
 0.0.255 255.0.255 0.255.255 255.255.255
]

get-angle: func [v] [pick ctable (v + 1)]

Several of these values are scaled by multiplying by 1024. This allows a
player to move on each turn rather than jumping from box to box.

Shaping the walls

To draw on the screen, you need a window containing a picture. Here this is
a layout called screen. The image used for the surface design is called
display and measures 360 by 200 pixels.

Practical applications

 221

You can already deduce that each ray launched will have a width of 4 pixels
(360 / 90). A gradient allows the superimposition of a gradient to
represent the floor and ceiling of you labyrinth. The function refresh-
display calls the raycasting engine and displays the contents of the area.

refresh-display: does [
 retrace
 show display
]
screen: layout [
 backtile %marbre.jpg
 display: box 360x200 effect [
 gradient 0x1 0.0.0 128.128.128
 draw []
] edge [
 size: 1x1
 color: 255.255.255
]
]
refresh-display
view/title screen join "Raycaster " system/script/header/version

The heart of the program lies in the retrace function. A for loop finds
the 90 angles where a ray should be launched. A virtual line is drawn from
the position of the player based on each angle in turn. At the first non-empty
box (its value is non-zero), the function calculates the height of the wall
segment and determines the position and dimensions of the rectangle which
it represents. All that is left to do is to get the colour from palette and add
drawing instructions in the effect/draw attribute of the image

retrace: does [
 clear display/effect/draw
 xy1: xy2: 0x0
 angle: remainder (heading - 44) 360
 if angle < 0 [angle: angle + 360]
 for a angle (angle + 89) 1 [
 xx: px
 yy: py
 stepx: get-angle a + 90
 stepy: get-angle a
 l: 0
 until [
 xx: xx - stepx
 yy: yy - stepy
 l: l + 1
 column: make integer! (xx / 1024)
 line: make integer! (yy / 1024)
 laby/:line/:column <> 0

Rebol – A programmer’s guide

222

]
 h: make integer! (900 / l)
 xy1/y: 100 - h
 xy2/y: 100 + h
 xy2/x: xy1/x + 3
 color: pick palette laby/:line/:column
 append display/effect/draw reduce [
 'pen color
 'fill-pen color
 'box xy1 xy2
]
 xy1/x: xy2/x + 1
]
]

Finishing with interaction

You must now manage the keyboard so that you can move around your
labyrinth. For this, you define a function, evt-key, which is inserted into
the event handler. According to the key pressed (up, down, left and
right), you call the function player-move. It validates the player’s
movement by checking whether the player collides with a wall and redraws
the screen by calling the refresh-display function.

player-move: function [/backwards] [mul] [
 either backwards [mul: -1] [mul: 1]
 newpx: px - ((get-angle (heading + 90)) * stride * mul)
 newpy: py - ((get-angle heading) * stride * mul)
 c: make integer! (newpx / 1024)
 l: make integer! (newpy / 1024)
 if laby/:l/:c = 0 [
 px: newpx
 py: newpy
 refresh-display
]

]

evt-key: function [f event] [] [
 if (event/type = 'key) [
 switch event/key [
 up [player-move]
 down [player-move/recule]
 left [
 heading: remainder (heading + (360 - turn)) 360
 refresh-display
]
 right [
 heading: remainder (heading + turn) 360

Practical applications

 223

 refresh-display
]
]
]
 event
]
insert-event-func :evt-key

The algorithm presented here is not the most effective but it is probably one
of the simplest. There are still many opportunities for optimisation and,
especially, the visual appearance can be greatly improved by the use of
textures.

Program your “chat” in Rebol

Let’s continue exploring Rebol by developing a chat application that allows
a group of people to have a real-time discussion on the Web. For this project,
we will need to develop a client module with Rebol/View and a server
module consisting of a CGI script written in Rebol/Core.

Basic principles

The concept is fairly simple: each client uses a utility written with
Rebol/View to provide a graphic user interface. The user, identified by name
(login), can enter a message and send it to a server. Periodically, the client
module checks for new messages on the server, retrieves them and displays
on the screen. Users are able to chat in realtime.

It is important to note the technique chosen is that in which the clients ask
the server if new messages are available. At no time does the server contact
the clients to let them know that messages are waiting. With this mode of
operation, based on request/response, we can easily use CGI scripts and
especially the HTTP protocol.

Our client can therefore make its requests on TCP port 80 enabling it to cross
any firewall encountered unhindered. Our chat system is perfectly usable on
the Internet and not just a private network.

Rebol – A programmer’s guide

224

Writing the client

The first stage consists of asking the user what is there name. This can be
done using a simple dialog box and assigning the value entered to the
variable login.

login: request-text/title "Your login:"

Figure 7-2. Entering the user login.

The main View client consists of a window containing a text-entry line, a
button to send the entered text and a list showing messages with the sender’s
name. We therefore need to define a layout measuring 500 by 500 pixels
containing three graphic components.

view layout/size [
 origin 0x0 space 0x0
 msgs: text-list 500x470 rate delay feel [
 engage: func [f a e] [
 if a = 'time [read-messages]
]
]
 across
 txt: field 400x30
 button "Send" 100x30 [send-message]
] 500x500

A timer is defined within the component named msgs. The frequency of the
timer being triggered is determined by the variable delay which contains
the number of seconds separating two client connections to the server. The
engage function then calls the read-message function if and only if the
event is detected to be of the ‘time type.

Practical applications

 225

For the button, we indicate that when the user clicks on it, the send-
message function is called. this makes a request to the remote HTTP server
using the POST method and passes it the message, the sender’s name and a
descriptive action indicating that the user is sending a new message. The
server’s URL is contained in the variable server defined at the start of the
script.

server: http://jupiter/cgi-bin/rchat.cgi

send-message: does [
 read/custom server reduce [
 'POST
 join {action=SEND&login=} [
 login "&message=" txt/text
]
]
 insert head msgs/lines join login [": " txt/text]
 fix-slider msgs
 txt/text: copy ""
 show [txt msgs]
]

We need to properly initialise the message list slider. For this, a utility
function called fix-slider adjusts the position and height of the slider on
the vertical bar according to the number of messages received.

fix-slider: func [faces] [
 foreach list to-block faces [
 either 0 = length? list/data [
 list/sld/redrag 1
] [list/sld/redrag list/lc / length? list/data]
]
]

Once sent, the contents of the message line are erased and the message is
added to the list. These two components are refreshed on the screen by using
the word show.

All that remains is to write the read-messages function that retrieves
messages sent by others users from the server.

This action is defined as “READ” and the user name is transmitted. The CGI
script then returns all the messages written by other people connected to the
server in a page with the MIME type of text/plain.

Rebol – A programmer’s guide

226

The variable num-msg contains the number of the last message read: the
server only returns messages with a number greater than that in this variable.

read-messages: does [
 responses: read/custom server reduce [
 'POST
 join {action=READ&login=} [login "&num=" num-msg]
]
 if (length? trim responses) > 0 [
 resp: do responses
 num-msg: (first resp) + 1
 msg: second resp
 forskip msg 2 [
 insert head msgs/lines join msg/1 [": " msg/2]
]
 fix-slider msgs
 show msgs
]
]

Figure 7-3. Rchat in use.

When the script starts to run, the variable num-msg is initialised by making
a request with the action “NUM” to ascertain the number of the last message
on the server.

num-msg: trim/all read/custom server [POST "action=NUM"]
num-msg: (to-integer num-msg) + 1

Setting up the server

On the HTTP server, we are going to write a CGI script called rchat.cgi
and save it in the cgi-bin directory from where it will be run.

Practical applications

 227

This script generates a page with a mime type of text/plain to return to
the client. Its first job is to read the information received using the POST
method and then extract the data using the decode-cgi word.

#!/usr/bin/rebol -cs
print "Content-Type: text/plain^/"

data: copy ""
len: to-integer system/options/cgi/content-length
until [
 buffer: copy ""
 read-io system/ports/input buffer (to-integer
 system/options/cgi/content-length)
 append data buffer
 ((length? data) = len)
]

query: make object! decode-cgi data

To permanently store data, the CGI uses two files called num.txt and
msg.txt. The first contains the number of the last message received. The
second stores messages in the format number [login message].
To avoid problems, the CGI script initially checks that the file msg.txt exists
by trying to read it. If it encounters a problem, these two files are created.

if error? try [
 read %msg.txt
] [
 save %msg.txt []
 write %num.txt 0
]

All that remains is to respond to the user action using a switch structure. If
query/action contains “NUM”, the CGI script returns the value
contained in the num.txt file.

In the case “SEND”, the CGI script formats the message and saves it in the
msg.txt file and increments the value stored in num.txt. Finally, if the
action is “READ”, the CGI script generates a block containing the number of
the last message so that the client can update its num-msg variable and a
series of blocks, each corresponding to a message. Thanks to login, the script
only returns messages sent by other users to the client.

Rebol – A programmer’s guide

228

switch query/action [
 "NUM" [
 print read %num.txt
]
 "SEND" [
 num-msg: (make integer! read %num.txt) + 1
 write %num.txt num-msg
 bloc: load %msg.txt
 append bloc num-msg
 append/only bloc reduce [query/login query/message]
 save %msg.txt bloc
]
 "READ" [
 if error? try [
 msglist: find (load %msg.txt) (do query/num)
 msg: []
 forskip msglist 2 [
 if (make string! msglist/2/1) <>
 query/login [
 append msg msglist/2
]
]
 either all [(not none? msg) ((length? msg) > 0)] [
 print mold reduce [(to-integer trim/all
 read %num.txt) msg]
] [print ""]
] []
]
]

We have developed, in under 4 kb of code, a full operational chat client and
server which are capable of operating directly over the Internet. This code
can be the base for many other projects. You can improve it to manage
concurrent access to data files and add features (emoticons, differently
colour messages in the list, ensuring no two identical names, etc.). It can also
be used as a base for online games written in Rebol.

In fact, interfacing View with CGI scripts is so simple and mostly intuitive
that you can use this approach in many situations and build real applications
using a distributed architecture.

A MySQL administrative console

In an earlier chapter, we explored using the core functionality of Nenad
Rakocevic’s excellent MySQL library.

Practical applications

 229

As a reminder, it allows the free versions of Rebol (Core and View) to
execute SQL queries against a MySQL database. We will now implement
more advanced functions, for remotely administering a remote database, to
build a small management console with Rebol/View.

The specification

Our administrative console is a tool that allows us to connect to a MySQL
server in order to visualise its databases. For each of these, we must be able
to understand the tables and run SQL queries. Like any good administrator,
we also want to collect DBMS usage statistics, be able to stop the DBMS
and finally, to verify the connection between MySQL and the client. We will
meet these ambitious specifications in less than 3 kb of code.

User identification

To secure the data it is hosting, MySQL identifies the rights of users with
accounts and passwords. Our administrative console must therefore begin its
work by identifying a user and selecting a MySQL server. This information
is stored in the text properties of the login, password and server words.
Once they have been entered, the “Submit” button retrieves a list of the
databases available on the server and displays the main console window.

view/title layout [
 text "Login"
 login: field ""
 text "Password"
 password: field ""
 text "MySQL server"
 server: field ""
 across
 button "Quit" [quit]
 button "Submit" [
 load-bases
 view/title main "MySQL Console"
]
] "MySQL Console"

Rebol – A programmer’s guide

230

Figure 7-4. User identification

Creating the main screen

Our administrative console consists of a single window called main. It has
three buttons whose functions are to send commands to MySQL (statistics,
connection status, and stopping the DBMS). A fourth button allows the user
to quit the application.

Two lists (bases and tables), positioned with two tabs by the tabs
instruction, show the databases managed by the MySQL server to which we
are connected and the selected database. An input field, reqsql, allows an
SQL command to be keyed in and executed by clicking on the provided
“Enter” button.
main: layout/size [
 across
 button "Statistics" [send-command 'statistics]
 button "Connection ?" [send-command 'ping]
 button "Stop MySQL" [send-command 'shutdown]
 button "Quit" [quit]
 return
 tabs [10 250]
 text "Bases"
 tab text "Tables" return
 bases: text-list 220x100 [
 load-tables bases/picked
]
 tab tables: text-list 220x100 [
 reqsql/text: join "select * from " (first tables/picked)
 show reqsql

Practical applications

 231

]
 return
 text "SQL request:"
 across
 reqsql: field 250 ""
 button "Enter" [user-request]
] 500x230

Figure 7-5. The musicdb database contains the discs table.

Some utility functions

To make things easier, we are going to define three utility functions. First,
we need to correctly position the slider of the two lists of the main window
when their contents are updated. For this, we must define a function, fix-
slider, which takes the name of the list whose contents have changed as a
parameter.

fix-slider: func [faces] [
 foreach list to-block faces [
 either 0 = length? list/data [
 list/sld/redrag 1
] [
 list/sld/redrag list/lc / length? list/data
]
]
]

Rebol – A programmer’s guide

232

Our application must frequently connect to the MySQL server. So we
obviously need a function that automatically generates the URL connection
from the user’s account, password, server name and the MySQL database to
be accessed. This function, construct-url, takes the name of the
database as a parameter.

construct-url: func [base] [
 return join mysql:// [login/text ":" password/text
 "@" server/text "/" base
]
]

Finally, it will be very helpful to have a function whose role is to run an SQL
request. The do-request function takes in the SQL request and the name
of the database to which it is to be forwarded. It connects to the database
after calling construct-url. The data collected from the database is
returned to the caller.

do-request: function [base req] [p data ele] [
 db: open construct-url base
 insert db req
 data: copy db
 close db
 return data
]

The processing functions

We will start by sending commands to the MySQL server. Nenad’s library
provides a set of features that support the management of a remote MySQL
server. These commands are directly inserted into the communications port.
They take the form of a block whose first element is the command. It is
followed by any optional arguments. You can change the active database
(init-db), switch user (change-user), create a new database
(create-db), destroy a database (drop-db), update the MySQL server
parameters (reload), end a process (process-kill) and put the server
into “development’ mode with the command debug.

For our console, we will use the statistics, ping and shutdown
commands. These are passed as parameters, in the form of a symbol, to the
send-command function.

Practical applications

 233

It generates a block containing supplied options if the /options
refinement is used. The result of the command is displayed in an alert box.

send-command: function [cmd /options opts] [db bloc] [
 if error? try [
 db: open construct-url "mysql"
 bloc: copy []
 append bloc reduce cmd
 if options [append bloc reduce opts]
 res: insert db bloc
 close db
 if not none? res [alert to-string res]
] [
 alert "It was not possible to carry out the command"
]
]

The load-bases and load-tables functions are used to fill out the
bases and tables lists of the main layout. The names of the databases
can be retrieved simply by making an SQL request against the db table of
the MySQL database. As against retrieving the list of tables in a database
which can only be done with the show tables command after init-db
has been used to select the active database.

load-bases: does [
 clear bases/lines
 bases/lines: copy []
 foreach ele do-request "mysql" "select db from db" [
 append bases/lines ele
]
 fix-slider bases
 show bases
]

load-tables: func [base] [
 send-command/options 'init-db base
 tables/lines: copy []
 foreach ele do-request base "show tables" [
 append tables/lines ele
]
 fix-slider tables
 show tables
]

Executing an SQL request input by the user is done by the user-request
function.

Rebol – A programmer’s guide

234

It retrieves the value of the reqsql input field and displays the lines read
from the database. Using mold keeps the on-screen formatting of the data in
the form of blocks.

user-request: does [
 either not empty? bases/picked [
 send-command/options 'init-db (first bases/picked)
 print ["^/>> " reqsql/text]
 foreach ele do-request (first bases/picked)
 reqsql/text [
 print mold ele
]
] [alert "You must select a database"]
]

Figure 7-6. The result of an SQL request is displayed in the console.

In less than 3 kb of code, you have developed a visual program to drive a
MySQL server.

As you’ve observed, building a genuine MySQL administrative tool is very
easily achievable with Rebol.

Writing a reblet for IOS

The interesting principle behind IOS is that it is not static or frozen. With
minimum investment, it is quite conceivable to write independent
applications that utilise the capabilities of this application server. IOS
provides a rich and powerful API to facilitate writing reblets.

Practical applications

 235

The specification

Your first Rebol/IOS development project is a telephone directory which
allows your IOS users to share information about their contacts. This
information will not only be stored on the server but also synchronised with
each of the Rebol/Link clients. A mobile user can recover the contacts added
to the server since their last connection and can even view the information
when if they are not connected to the IOS server. Your reblet will securely
transport its data over networks because all information is automatically
encrypted by IOS.

The development cycle

To write reblets, you only need a Link client and a proper code editor. On the
other hand, your IOS user profile must allow you to publish new
applications. This is done through the new-app option of your account.

First, create a directory on your hard disk to store your project code and
resources needed.

Now, let us step back for a moment to consider what exactly a reblet is and
how they work.

In fact, a reblet is simply a Rebol script downloaded over the network and
executed on the client. IOS introduces the additional concept of
communicating with the application server. When the reblet is executed in
the environment established by Link, it may ask the IOS server to perform a
number of operations such as reading or deleting a file. Reblets can also ask
IOS to execute code on the server. This is done by a specific method called
POST.

All such communication is performed using the asynchronous model
allowing the client code to continue its execution without waiting for the
response from the server.

Rebol – A programmer’s guide

236

To publish reblets, you only need to design an installation script which will
create the environment to host them on the server (fileset), save the client
code on the server and possibly create an IOS POST method. It is very
important to remember that at no time, do you need to work on the server.
All these operations can be performed using the Link client.

Defining a fileset

The first stage consists of writing a script called install-phonebook.r
whose mission is to create a fileset called phonebook for our application
and to install a POST method on the server. The REBOL header block of the
script must contain the type 'link-app to indicate to Link that the
application uses IOS server features.

The fileset is sent to the server with the help of install-fileset. It
gives editing rights only to users "olivier" and "admin". On the other hand,
all users of the server are given the right to perform the POST method to able
to publish their data.

The icons tag indicates the application name and icon which Link will
display on the desktop. files contains the list of files which make up the
client application.

fileset: 'phonebook
tags: [
 access: [
 properties: rights: delete: change: [
 "olivier" "admin"
]
 post: 'all
]
 icons: [
 [
 name: "Phonebook"
 item: %apps/phonebook/phonebook.r
 folder: %apps/
 image: %desktop/icons/demo.gif
 info: "Your phone book."
]
]
]

Practical applications

 237

files: [[%apps/phonebook/phonebook.r %phonebook.r]]

Figure 7-7. The fileset of the Phonebook application.

The POST method

The block post-func contains the code of the POST method. The local
variables used by the latter are given to the server using the post-locals
list. It is better to create a separate context for this code to preserve the
server’s dictionary and protect the code from name clashes.

post-locals: [base file num]
post-func: [
 if error? err: try [
 server-code: context [
 num: 0
 base: %apps/phonebook/
 if data-exists? base/num.r [
 num: load-data base/num.r
]
 write-data base/num.r mold num + 1
 file: join "individual" [num ".r"]

add-file 'phonebook base/:file (compress message/1)
 true
]
] [
 print mold/only disarm :err
 false
]
]

Rebol – A programmer’s guide

238

The role of this piece of code is to receive data from the Link client and
create a file on the fileset of the server. Each entry in the phonebook will be
saved in a file individualX.r (x is a number incremented by 1 for each
new entry). On the server, a file called num.r is generated by this method
and contains the number of the last number used. You’ve probably noticed
the presence of some new words that are part of the IOS server API:

• data-exists? checks for the presence of a data file,
• write-data creates a data file stored only on the server,
• add-file adds a file to an applications fileset (this new file will be

automatically synchronised when clients connect to the server).

The client code

You can now proceed to write the client code to be stored in the file named
phonebook.r. Once more, the Rebol header block must contain 'link-
app type to identify itself as an IOS reblet. The word connected? lets
you find out if the client is connected to the server or not. If not, the
publication functions are disabled and the user can only see data previously
synchronised by Link.

The variable user-name contains the user’s Link login. This information
is one of the many properties of user-prefs.

The application’s user interface consists of a simple window with a drop-
down list called cts (the slider is put in place by the fix-slider
function), three text input fields (name, first-name and tel) and three
buttons, one to clear the form, one to add a new record and the last to quit the
application. Link introduced some new styles to VID such as rounded
buttons (btn).

Practical applications

 239

Figure 7-8. The client portion of the Phonebook reblet.

The use of the new refinement of view postpones the processing of events.
Once the layout is displayed, the code continues its execution. This allows
us to ask Link for the information it has recovered by connecting to the
server. For this, we declare an event handler for the get command using the
insert-notify word. The third parameter (get-files) corresponds to
the name of a callback function invoked when the result of the request is
received by the client. get is used to obtain a list of files in a given fileset.
The send-link word sends the get command. Once the data are
available, the get-files function is called It deactivates the event
handler (remove-notify) and updates the list using the synchronised
files that have been stored on the client.

get-files: function [event data] [list] [
 remove-notify 'get 'phonebook
 list: copy []
 foreach individual data [
 if found? find individual "ind" [
 append list (read join link-root individual)
]
]
 append cts/lines (sort list)
 show cts
]
insert-notify 'get none :get-files
send-link 'get 'app-files 'phonebook

Rebol – A programmer’s guide

240

Once this has been done, the processing of events which was previously
postponed is started by with the do-events word.

A new record is created by calling the POST method on the serve by using
the send-server command.

send-server post reduce ['phonebook new-cts]

The arguments are the fileset to be used and the data to be transmitted. On
the server, the POST method receives it using the message list.

Figure 7-9. The Phonebook reblet is available on the Rebol/Link desktop..

You’ve just completed writing your first reblet. All that is left to do is
publish your work on the server. In Link, use the CTRL + L key combination
and select the file called install-phonebook.r. The code is executed
and your reblet is now available to your users.

Summary

Again, these themes have show the versatility of Rebol. You have developed
a raycasting engine, written a perfectly functional chat client in a few lines of
code, set up an MySQL manager and conceived a reblet for Rebol/IOS.

