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Abstract

Vision Transformers (ViT) have achieved remarkable success in large-scale image
recognition. They split every 2D image into a fixed number of patches, each of
which is treated as a token. Generally, representing an image with more tokens
would lead to higher prediction accuracy, while it also results in drastically in-
creased computational cost. To achieve a decent trade-off between accuracy and
speed, the number of tokens is empirically set to 16x16. In this paper, we argue
that every image has its own characteristics, and ideally the token number should
be conditioned on each individual input. In fact, we have observed that there exist
a considerable number of “easy” images which can be accurately predicted with a
mere number of 4x4 tokens, while only a small fraction of “hard” ones need a finer
representation. Inspired by this phenomenon, we propose a Dynamic Transformer
to automatically configure a proper number of tokens for each input image. This is
achieved by cascading multiple Transformers with increasing numbers of tokens,
which are sequentially activated in an adaptive fashion at test time, i.e., the infer-
ence is terminated once a sufficiently confident prediction is produced. We further
design efficient feature reuse and relationship reuse mechanisms across different
components of the Dynamic Transformer to reduce redundant computations. Ex-
tensive empirical results on ImageNet, CIFAR-10, and CIFAR-100 demonstrate
that our method significantly outperforms the competitive baselines in terms of
both theoretical computational efficiency and practical inference speed.

1 Introduction

Transformers, the dominant self-attention-based models in natural language processing (NLP) [[10,
37,13]], have been successfully adapted to image recognition problems [11} 152} 35| [16] recently. In
particular, vision Transformers achieve state-of-the-art performance on the large scale ImageNet
benchmark [9]], while exhibit excellent scalability with the further growing dataset size (e.g., on JFT-
300M [11]). These models split each image into a fixed number of patches and embed them into 1D
tokens as inputs. Typically, representing the data using more tokens contributes to higher prediction
accuracy, but leads to intensive computational cost, which grows quadratically with respect to the
token number in self-attention blocks. For a proper trade-off between efficiency and effectiveness,

existing works empirically adopt 14x14/16x16 tokens [[L1,[52].
) ] ] Table 1: Accuracy and computa-
In this paper, we argue that it may not be optimal to treat all  jonal cost of T2T-ViT-12 with dif-

samples with the same number of tokens. In fact, there exist ferent token numbers on ImageNet.
considerable variations among different images (e.g., contents,
scales of objects, backgrounds, etc.). Therefore, the number of
representative tokens should ideally be configured specifically ~ Accuracy | 76.7%  70.3%  60.8%

. .. . . . FLOPs 1.78G 047G 0.21G
for each input. This issue is critical for the computational

#of Tokens | 14x14  7x7 4x4

*Equal contribution.
TCorresponding author.



efficiency of the models. For example, we train a T2T-ViT-12 [52] with varying token numbers, and
report the corresponding accuracy and FLOPs in Table[T} One can observe that adopting the officially
recommended 14x14 tokens only correctly recognizes ~15.9% (76.7% v.s. 60.8%) more test samples
compared to that of using 4x4 tokens, while increases the computational cost by 8.5 times (1.78G
v.s. 0.21G). In other words, computational resources are wasted on applying the unnecessary 14x14
tokens to many “easy” images for which 4x4 tokens are sufficient.

Motivated by this observation, we propose a novel Dy-

=| 97.3%
namic Vision Transformer (DVT) framework, aiming to Sl apple v Terminate & Output
automatically configure a decent token number conditioned - ?
on each image for high computational efficiency. In spe- Mj‘ Continue
cific, a cascade of Transformers are trained using increas- " Reu:e
ing number of tokens. At test time, these models are se- Computation
quentially activated starting with less tokens. Once a pre- 21.4%

Egret *

diction with sufficient confidence has been produced, the
inference procedure will be terminated immediately. As a
consequence, the computation is unevenly allocated among
“easy” and “hard” samples by adjusting the token number,
yielding a considerable improvement in efficiency. Impor- 15207 43,77 01.4%
tantly, we further develop feature-wise and relationship- Py S SR
wise reuse mechanisms to reduce redundant computations.
The former allows the downstream models to be trained on
the basis of previously extracted deep features, while the
later enables leveraging existing upstream self-attention
relationships to learn more accurate attention maps. Illus-
trative examples of our method are given in Figure [T}
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Figure 1: Examples for DVT.

Notably, DVT is designed as a general framework. Most of the state-of-the-art image recognition
Transformers, such as ViT [11]], DeiT [33]], and T2T-ViT [52]], can be straightforwardly deployed as
its backbones for higher efficiency. Our method is also appealing in its flexibility. The computational
cost of DVT is able to be adjusted online by simply adapting the early-termination criterion. This
characteristic makes DVT suitable for the cases where the available computational resources fluctuate
dynamically or a minimal power consumption is required to achieve a given performance. Both
situations are ubiquitous in real-world applications (e.g., searching engines and mobile apps).

The performance of DVT is evaluated on ImageNet [9] and CIFAR [25] with T2T-ViT [52] and DeiT
[33]. Experimental results show that DVT significantly improves the efficiency of the backbones. For
examples, DVT reduces the computational cost of T2T-ViT by 1.6-3.6x without sacrificing accuracy.
The real inference speed on a NVIDIA 2080Ti GPU is consistent with our theoretical results.

2 Related Work

Vision Transformers. Inspired by the success of Transformers on NLP tasks [[10} 37, 3. 140, vision
Transformers (ViT) have recently been developed for image recognition [11]]. Although ViT by itself
is not comparable with state-of-the-art convolutional networks (CNN) on the standard ImageNet
benchmark, it attains excellent results when pre-trained on the larger JFT-300M dataset. DeiT [33]
studies the training strategy of ViT and proposes a knowledge distilling-based approach, surpassing
the performance of ResNet [18]]. Some following works such as T2T-ViT [52]], TNT [16]], CaiT [36],
DeepViT [59], CPVT [6]], LocalViT and CrossViT [3]] focus on improving the architecture design
of ViT. Another line of research proposes to integrate the inductive bias of CNN into Transformers
[46, [I5]]. There are also attempts to adapt ViT for other vision tasks (e.g., object detection,
semantic segmentation, etc.) [57]]. The most majority of these concurrent works
represent each image with a fix number of tokens. To the best of our knowledge, we are the first to
consider configuring token numbers conditioned on the inputs.

Efficient deep networks. Computational efficiency plays a critical role in real-world scenarios, where
the executed computation translates into power consumption, carbon emission or latency. A number
of works have been done on reducing the computational cost of CNNs 1201150, 56 30, 33]].
However, designing efficient vision Transformers is still an under-explored topic. T2T-ViT
proposes a light-weighted tokens-to-token module and obtains a competitive accuracy-parameter
trade-off compared to MobileNetV2 [31]]. LeViT [15] accelerates the inference of Transformer
models by involving convolutional layers. Swin Transformer [29] introduces an efficient shifted
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Figure 2: An overview of Dynamic Vision Transformers (DVT). Under the objective of configuring
proper token numbers conditioned on the inputs, we cascade multiple Transformers with increasing
number of tokens. At test time, they are sequentially activated until a convincing prediction (e.g.
sufficiently confident) has been obtained or the final model has been inferred. The feature and
relationship reuse mechanisms allow reusing computation across different Transformers.

window-based approach in multi-stage vision Transformers. Compared to these models with fixed
computational graphs, the proposed DVT framework improves the efficiency by adaptively changing
the architecture of the network on a per-sample basis.

Dynamic models. Designing dynamic architectures is an effective approach for efficient deep
learning [[17]. In the context of recognition tasks, MSDNet and its variants [22} 49| 26] develop a
multi-classifier CNN architecture to perform early exiting for easy samples. Another type of dynamic
CNNs skips redundant layers [38, 42, 48] or channels [28] conditioned on the inputs. Besides,
the spatial adaptive paradigm [14} 4} 144} 139, 43] has been proposed for efficient image and video
recognition. Although these works are related to DVT on the spirit of adaptive computation, they are
developed based on CNN, while DVT is tailored for vision Transformers.

3 Dynamic Vision Transformer

Vision Transformers [[L1} |16} [35)152]] split each 2D image into 1D tokens, while model their long
range interaction with the self-attention mechanism [37]. As aforementioned, to correctly recognize
some ‘“hard” images and achieve high accuracy, the number of tokens usually needs to be large,
leading to the quadratically grown computational cost. However, “easier” images that make up the
bulk of the datasets typically require far fewer tokens and much less costs (as shown in Table [I)).
Inspired by this observation, we propose a Dynamic Vision Transformers (DVT), aiming to improve
the computational efficiency of Transformers via adaptively reducing the number of representative
tokens for each input.

In specific, we propose to deploy multiple Transformers trained with increasing number of tokens,
such that one can sequentially activate them for each test image until obtaining a convincing prediction
(e.g., with sufficient confidence). The computation is allocated unevenly across different samples for
improving the overall efficiency. It is worth noting that, if all the Transformers are learned separately,
the computation performed by upstream models will simply be abandoned once a downstream
Transformer is activated, resulting in considerable inefficiency. To alleviate this problem, we introduce
the efficient feature and relationship reuse mechanisms.

3.1 Overview

Inference. We start by describing the inference procedure of DVT, which is shown in Figure 2] For
each test sample, we first coarsely represent it using a small number of 1D token embeddings. This
can be achieved by either straightforwardly flattening the split image patches [11,[16] or leveraging
techniques like the tokens-to-token module [52]. We infer a vision Transformer with these few tokens
to obtain a quick prediction. This process enjoys high efficiency since the computational cost of
Transformers grows quadratically with respect to token number. Then the prediction will be evaluated



with certain criterion to determine whether it is reliable enough to be retrieved immediately. In this
paper, early-termination is performed when the model is sufficiently confident (details in Section [3.3).

Once the prediction fails to meet the termination criterion, the original input image will be split
into more tokens for more accurate but computationally more expensive inference. Note that, here
the dimension of each token embedding remains unchanged, while the number of tokens increases,
enabling more fine-grained representation. An additional Transformer with the same architecture
as the previous one but different parameters will be activated. By design, this stage trades off
computation for higher accuracy on some “difficult” test samples. To improve the efficiency, the
new model can reuse the previously learned features and relationships, which will be introduced in
Section[3.2] Similarly, after obtaining a new prediction, the termination criterion will be applied, and
the above procedure will proceed until the sample exits or the final Transformer has been inferred.

Training. For training, we simply train DVT to produce correct predictions at all exits (i.e., each
with the corresponding number of tokens). Formally, the optimization objective is

. 1
minimize Do Z(%y)eDm [Zz LCE(Pz‘ay)] ) (1)

where (x,y) denote a sample in the training set Dy, and its corresponding label. We adopt the
standard cross-entropy loss function Lcg(-), while p; denotes the softmax prediction probability
output by the i exit. We find that such a simple training objective works well in practice.

Transformer backbone. DVT is proposed as a general and flexible framework. It can be built on
top of most existing vision Transformers like ViT [[L1], DeiT [35] and T2T-ViT [52] to improve their
efficiency. The architecture of Transformers simply follows the implementation of these backbones.

3.2 Feature and Relationship Reuse

An important challenge to develop our DVT approach is how to facilitate the reuse of computation.
That is, once a downstream Transformer with more tokens is inferred, it is obviously inefficient if
the computation performed in previous models is abandoned. The upstream models, although being
based on smaller number of input tokens, are trained with the same objective, and have extracted
valuable information for fulfilling the task. Therefore, we propose two mechanisms to reuse the
learned deep features and self-attention relationships. Both of them are able to improve the test
accuracy significantly by involving minimal extra computational cost.

Background. For the ease of introduction, we first revisit the basic formulation of vision Trans-
formers. The Transformer encoders consist of alternatively stacked multi-head self-attention (MSA)
and multi-layer perceptron (MLP) blocks [37, [L1]]. The layer normalization (LN) [2] and residual
connection [18]] are applied before and after each block, respectively. Let z; € RY*P denote the
output of the /™ Transformer layer, where NN is the number of tokens for each sample, and D is the
dimension of each token. Note that N = HW + 1, which corresponds to H x W patches of the
original image and a single learnable classification token. Formally, we have

Zl/ :MSA(LN(ZZ,Q) +2z-1, l e {1,...,L}7 2)
2] :MLP(LN(ZII)) —|—le, le{l,...,L}, 3)

where L is the total number of layers in the Transformer. The classification token in zy, will be fed
into a LN layer followed by a fully-connected layer for the final prediction. For simplicity, here we
omit the details on the position embedding, which is unrelated to our main idea. No modification is
performed on it in addition to the configurations of backbones.

Feature reuse. All the Transformers in DVT share the same goal of extracting discriminative
representations for accurate recognition. Therefore, it is straightforward that downstream models
should be learned on the basis of previously obtained deep features, rather than extracting features
from scratch. The former is more efficient since the computation performed in an upstream model
contributes to both itself and the successive models. To implement this idea, we propose a feature
reuse mechanism (see: Figure[3). In specific, we leverage the image tokens output by the final layer
of the upstream Transformer, i.e., 2", to learn a layer-wise embedding E; for the downstream model:

E; = fi(z{) e RV )

Herein, f;: RVP—RN<D’ consists of a sequence of operations starting with a LN-MLP (RP — R,
which introduces nonlinearity and allows more flexible transformations. Then the image tokens are
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Figure 3: Illustration of the feature reuse mechanism. A layer-wise context embedding is learned
based on the final representations output by the upstream model, i.e., zzp , and integrated into the
MLP block of each downstream Transformer layer.

reshaped to the corresponding locations in the original image, upsampled and flattened to match the
token number of the downstream model. Typically, we use a small D’ for an efficient f;.

Consequently, the embedding E; is injected into the downstream model, providing prior knowledge
on recognizing the input image. Formally, we replace Eq. by:

z; = MLP(LN(Concat(z;, E;))) + 2], le{l,...,L}, (5)
where E; is concatenated with the intermediate tokens z]. We simply increase the dimension of LN
and the first layer of MLP from D to D+D’. Since E; is based on the upstream outputs z," that have
less tokens than zJ, it actually concludes the context information of the input image for each token in
zl’ . Therefore, we name E; as the context embedding. Besides, we do not reuse the classification token
and pad zero for it in Eq. (3)), which we empirically find beneficial for the performance. Intuitively,
Egs. and (5) allow training the downstream model to flexibly exploit the information within 2}
on a per-layer basis, under the objective of minimizing the final recognition loss (Eq. (I))). This
feature reuse formulation can also be interpreted as implicitly enlarging the depth of the model.
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in previous models. We argue Figure 4: Illustration of the relationship reuse mechanism. We
that these learned relationships leverage the learned self-attention relationships from all upstream
are also capable of being reused layers and attention heads, i.e., A", to refine the downstream
to facilitate the learning of down- attention maps. The addition operation of logits is adopted. Note
stream Transformers. that N* denotes the head number for multi-head self-attention.

Given the input representation z;, the self-attention is performed as follows. First, the query, key and
value matrices Q;, K; and V; are computed via linear projections:

Q =zW2, K, =zWK V, =zW/, (6)



where W?, WK and W) are weight matrices. Then the attention map is calculated by a scaled
dot-product operation with softmax to aggregate the values of all tokens, namely

Attention(z;) = Softmax(A;)V;, A; = QZKZT/\/& @)

Here d is the hidden dimension of Q or K, and A; € R™ denotes the logits of the attention
map. Note that we omit the details on the multi-head attention mechanism for clarity, where A; may
include multiple attention maps. Such a simplification does not affect the description of our method.

For relationship reuse, we first concatenate the attention logits produced by all layers of the upstream
model (i.e., A, 1 € {1,...,L}):

A" = Concat(A”, A, ... A) € RNwNwNy' (8)
where NV, and Nf;,“ denote the number of tokens and all attention maps in the upstream model,
respectively. Typically, we have N2 = NH L, where N" is the number of heads for the multi-head

attention and L is the number of layers. Then the downstream Transformer learns attention maps by
leveraging both its own tokens and A" simultaneously. Formally, we replace Eq. by

Attention(z;) = Softmax(A; + 7 (A™)V,, A, = QK /Vd, )

where () is a transformation network that integrates the information provided by A" to refine the
downstream attention logits A;. The architecture of 7;(-) is presented in FigureE], which includes a
MLP for nonlinearity followed by an upsample operation to match the size of attention maps. For
multi-head attention, the output dimension of the MLP will be set to the number of heads.

Notably, Eq. (9) is a simple but flexible formulation. For one nEne
thing, each self-attention block in the downstream model has
access to all the upstream attention heads in both shallow and

H W[

deep layers, and hence can be trained to leverage multi-level HY
relationship information on its own basis. For another, as the (/l
newly generated attention maps and the reused relationships — #'w'xu'w <€—nw,

are combined in logits, their relative importance can be auto-
matically learned by adjusting the magnitude of logits. It is
also worth noting that the regular upsample operation cannot
be directly applied in r;(-). To illustrate this issue, we take
upsampling a HW x HW (H =W =2) attention map to H'W'x H'W' (H' =W’ =3) for example
in Figure 5] Since each of its rows and columns corresponds to H x TV image tokens, we reshape the
rows or columns back to H x W, scale them to H' x W', and then flatten them to H'W"' vectors.

HwW
Figure 5: An example for the upsam-
ple operation in r;(-).

3.3 Adaptive Inference

As aforementioned, the proposed DVT framework progressively increases the number of tokens for
each test sample and performs early-termination, such that “easy” and “hard” images can be processed
using varying tokens with uneven computational cost, improving the overall efficiency. Specifically,
at the i'" exit that produces the softmax prediction p;, the largest entry of p;, i.e., max; p;; (defined
as confidence [22, 49, 144]), is compared with a threshold ;. If max; p;; > n;, the inference will stop
by adopting p; as the output. Otherwise, the image will be represented using more tokens to activate
the downstream Transformer. We always adopt a zero-threshold for the final Transformer.

The values of {71, 72, ...} are solved on the validation set. We assume a budgeted batch classification
[22] setting, where DVT needs to recognize a set of samples D, within a given computational
budget B > 0. Let Acc(Dyar, {11, 72, - . .}) and FLOPs(Dya, {11, 12, - . .}) denote the accuracy and
computational cost on Dy, when using the thresholds {71,7s2, ...}. The optimal thresholds can be
obtained by solving the following optimization problem:

maximize Acc(Dya, {n1,M2,...}),  s.t. FLOPs(Dya, {m1,72,...}) < B. (10)

N15M25--

Due to the non-differentiability, we solve this problem with the genetic algorithm [45]] in this paper.

4 Experiments

In this section, we empirically validate the proposed DVT on ImageNet [9] and CIFAR-10/100
[25]. Ablation studies and visualization are presented on ImageNet to give a deeper understand-
ing of our method. Code and pre-trained models will be available at https://github.com/
blackfeather-wang/Dynamic-Vision-Transformer.
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Figure 6: Top-1 accuracy v.s. GFLOPs on ImageNet. DVT is implemented on top of T2T-ViT-12/14.
Table 2: The practical speed of DVT. Table 3: Performance of DVT on CIFAR-10/100.
. ImageNet (NVIDIA 2080Ti, bs=128) Models CIFAR-10 CIFAR-100
Top-1 acc. Throughput Top-1 acc. GFLOPs Top-1 acc. GFLOPs
T2T-ViT-7 71.68% 1574 img/s T2T-VIT-10 | 97.21% 1.53 85.44% 1.53
DVT 78.48% (16.80%) 1574 img/s DVT 9721% 050 (13.1x) | 8545%  0.54 (J2.8x)
T2T-ViT-10 75.15% 1286 img/s T2T-VIT-12 | 97.45% 1.78 86.23% 1.78
DVT 79.74% (14.59%) 1286 img/s DVT 97.46%  0.52(134x) | 86.26%  0.61(J2.9x)
T2T-ViT-12 76.74% 1121 img/s T2T-VIT-14 | 98.19% 4.80 89.10% 4.80
DVT 80.43% (13.69%) 1128 img/s DVT 98.19%  0.77(162x) | 89.11%  1.62 ({3.0x)
T2T-ViT-14 81.50% 619 img/s T2T-VIT-19 | 98.43% 8.50 89.37% 8.50
DVT 81.50% 877 imgs (11.42x) DVT 98.43%  1.44(159%) | 89.38%  1.74 (14.9x)
T2T-ViT-19 81.93% 382 img/s T2T-ViT-24 | 98.53% 13.69 89.62% 13.69
DVT 81.93% 666 img/s (11.74x) DVT 98.53%  1.49(192x) | 89.63%  1.86 (17.4x)

Datasets. (1) ImageNet is a 1,000-class dataset from ILSVRC2012 [9], containing 1.2 million images
for training and 50,000 images for validation. (2) CIFAR-10/100 datasets [25] contain 32x32 colored
images in 10/100 classes. Both of them consist of 50,000 images for training and 10,000 images
for testing. For all the three datasets, we adopt the same data pre-processing and data augmentation
policy as [18| 23] 22]]. In addition, we solve the confidence thresholds stated in Section@]on the
training set, which we find achieves similar performance to adopting cross-validation.

Backbones. Our experiments are based on several state-of-the-art vision Transformers, namely
T2T-ViT-12 [52], T2T-ViT-14 [52], and DeiT-small (w/o distillation) [35]. Unless otherwise specified,
we deploy DVT with three exits, corresponding to representing the images as 7x7, 10x10 and 14x14
token%l For fair comparisons, our implementation exploits the official code of the backbones, and
adopts exactly the same training hyper-parameters. More training details can be found in Appendix
A. The number of FLOPs is calculated using the fucore toolkit provided by Facebook AI Research,
which is also used in Detectron2 [47], PySlowFast [[13]], and ClassyVision [[1]].

Implementation details. For feature reuse, the hidden size and output size of the MLP in f;(-) are
set to 128 and 48. In relationship reuse, for implementation efficiency, we share the same hidden
state across the MLPs of all r;(-), such that r;(A"),[ € {1,..., L} can be obtained at one time in
concatenation by implementing a single large MLP, whose hidden size and output size are 3N" L and
NHL. Note that NH is the head number of multi-head attention and L is the layer number.

4.1 Main Results

Results on ImageNet are shown in Figures E] and [/} where T2T-ViT [52] and DeiT [33]] are im-
plemented as backbones respectively. As stated in Section [3.3] we vary the average computational
budget, solve the confidence thresholds, and evaluate the corresponding validation accuracy. The
performance of DVT is plotted in gray curves, with the best accuracy under each budget plotted in
black curves. We also compare our method with several highly competitive baselines, i.e., TNT [L16],
LocalViT [27]], CrossViT [5], PVT [41]], ViT [11] and ResNet [[18]]. It can be observed that DVT
consistently reduces the computational cost of the backbones. For example, DVT achieves the 82.3%
accuracy with 3.6x less FLOPs compared with the vanilla T2T-ViT. When the budget ranges among

3 Although 4x4 tokens are also used as an example in Section we find starting with 7x7 is more efficient.



83
3.2x ) 80
8+ L .- ® 0l
si4 T '
.................. 78
~ fﬁ ) e 7 g
< 194  f oo e o
& - X 764
5 & 75
g 774 2
;5 ‘5 744
g 767 S 0l — DVT
© 754 —_— DVT < _:2 7 = DVT (w/o relationship reuse)
74 --@- DeiT ! @& —— DVT (w/o feature reuse)
734 -4 ResNet (0 —— DVT (w/o reuse)
ol & B Vil 70 @ T2T-ViT
- ‘ ‘ " . : ‘ ‘ 69 +— . . T T
0 2 4 6 8 10 12 14 16 18 0.5 1.0 1.5 2.0 2.5
GFLOPs/image GFLOPs/image

Figure 7: Performance of DeiT-based DVT on Figure 8: Performance of the DVT based on T2T-
ImageNet. DeiT-small is used as the backbone.  ViT-12 with and without the reuse mechanisms.

0.5-2 GFLOPs, DVT has ~1.7-1.9x less computation than T2T-ViT with the same performance.
Notably, our method can flexibly attain all the points on each curve by simply adjusting the values of
confidence thresholds with a single DVT.

Practical efficiency of DVT. We test the actual speed of DVT on a NVIDIA 2080Ti GPU under a
batch inference setting, where a mini-batch of data is fed into the model at a time. After inferring each
Transformer, the samples that meet the early-termination criterion will exit, with the remaining images
fed into the downstream Transformer. The results are presented in Table[2] Here we adopt a two-exit
DVT based on T2T-ViT-12 using 7x7 and 14x14 tokens, which we find more efficient in practice. All
other implementation details remain unchanged. One can observe that DVT improves the accuracy of
small models (T2T-ViT-7/10/12) by 3.7-6.8% with the same inference speed, while accelerates the
inference of the large T2T-ViT-14/19 models by 1.4-1.7x without sacrificing performance.

Results on CIFAR are presented in Table |3} Following the common practice [[11} 152} [16} [35]], we
resize the CIFAR images to 224x224, and fine-tune the T2T-ViT and DVT models in Figure[6] The
official code and training configurations provided by [52] are utilized. We report the computational
cost of DVT when it achieves the competitive performance with baselines. Our proposed method is
shown to consume ~3-9x less computation compared with T2T-ViT.

4.2 Ablation Study

Effectiveness of feature and rela- Table 4: Effects of feature (F) and relationship (R) reuse. The
tionship reuse. We conduct exper- percentages in brackets denote the additional computation com-
iments by ablating one or both of pared to baselines involved by the reuse mechanisms.

the reuse mechanisms. For a clear

. first d . h Reuse 1 Exit (7x7) 2™ Exit (10x10) 3" Exit (14x14)
comparison, we first deactivate the g g |10 1 ace. GFLOPs Top-1ace. GFLOPs Top-1 acc. GFLOPs
early-termination, and report the 033% o 3519 e S s

. ‘0 . . (4 . . 0 .

accuracy and GFLOPs correspond- v 69.42% 047  7531% 143 7921% 331
ing to each exit in Table @ The e : Sl% 183wy 71921% 3316
g V| 69.03% 047  7534% 14159y 78.86%  3.34(.0%)

three-exit DVT based on T2T-ViT- /| 60.04% 047  75.65% 146(c.6%) 80.00% 3.5011.1%)
12 is considered. One can observe

that both the two reuse mechanisms are able to significantly boost the accuracy of DVT at the 2"
and 3™ exits with at most 6% additional computation, while they are compatible with each other to
further improve the performance. We also find that involving computation reusing slightly hurts the
accuracy at the 1% exit, which may be attributed to the compromise made by the first Transformer
for downstream models. However, once the early-termination is adopted, this difference only results
in trivial disadvantage when the computational budget is very small, as shown in Figure [§] DVT
outperforms the baseline significantly in most cases.

Design choices for the reuse mechanisms. Here we study the design of the feature and relationship
reuse mechanisms. For experimental efficiency, we consider a two-exit DVT based on T2T-ViT-12
using 7x7 and 10x10 tokens, while enlarge the batch size and the initial learning rate by 4 times. Such
a training setting slightly degrades the accuracy of DVT, but it is still reliable to reflect the difference
between different design variants. We deactivate early-termination, and report the performance of
each exit. Notably, as the FLOPs of 1% exit remain unchanged (i.e., 0.47G), we do not present it.



Table 5: Ablation studies for feature reuse.

Table 6: Ablation studies for relationship reuse.

” 1% Bxit (7x7) 2™ Exit (10x10) . 13 Exit (7x7) 2™ Exit (10x10)

Ablation Top-1acc. Top-1acc. GFLOPs Ablation Top-1acc. Top-1acc. GFLOPs
w/o reuse 70.08 % 73.61% 1.37 w/o reuse 70.08 % 73.61% 1.37
Layer-wise feature reuse 69.84% 74.31% 1.43 Layer-wise relationship reuse 69.63% 73.89% 1.38
Reuse classification token 69.79% 74.70% 1.43 Reuse final-layer relationships 69.25% 74.31% 1.39
Remove fi(+),l > 2 69.33% 74.73% 1.38 MLP—Linear 69.20% 73.84% 1.38
Remove LN in f;(-) 69.63% 75.05% 1.42 Naive upsample 69.60% 73.34% 1.41
Ours | 69.44% 75.23% 1.43 Ours | 69.50% 74.91% 1.41
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Figure 9: Visualization of the “easy” and “hard” samples in DVT.

We consider four variants of feature reuse in Table[5} (1) reusing features from the corresponding
upstream layer instead of the final layer; (2) reusing classification token; (3) only performing feature
reuse in the first layer of the downstream model; (4) removing the LN in f;(-). One can see that taking
final tokens of the upstream model and reusing them in each downstream layer are both important.

Ablation results for relationship reuse are presented in Table[6] We consider four variants as well:
(1) only reusing the attention logits from the corresponding upstream layer; (2) only reusing the
attention logits from the final upstream layer; (3) replacing the MLP by a linear layer in r;(-); (4)
adopting naive upsample operation instead of what is shown in Figure 5} The results indicate that it is
beneficial to enable each downstream layer to flexibly reuse all upstream attention logits. Besides,
naive upsampling significantly hurts the performance.

Table 7: Comparisons of early-termination criteri-

Early-termination. We vary the criterion for .
y Y ons. The accuracy under each budget is reported.

adaptive inference and report the accuracy under

several computational budgets in Table[7] Two Ablation ‘ Top-1 acc.
: : . : 075G 100G 125G  1.50G
variants are considered: (1) adopting the entropy
of softmax prediction to determine whether to Randomly Exit 70.19% 71.66% 72.61% 73.59%
exit ; (2) performing random exiting with Entropy»based 73.41% 75.21% 77.08% 78.40%
Confidence-based (ours) | 73.70% 76.22% 77.89% 78.89%

the same exit proportion as DVT. The simple
but effective confidence-based criterion achieves better performance than both of them.

4.3 Visualization

Figure@ shows the images that are first correctly classified at the 1% and 3 exits of the DVT (T2T-
ViT-12). The former are recognized as “easy” samples, while the later are considered to be “hard”.
One can observe that “easy”” samples usually depict the recognition objectives in clear and canonical
poses and sufficiently large resolution. On the contrary, “hard” samples may contain complex scenes
and non-typical poses or only include a small part of the objects, and require a finer representation
using more tokens. Figure [I0] presents the numbers of images that exit at different exits when the
computational budget increases. The plot shows that the accuracy of DVT is significantly improved
with more images exiting later, which is achieved by changing the confidence thresholds online.

5 Conclusion

In this paper, we sought to optimally configure a proper number of tokens for each individual image in
vision Transformers, and hence proposed the Dynamic Vision Transformer (DVT) framework. DVT
processes each test input by sequentially activating multiple Transformers using increasing tokens,
until an appropriate token number is reached (measured by the corresponding prediction confidence).
We further introduce the feature and relationship reuse mechanisms to facilitate efficient computation
reuse. Extensive experiments indicate that DVT significantly improves the computational efficiency
on top of the state-of-the-art vision Transformers, both theoretically and empirically.
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Appendix

A Training Details

DeiTP| [35] when these two models are used as backbones, respectively. The training of DVT
follows exactly the same configurations as the backbones, which are also recommended by their
official implementations. The details on optimizer, learning rate schedule, batch size and other
hyper-parameters can be easily found in their papers or code. Note that a number of regularization
and data augmentation techniques are exploited, including RandAugment [7], Random Erasing [58]],
Label Smoothing [32]], Mixup [S5]], Cutmix [S3]], and stochastic depth [24]. We train all the models
with 8 NVIDIA V100 GPUs.

The TE]roposed DVT framework is implemented based on the official code of T2T—ViTE] [52]] and

Table 8: Effects when the location for performing feature reuse varies.

. 1 Exit (7x7) 2™ Exit (10x10)
Ablation Top-1 acc. Top-1 acc. GFLOPs
w/o reuse 70.08 % 73.61% 1.37

Reuse on shallow half of downstream layers 69.67% 75.02% 1.40
Reuse on deep half of downstream layers 69.94% 74.57% 1.40

Reuse on all downstream layers \ 69.44% 75.23% 1.43

Table 9: Effects when the location for performing relationship reuse

varies.
o I*' Exit (7x7) 2" Exit (10x10)
Ablation Top-1 acc. Top-1 acc. GFLOPs
w/o reuse 70.08 % 73.61% 1.37

69.72% 74.89% 1.40
70.00% 73.68% 1.40

69.50% 74.91% 1.41

Reuse on shallow half of downstream layers
Reuse on deep half of downstream layers

Reuse on all downstream layers

Table 10: Effects of taking attention logits from varying upstream layers.

I Exit (7x7) 2™ Exit (10x10)
Top-1 acc.  Top-1 acc. GFLOPs

70.08 % 73.61% 1.37

69.93% 74.67% 1.40
69.55% 74.58% 1.40

Ablation

w/o reuse
Reuse relationships from shallow half of upstream layers
Reuse relationships from deep half of upstream layers

Reuse relationships from all upstream layers ‘ 69.50% 74.91% 1.41

B Additional Results

Which downstream layers benefit more from reuse? To shed light on the layer-wise reuse
paradigm in the downstream model, we test performing feature or relationship reuse only in the
shallow/deep half of downstream layers. The same experimental protocol as ablating the design
of reuse mechanisms is adopted. The results are shown in Tables [§|and [9] Obviously, it is more
important to reuse upstream features/relationships at the shallow layers. This phenomenon indicates
that the main effects of the proposed reuse mechanisms lie in helping the first several transformer
layers to rapidly extract discriminative representations or to learn accurate attention maps. The
successive layers focus more on further improving the shallow features, while less on leveraging
upstream information, which may have been effectively integrated into the shallow layers.

Which upstream layers contribute more to relationship reuse? In Table[I0] we further test only
taking the attention logits from the shallow/deep half of upstream layers in relationship reuse. One
can observe that both shallow and deep relationships are important for boosting the accuracy of the

*https://github. com/yitu-opensource/T2T-ViT
>https://github.com/facebookresearch/deit
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Figure 11: Top-1 accuracy v.s. GFLOPs on CIFAR-10. DVT is implemented on top of T2T-ViT-12/14.
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Figure 12: Top-1 accuracy v.s. GFLOPs on CIFAR-100. DVT is implemented on top of T2T-ViT-
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Figure 13: Top-1 accuracy v.s. throughput on ImageNet. The results are obtained on NVIDIA 2080Ti
GPU with a batch size of 128.

downstream model. In addition, it is interesting that reusing more relationships only slightly improves
the performance. We attribute this to the redundancy within the learned attention logits from different
layers of the upstream model.

Top-1 accuracy v.s. GFLOPs curves on CIFAR-10/100 are presented in Figures|[IT]and[T2] respec-
tively, corresponding to the results reported in Table 3 of the paper.

Top-1 accuracy v.s. throughput curves on ImageNet are presented in Figures|13|corresponding to
the results reported in Table 2 of the paper.

14



	1 Introduction
	2 Related Work
	3 Dynamic Vision Transformer
	3.1 Overview
	3.2 Feature and Relationship Reuse
	3.3 Adaptive Inference

	4 Experiments
	4.1 Main Results
	4.2 Ablation Study
	4.3 Visualization

	5 Conclusion
	A Training Details
	B Additional Results

