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Figure 1: Our method is able to generate diverse shapes with complex structures and topology, fine details, and clean surfaces.

ABSTRACT

This paper presents a new approach for 3D shape generation, en-
abling direct generative modeling on a continuous implicit repre-
sentation in wavelet domain. Specifically, we propose a compact
wavelet representation with a pair of coarse and detail coefficient
volumes to implicitly represent 3D shapes via truncated signed
distance functions and multi-scale biorthogonal wavelets, and for-
mulate a pair of neural networks: a generator based on the diffusion
model to produce diverse shapes in the form of coarse coefficient
volumes; and a detail predictor to further produce compatible detail
coeflicient volumes for enriching the generated shapes with fine
structures and details. Both quantitative and qualitative experimen-
tal results manifest the superiority of our approach in generating
diverse and high-quality shapes with complex topology and struc-
tures, clean surfaces, and fine details, exceeding the 3D generation
capabilities of the state-of-the-art models.

CCS CONCEPTS

« Computing methodologies — Shape analysis; Neural net-
works; Mesh models.
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1 INTRODUCTION

Generative modeling of 3D shapes enables rapid creation of 3D
contents, enriching extensive applications across graphics, vision,
and VR/AR. With the emerging large-scale 3D datasets [Chang
et al. 2015], data-driven shape generation has gained increasing
attention from the research community recently. In general, a good
3D generative model should be able to produce diverse, realistic,
and novel shapes, not necessarily the same as the existing ones.
Existing shape generation models are developed mainly for vox-
els [Girdhar et al. 2016; Yang et al. 2018; Zhu et al. 2017], point

clouds [Achlioptas et al. 2018; Fan et al. 2017; Jiang et al. 2018], and
meshes [Groueix et al. 2018; Smith et al. 2019; Tang et al. 2019; Wang
et al. 2018]. Typically, these representations cannot handle high
resolutions or irregular topology, thus unlikely producing high-
fidelity results. In contrast, implicit functions [Chen and Zhang
2019; Mescheder et al. 2019; Park et al. 2019] show improved per-
formance in surface reconstructions. By representing a 3D shape as
a level set of discrete volume or a continuous field, we can flexibly
extract a mesh object of arbitrary topology at desired resolution.

Existing generative models such as GANs and normalizing flows
have shown great success in generating point clouds and voxels. Yet,
they cannot effectively generate implicit functions. To represent a
surface in 3D, a large number of point samples are required, even
though many nearby samples are redundant. Taking the occupancy
field for instance, only regions near the surface have varying data
values, yet we need huge efforts to encode samples in constant and
smoothly-varying regions. Such representation non-compactness
and redundancy demands a huge computational cost and hinders
the efficiency of direct generative learning on implicit surfaces.

To address these challenges, some methods attempt to sample in
a pre-trained latent space built on the reconstruction task [Chen and
Zhang 2019; Mescheder et al. 2019] or convert the generated implic-
its into point clouds or voxels for adversarial learning [Kleineberg
et al. 2020; Luo et al. 2021]. However, these regularizations can only
be indirectly applied to the generated implicit functions, so they
are not able to ensure the generation of realistic objects. Hence, the
visual quality of the generated shapes often shows a significant gap,
as compared with the 3D reconstruction results, and the diversity
of their generated shapes is also quite limited.

This work introduces a new approach for 3D shape generation,
enabling direct generative modeling on a continuous implicit repre-
sentation in the wavelet frequency domain. Overall, we have three
key contributions: (i) a compact wavelet representation (i.e., a pair
of coarse and detail coefficient volumes) based on biorthogonal



wavelets and truncated signed distance field to implicitly encode
3D shapes, facilitating effective learning of 3D shape distribution
for shape generation; (ii) a generator network formulated based
on the diffusion probabilistic model [Sohl-Dickstein et al. 2015] to
produce coarse coefficient volumes from random noise samples,
promoting the generation of diverse and novel shapes; and (iii) a
detail predictor network, formulated to produce compatible detail
coefficients to enhance the fine details in the generated shapes.

With the two trained networks, we can start from random noise
volumes and flexibly generate diverse and realistic shapes that are
not necessarily the same as the training shapes. Both quantitative
and qualitative experimental results manifest the 3D generation
capabilities of our method, showing its superiority over the state-
of-the-art approaches. As Figure 1 shows, our generated shapes
exhibit diverse topology, clean surfaces, sharp boundaries, and fine
details, without obvious artifacts. Fine details such as curved/thin
beams, small pulley, and complex cabinets are very challenging for
the existing 3D generation approaches to synthesize.

2 RELATED WORK

3D reconstruction via implicit function. Recently, many methods
leverage the flexibility of implicit surface for 3D reconstructions
from voxels [Chen and Zhang 2019; Mescheder et al. 2019], com-
plete/partial point clouds [Liu et al. 2021; Park et al. 2019; Yan et al.
2022], and RGB images [Li and Zhang 2021; Tang et al. 2021; Xu
et al. 2019, 2020]. On the other hand, besides ground-truth field
values, various supervisions have been explored to train the gener-
ation of implicit surfaces, e.g., multi-view images [Liu et al. 2019;
Niemeyer et al. 2020] and unoriented point clouds [Atzmon and
Lipman 2020; Gropp et al. 2020; Zhao et al. 2021]. Yet, the task of
3D reconstruction focuses mainly on synthesizing a high-quality
3D shape that best matches the input. So, it is fundamentally very
different from the task of 3D shape generation, which aims to learn
the shape distribution of a given set of shapes for generating diverse,
high-quality, and possibly novel shapes accordingly.

3D shape generation via implicit function. Unlike 3D reconstruc-
tion, the 3D shape generation task has no fixed ground truth to
supervise the generation of each shape sample. Exploring efficient
guidance for implicit surface generation is still an open problem.
Some works attempt to use the reconstruction task to first learn a
latent embedding [Chen and Zhang 2019; Hao et al. 2020; Ibing et al.
2021; Mescheder et al. 2019] then generate new shapes by decod-
ing codes sampled from the learned latent space. Recently, [Hertz
et al. 2022] learn a latent space with a Gaussian-mixture-based
autodecoder for shape generation and manipulation. Though these
approaches ensure a simple training process, the generated shapes
have limited diversity restricted by the pre-trained shape space.
Some other works attempt to convert implicit surfaces to some
other representations, e.g., voxels [Kleineberg et al. 2020; Zheng
et al. 2022], point cloud [Kleineberg et al. 2020], and mesh [Luo
et al. 2021], for applying adversarial training. Yet, the conversion in-
evitably leads to information loss in the generated implicit surfaces,
thus reducing the training efficiency and generation quality.

In this work, we propose to adopt a compact wavelet represen-
tation for modeling the implicit surface and learn to synthesize it
with a diffusion model. By this means, we can effectively learn to
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generate the implicit representation without a pre-trained latent
space and a representation conversion. The results also show that
our new approach is capable of producing diversified shapes of
high visual quality, exceeding the state-of-the-art methods.

Other representations for 3D shape generation. [Smith and Meger
2017; Wu et al. 2016] explore voxels, a natural grid-based extension
of 2D image. Yet, the methods learn mainly coarse structures and
fail to produce fine details due to memory restriction. Some other
methods explore point clouds via GAN [Gal et al. 2020; Hui et al.
2020; Li et al. 2021], flow-based models [Cai et al. 2020; Kim et al.
2020], and diffusion models [Zhou et al. 2021]. Due to the discrete
nature of point clouds, 3D meshes reconstructed from them often
contain artifacts. This work focuses on implicit surface generation,
aiming at generating high-quality and diverse meshes with fine de-
tails and overcoming the limitations of the existing representations.

Multi-scale neural implicit representation. This work also relates
to multi-scale representations, so we discuss some 3D deep learning
works in this area. [Chen et al. 2021; Chibane et al. 2020; Liu et al.
2020; Martel et al. 2021; Takikawa et al. 2021] predict multi-scale
latent codes in an adaptive octree to improve the reconstruction
quality and inference efficiency. [Fathony et al. 2020] propose a
band-limited network to obtain a multi-scale representation by
restricting the frequency magnitude of the basis functions. Re-
cently, [Saragadam et al. 2022] adopt the Laplacian pyramid to ex-
tract multi-scale coefficients for multiple neural networks. Unlike
our work, this work overfits each input object with an individual
representation for efficient storage and rendering. In contrast to our
work on shape generation, the above methods focus on improving
3D reconstruction performance by separately handling features at
different levels. In our work, we adopt a multi-scale implicit repre-
sentation based on wavelets (motivated by [Velho et al. 1994]) to
build a compact representation for high-quality shape generation.

Denoising diffusion models. These models [Ho et al. 2020; Nichol
and Dhariwal 2021; Sohl-Dickstein et al. 2015; Song et al. 2020]
recently show top performance in image generation, surpassing
GAN-based models [Dhariwal and Nichol 2021]. Very recently, [Luo
and Hu 2021; Zhou et al. 2021] adopt diffusion models for point
cloud generation. Yet, they fail to generate smooth surfaces and
complex structures, as point clouds contain only discrete samples.
Distinctively, we adopt diffusion model with a compact wavelet rep-
resentation to model a continuous signed distance field, promoting
shape generation with diverse structures and fine details.

3 OVERVIEW
Our approach consists of the following three major procedures:

(i) Data preparation is a one-time process for preparing a compact
wavelet representation from each input shape; see Figure 2(a). For
each shape, we sample a signed distance field (SDF) and truncate its
distance values to avoid redundant information. Then, we transform
the truncated SDF to the wavelet domain to produce a series of
multi-scale coefficient volumes. Importantly, we take a pair of coarse
and detail coefficient volumes at the same scale as our compact
wavelet representation for implicitly encoding the input shape.

(ii) Shape learning aims to train a pair of neural networks to learn
the 3D shape distribution from the coarse and detail coefficient
volumes; see Figure 2(b). First, we adopt the denoising diffusion
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Figure 2: Overview of our approach. (a) Data preparation builds a compact wavelet representation (a pair of coarse and detail
coefficient volumes) for each input shape using a truncated signed distance field (TSDF) and a multi-scale wavelet decomposi-
tion. (b) Shape learning trains the generator network to produce coarse coefficient volumes from random noise samples and
trains the detail predictor network to produce detail coefficient volumes from coarse coefficient volumes. (c) Shape generation
employs the trained generator to produce a coarse coefficient volume and then the trained detail predictor to further predict
a compatible detail coefficient volume, followed by an inverse wavelet transform and marching cube, to generate the output

3D shape.

probabilistic model [Sohl-Dickstein et al. 2015] to formulate and
train the generator network to learn to iteratively refine a random
noise sample for generating diverse 3D shapes in the form of the
coarse coefficient volume. Second, we design and train the detail
predictor network to learn to produce the detail coefficient volume
from the coarse coefficient volume for introducing further details
in our generated shapes. Using our compact wavelet representation,
it becomes feasible to train both the generator and detail predictor
to successfully produce coarse coefficient volumes with plausible
3D structures and detail coefficient volumes with fine details.

(iii) Shape generation employs the two trained networks to gen-
erate 3D shapes; see Figure 2(c). Starting from a random Gaussian
noise sample, we first use the trained generator to produce the
coarse coeflicient volume then the detail predictor to produce an
associated detail coefficient volume. After that, we can perform an
inverse wavelet transform, followed by the marching cube opera-
tor [Lorensen and Cline 1987], to generate the output 3D shape.

4 METHOD
4.1 Compact Wavelet Representation

Preparing a compact wavelet representation from an input shape
(see Figure 2(a)) involves the following two steps: (i) implicitly
represent the shape using a signed distance field (SDF); and (ii)
decompose the implicit representation via wavelet transform into
coefficient volumes, each encoding a specific scale of the shape.

In the first step, we scale each shape to fit [-0.45,+0.45]3 and
sample an SDF of resolution 256° to implicitly represent the shape.
Importantly, we truncate the distance values in the SDF to [-0.1, +0.1],
so regions not close to object surface are clipped to a constant. We

denote the truncated signed distance field (TSDF) for the i-th shape
in training set as S;. By using S;, we can significantly reduce the
shape representation redundancy and enable the shape learning
process to better focus on the shape’s structures and fine details.
The second step is a multi-scale wavelet decomposition [Daubechies
1990; Mallat 1989; Velho et al. 1994] on the TSDF. Here, we de-
compose S; into a high-frequency detail coefficient volume and a
low-frequency coarse coefficient volume, which is roughly a com-
pressed version of S;. We repeat this process J times on the coarse
coefficient volume of each scale, decomposing S; into a series of
multi-level coefficient volumes. We denote the coarse and detail co-
efficient volumes at the j-th step (scale) as C{ and D; , respectively,
where j = {1, ..., J}. The representation is lossless, meaning that the
extracted coefficient volumes together can faithfully reconstruct
the original TSDF via a series of inverse wavelet transforms.
There are three important considerations in the data prepara-
tion. First, multi-scale decomposition can effectively separate rich
structures, fine details, and noise in the TSDF. Empirically, we
evaluate the reconstruction error on the TSDF by masking out all
higher-scale detail coefficients and reconstructing S; only from the
coefficients at scale J = 3, i.e., Cl.3 and Dl.3. We found that the re-
constructed TSDF values have relatively small changes from the
originals (only 2.8% in magnitude), even without 97% of the co-
efficients for the Chair category in ShapeNet [Chang et al. 2015].
Comparing Figures 3 (a) vs. (b), we can see that reconstructing only
from the coarse scale of J = 3 already well retains the chair’s struc-
ture. Motivated by this observation, we propose to construct the
compact wavelet representation at a coarse scale (J = 3) and drop
other detail coefficient volumes, i.e., D} and Dl?, for efficient shape
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Figure 3: Reconstructions with different wavelet filters. (a)
An input shape from ShapeNet. (b,c) Reconstructions from
the /=3 coeflicient volumes with biorthogonal wavelets. The
two numbers mean the vanishing moment of the synthe-
sis and analysis wavelets. (d) Reconstruction with the Haar
wavelet.

learning. More details on the wavelet decomposition are given in
the supplementary material.

Second, we need a suitable wavelet filter. While Haar wavelet
is a popular choice due to its simplicity, using it to encode smooth
and continuous signals such as the SDF may introduce serious
voxelization artifacts, see, e.g., Figure 3 (d). In this work, we propose
to adopt the biorthogonal wavelets [Cohen 1992], since it enables
a more smooth decomposition of the TSDF. Specifically, we tried
different settings in the biorthogonal wavelets and chose to use high
vanishing moments with six for the synthesis filter and eight for
the analysis filter; see Figures 3 (b) vs. (c). Also, instead of storing
the detail coefficient volumes with seven channels, as in traditional
wavelet decomposition, we follow [Velho et al. 1994] to efficiently
compute it as the difference between the inverse transformed C{

and C{ lina Laplacian pyramid style. Hence, the detail coefficient
volume has a higher resolution than the coarser one, but both have
much lower resolution than the original TSDF volume (2563).

Last, it is important to truncate the SDF before constructing the
wavelet representation for shape learning. By truncating the SDF,
regions not close to the shape surface would be cast to a constant
function to make efficient the wavelet decomposition and shape
learning. Otherwise, we found that the shape learning process will
collapse and the training loss cannot be reduced.

4.2 Shape Learning

Next, to learn the 3D shape distribution in the given shape set, we
collect coefficient volumes {C{ , Dl.] } from different input shapes
for training (i) the generator network to learn to iteratively remove

noise from a random Gaussian noise sample to generate C{ ; and

(ii) the detail predictor network to learn to predict D{ from Ci] to
enhance the details in the generated shapes.

Network structure. To start, we formulate a simple but efficient
neural network structure for both the generator and detail predictor
networks. The two networks have the same structure, since they
both take a 3D volume as input and then output a 3D volume of
same resolution as the input. Specifically, we adopt a modified 3D
version of the U-Net architecture [Nichol and Dhariwal 2021]. We
first apply 3D convolution to progressively compose and down-
sample the input into a set of multi-scale features and a bottleneck
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feature volume. Then, we apply a single self-attention layer to ag-
gregate features in the bottleneck volume, so that we can efficiently
incorporate non-local information into the features. Further, we
upsample and concatenate features in the same scale and progres-
sively perform an inverse convolution to produce an output of same
size as the input. Note also that for all convolution layers in the
network structure, we use a filter size of three with a stride of one.

Modeling the generator network. We formulate the 3D shape
generation process based on the denoising diffusion probabilistic
model [Sohl-Dickstein et al. 2015]. For simplicity, we drop the sub-
script and superscript in C{ , and denote {Cy, ..., Ct} as the shape

generation sequence, where Cy is the target, which is C{ ;Crisa
random noise volume from the Gaussian prior; and T is the total
number of time steps. As shown on top of Figure 2(b), we have
(i) a forward process (denoted as q(Co.7)) that progressively adds
noises based on a Gaussian distribution to corrupt Cy into a random
noise volume; and (ii) a backward process (denoted as pg(Co.T))
that employs the generator network (with network parameter ) to
iteratively remove noise from Cr to generate the target. Note that
all 3D shapes {Cy, ..., Ct} are represented as 3D volumes and each
voxel value is a wavelet coefficient at its spatial location.

Both the forward and backward processes are modeled as Markov
processes. The generator network is optimized to maximize the
generation probability of the target, i.e., pg(Cp). Also, as suggested
in [Ho et al. 2020], this training procedure can be further simplified
to use the generator network to predict noise volume €y. Hence,
we adopt a mean-squares loss to train our framework:

Ly = Ercyellle — eg(Cr,1)1*], € ~ N (0, D), (1)

where ¢ is a time step; € is a noise volume; and N (0,I) denotes
a unit Gaussian distribution. In particular, we first sample noise
volume € from a unit Gaussian distribution N (0,I) and a time step
t € [1,..,T] to corrupt Cp into C;. Then, our generator network
learns to predict noise € based on the corrupted coeflicient vol-
ume C;. Further, as the network takes time step t as input, we
convert value t into an embedding via two MLP layers. Using this
embedding, we can condition all the convolution modules in the
prediction and enable the generator to be more aware of the amount
of noise contaminated in C;. For more details on the derivation of
the training objectives, please refer to the supplementary material.

Detail predictor network. With the trained generator, we can
obtain diverse and good-quality coarse coefficient volumes, i.e.,
Co. Next, we train the detail predictor network to produce detail
coefficient volume Dy from Cy (see the bottom part of Figure 2(b)),
so that we can further enhance the details in our generated shapes.

To train the detail predictor network, we leverage the paired
coefficient volumes {Cl] , D{ } from the data preparation. Impor-
tantly, detail coefficient volume Dy should be highly correlated to
coarse coefficient volume Cy. Hence, we pose detail prediction as a
conditional regression on the detail coefficient volume, aiming at
learning neural network function f : Co — Dg; hence, we optimize
f via a mean squared error loss. Overall, the detail predictor has
the same network structure as the generator, but we include more
convolution layers to accommodate the cubic growth in the number
of nonzero values in the detail coefficient volume.
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Figure 4: Gallery of our generated shapes: Table, Chair, Cabinet, and Airplane (top to bottom). Our shapes exhibit complex
structures, fine details, and clean surfaces, without obvious artifacts, compared with those generated by others; see Figure 5.

4.3 Shape Generation

Now, we are ready to generate 3D shapes. First, we can randomize
a 3D noise volume as Cr from the standard Gaussian distribution.
Then, we can employ the trained generator for T iterations to pro-
duce Cy from Cr. This process is iterative and inter-dependent. We
cannot parallelize the operations in different iterations, so leading
to a very long computing time. To speed up the inference process,
we adopt an approach in [Song et al. 2020] to sub-sample a set
of time steps from [1, ..., T] during the inference; in practice, we
evenly sample 1/10 of the total time steps in all our experiments.

After we obtain the coarse coefficient volume Cy, we then use the
detail predictor network to predict detail coefficient volume Dy from
Cop. After that, we perform a series of inverse wavelet transforms
from {Cp, Do} at scale J=3 to reconstruct the original TSDF. Hence,
we can further extract an explicit 3D mesh from the reconstructed
TSDF using the marching cube algorithm [Lorensen and Cline 1987].
Figure 2(c) illustrates the shape generation procedure.

4.4 Implementation Details

We employed ShapeNet [Chang et al. 2015] to prepare the training
dataset used in all our experiments. Following the data split in [Chen
and Zhang 2019], we use only the training split to supervise our
network training. Also, similar to [Hertz et al. 2022; Li et al. 2021;
Luo and Hu 2021], we train a single model for generating shapes of
each category in the ShapeNet dataset [Chang et al. 2015].

We implement our networks using PyTorch and run all experi-
ments on a GPU cluster with four RTX3090 GPUs. We follow [Ho
etal. 2020] to set {#;} to increase linearly from 1e~* to 0.02 for 1,000
time steps and set o; = 11_5051;1 Bi. We train the generator for 800,000
iterations and the detail predictor for 60,000 iterations, both using
the Adam optimizer [Kingma and Ba 2014] with a learning rate
of 1¢™%. Training the generator and detail predictor takes around

three days and 12 hours, respectively. The inference takes around
six seconds per shape on an RTX 3090 GPU. We adapt [Cotter 2020]
to implement the 3D wavelet decomposition and will release our
code and training data upon the publication of this work.

5 RESULTS AND EXPERIMENTS

5.1 Galleries of our generated shapes

Besides Figure 1, we present Figure 4 to showcase the compelling
capability of our method on generating shapes of various categories.
Our generated shapes exhibit diverse topologies, fine details, and
also clean surfaces without obvious artifacts, covering a rich vari-
ety of small, thin, and complex structures that are typically very
challenging for the existing approaches to produce. More 3D shape
generation results are provided in the supplementary material.

5.2 Comparison with Other Methods

Next, we compare the shape generation capability of our method
with four state-of-the-art methods: IM-GAN [Chen and Zhang
2019], Voxel-GAN [Kleineberg et al. 2020], Point-Diff [Luo and Hu
2021], and SPAGHETTI [Hertz et al. 2022]. To our best knowledge,
ours is the first work that generates implicit shape representations
in frequency domain and considers coarse and detail coefficients to
enhance the generation of structures and fine details.

Our experiments follow the same setting as the above works.
Specifically, we leverage our trained model on the Chair and Air-
plane categories in ShapeNet [Chang et al. 2015] to randomly gen-
erate 2,000 shapes for each category. Then, we uniformly sample
2,048 points on each generated shape and evaluate the shapes using
the same set of metrics as in the previous methods (details to be pre-
sented later). As for the four state-of-the-art methods, we employ
publicly-released trained network models to generate shapes.
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Table 1: Quantitative comparison between the generated shapes produced by our method and four state-of-the-art methods.
We follow the same setting to conduct this experiment as in the state-of-the-art methods. From the table, we can see that our
generated shapes have the best quality for almost all cases (lowest MMD, largest COV, and lowest 1-NNA) for both the Chair
and Airplane categories. The units of CD and EMD are 103 and 1072, respectively.

Method

Chair
COoVv MMD
CD EMD CD EMD

1-NNA

CD

EMD

Cov

CD

EMD

Airplane
MMD
CD EMD

1-NNA
CD EMD

IM-GAN [Chen and Zhang 2019]

56.49 5450 11.79 14.52

61.98

63.45

61.55

62.79

3.320 8.371 76.21 76.08

Voxel-GAN [Kleineberg et al. 2020]

4395 3945 15.18 17.32

80.27

81.16

38.44

39.18

5.937 11.69 93.14 92.77

Point-Diff [Luo and Hu 2021]

51.47 55.97 12.79 16.12

61.76

63.72

60.19

62.30

3.543 9.519 74.60 72.31

SPAGHETTI [Hertz et al. 2022]

49.19 5192 1490 15.90

70.72

68.95

58.34

58.38

4.062 8887 7824 77.01

Ours | 58.19 5546 11.70

14.31

61.47 61.62| 64.78 64.40 3.230 7.756 71.69 66.74
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Figure 5: Visual comparisons with state-of-the-art methods.
Our generated shapes exhibit finer details and cleaner sur-
faces, without obvious artifacts.

Evaluation metrics. Following [Hertz et al. 2022; Luo and Hu
2021], we evaluate the generation quality using (i) minimum match-
ing distance (MMD) measures the fidelity of the generated shapes;
(ii) coverage (COV) indicates how well the generated shapes cover
the shapes in the given 3D repository; and (iii) 1-NN classifier ac-
curacy (1-NNA) measures how well a classifier differentiates the
generated shapes from those in the repository. Overall, a low MMD,
a high COV, and an 1-NNA close to 50% indicate good generation
quality. More details are provided in the supplementary material.

Quantitative evaluation. Table 1 reports the quantitative com-
parison results, showing that our method surpasses all others for
almost all the evaluation cases over the three metrics for both the
Chair and Airplane categories. We employ the Chair category, due
to its large variations in structure and topology, and the Airplane
category, due to the fine details in its shapes. As discussed in [Luo

and Hu 2021; Yang et al. 2019], the COV and MMD metrics have
limited capabilities to account for details, so they are not suitable
for measuring the fine quality of the generation results, e.g., the
generated shapes sometimes show a better performance even when
compared with the ground-truth training shapes on these metrics.
In contrast, 1-NNA is more robust and can better correlate with
the generation quality. In this metric, our approach outperforms all
others, while having a significant margin in the Airplane category,
manifesting the diversity and fidelity of our generated results.

Qualitative Evaluation. Figure 5 show some visual comparisons.
For each random shape generated by our method, we find a similar
shape (with similar structures and topology) generated by each of
the other methods to make the visual comparison easier. See sup-
plementary material Sections B and D for more visual comparisons.
Further, as different methods likely have different statistical modes
in the shape generation distribution, we also take random shapes
generated by IM-GAN and find similar shapes generated by our
method for comparison; see supplementary material Section C for
the results. From all these results, we can see that the 3D shapes
generated by our method clearly exhibit finer details, higher fidelity
structures, and cleaner surfaces, without obvious artifacts.

5.3 Model Analysis

Shape novelty analysis. Next, we analyze whether our method
can generate shapes that are not necessarily the same as the training-
set shapes, meaning that it does not simply memorize the training
data. To do so, we use our method to generate 500 random shapes
and retrieve top-four most similar shapes in the training set sep-
arately via two different metrics, i.e., Chamfer Distance (CD) and
Light Field Distance (LFD) [Chen et al. 2003]. It is noted that LFD is
computed based on rendered images from multiple views on each
shape, so it focuses more on the visual similarity between shapes
and is considered to be more robust for shape retrieval. For the
details on the metrics, please see the supplementary material.

Figure 6 (top) shows a shape generated by our method, together
with top-four most similar shapes retrieved from the training set
by CD and LFD; due to the page limit, another ten examples are
shown in the supplementary material. Comparing our shapes with
the retrieved ones, we can see that the shapes share similar struc-
tures, showing that our method is able to generate realistic-looking



Neural Wavelet-domain Diffusion for 3D Shape Generation

f\
\\ -~
\ CD Query
Generated
Shape

Most similar shapes retrieved from training set

LFD Query

.S

The Light Field Distance (LFD) Distribution of Our Generated Shapes

Shape at 20 Percentile

1 1
hall) o

V!

1000

o 8
L5 R
E Shape at 50t Percentile
c
©
=) -
5 R = v
3 Q . N
= N
=y
w 3 N "
4 g Shape at 90t Percentile Shape at 80t Percentile
-y
o l | D
=1 |
R \\ =
10 20
Frequency

Figure 6: Shape novelty analysis. Top: From our generated
shape (in green), we retrieve top-four most similar shapes
(in blue) in training set by CD and LFD. Bottom: We gener-
ate 500 chairs using our method; for each chair, we retrieve
the most similar shape in the training set by LFD; then, we
plot the distribution of LFDs for all retrievals, showing that
our method is able to generate shapes that are more similar
(low LFDs) or more novel (high LFDs) compared to the train-
ing set. Note that the generated shape at 50th percentile is
already not that similar to the associated training-set shape.

structures like those in the training set. Beyond that, our shapes
exhibit noticeable differences in various local structures.

As mentioned earlier, a good generator should produce diverse
shapes that are not necessarily the same as the training shapes. So,
we further statistically analyze the novelty of our generated shapes
relative to the training set. To do so, we use our method to generate
500 random chairs; for each generated chair shape, we use LFD to
retrieve the most similar shape in the training set. Figure 6 (bottom)
plots the distribution of LFDs between our generated shapes (in
green) and retrieved shapes (in blue). Also, we show four shape
pairs at various percentiles, revealing that shapes with larger LFDs
are more different from the most similar shapes in the training set.
From the LFD distribution, we can see that our method can learn a
generation distribution that covers shapes in the training set (low
LFD) and also generates novel and realistic-looking shapes that are
more different (high LFD) from the training-set shapes.

Table 2: Comparing our full pipeline with various ablated
cases on the Chair category. The units of CD and EMD are
1073 and 1072, respectively.

Ccov 1 MMD|  1-NNA |
Method CD EMD CD EMD CD EMD
Full Model 58.19 55.46 11.70 14.31 61.47 61.62
W/o detail predictor | 54.20 50.96 12.32 14.54 62.46 62.57
VAD Generator 21.83 26.77 21.83 26.77 95.20 93.62
Direct predict TSDF | 50.51 50.67 12.83 15.24 68.69 68.29

Ablation Study. To evaluate the major components in our method,
we conducted an ablation study by successively changing our full
pipeline. First, we evaluate the generation performance with/without
the detail predictor. Next, we study the importance of the diffusion
model and the wavelet representation in the generator network.

The results in Table 2 demonstrate the capability of the detail
predictor, which introduces a substantial improvement on all met-
rics (first vs. second rows). Further, replacing our generator with
the VAD model or directly predicting TSDF leads to a performance
degrade (second & last two rows). Due to the page limit, please refer
to the supplementary material for the details on how the ablation
cases are implemented and the visual comparison results.

Limitations. Due to the page limit, please refer to Section K of
the supplementary material for the discussion on limitations.

6 CONCLUSION

This paper presents a new generative approach for learning 3D
shape distribution and generating diverse, high-quality, and pos-
sibly novel 3D shapes. Unlike prior works, we operate on the fre-
quency domain. By decomposing the implicit function in the form
of TSDF using biorthogonal wavelets, we build a compact wavelet
representation with a pair of coarse and detail coefficient volumes,
as an encoding of 3D shape. Then, we formulate our generator upon
a probabilistic diffusion model to learn to generate diverse shapes
in the form of coarse coefficient volumes from noise samples, and a
detail predictor to further learn to generate compatible detail coeffi-
cient volumes for reconstructing fine details. Both quantitative and
qualitative experimental results demonstrate the superiority of our
method in generating diverse and realistic shapes that exhibit fine
details, complex and thin structures, and clean surfaces, beyond the
generation capability of the state-of-the-art methods.

To our best knowledge, this is the first work that successfully
adopts a compact wavelet representation for an unconditional gen-
erative modeling on 3D shape generation, enabling many directions
for future research. At first glance, our benefits can be extended
to other downstream tasks with extra conditions, e.g., shape re-
construction from images or point clouds, and shape editing with
user inputs. Another promising future direction is to adopt wavelet-
based 3D generation to animation production, e.g., generating se-
quences of character motion with spatio-temporal wavelet represen-
tations. Also, we would like to explore more challenging cases, e.g.,
objects with extremely fine details and generation of 3D scenes.
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