Einstein summation for multi-dimensional arrays *

Krister Ahlander

Abstract

One of the most common data abstractions, at least in scientific comput-
ing, is the multi-dimensional array. A numerical algorithm may sometimes
conveniently be expressed as a generalized matrix multiplication, which com-
putes a multi-dimensional array from two other multi-dimensional arrays. By
adopting index notation with the Einstein summation convention, an elegant
tool for expressing generalized matrix multiplications is obtained. Index no-
tation is the succinct and compact notation primarily used in tensor calculus.

In this paper, we develop computer support for index notation as a domain
specific language. Grammar and semantics are proposed, yielding an unam-
biguous interpretation. An object-oriented implementation of a C4++ library
that supports index notation is described.

A key advantage with computer support of index notation is that the
notational gap between a mathematical index notation algorithm and its im-
plementation in a computer language is avoided. This facilitates program con-
struction as well as program understanding. Program examples that demon-
strate the resemblance between code and the original mathematical formula-
tion are presented.

Key words: Index notation, domain specific language, tensor calculus

1 Introduction

Multi-dimensional arrays are used extensively in scientific computing, for several
purposes. If we oversimplify software that simulates partial differential equations,
multi-dimensional arrays are used for the following tasks:

1. Representing the computational domain as a discrete grid. In much the same
way as each point in space can be represented by its continuous coordinates,
each discretization point in a structured grid can be indexed with one, two, or
three indices, depending on the number of space dimensions. Thus, a proper
data structure for a structured grid is an array with up to three indices.

2. Representing components of physical quantities. A velocity vector, for in-
stance, can be represented as a one-dimensional array, with one, two or three
components, depending on the spatial dimension. Physical quantities which
require more than one index also occur frequently in applications. One ex-
ample is the stress tensor, where two indices are needed to access a specific

*Research funded via a grant from the Norwegian research council. Email: krister@ii.uib.no

component. These quantities may also vary over the computational domain,
which requires the data structures to be arrays of arrays, one array referring
to the physical quantity and one array referring to the discretization. See for
instance [3] for a discussion on these abstractions.

3. Expressing linear systems of equations, as matrix vector multiplications, usu-
ally denoted Ax = b. A is here a matrix, representable as an array with two
indices, and the unknown z and the right hand side b are vectors, which can
be represented as one-dimensional arrays.

Since arrays are so frequently used in scientific computing, software support for ar-
rays is very high in programming languages for scientific computing, for instance
in Fortran 90 and subsequent versions. Also in C++, several array libraries exist,
for instance A++/P++, Pooma, Blitz++ [7, 10, 14]. These libraries allows the
programmer, in the same way as Fortran 90 does, to refer to whole (sub)arrays
and not necessarily to individual components. The first advantage with this is that
the notation becomes more compact, since one no longer has to loop explicitly over
individual indices. Still, we believe that the biggest advantage is not the compact-
ness, but the increased resemblance with the language of the problem domain. This
becomes even more explicit when we raise the abstraction level to matrix algebra.
Languages such as Matlab support matrix multiplication, which allows algorithms
to be coded in a way that resembles the original matrix algebra formulation to a
very high degree.

However, even if the last decade’s development of appropriate software abstrac-
tions for scientific computing has been significant, it is often the case that the most
natural abstractions from the problem domain are not utilized. Instead one often has
to, very early in the implementation process, restate the problem to suit abstrac-
tions in the implementation domain. For example, in order to formulate a linear
equation system out of a discretized partial differential equation, multi-dimensional
quantities that actually belong to categories 1 and 2 above are often transformed into
two-dimensional matricis and one-dimensional vectors of category 3. Even though
this process normally works, one may lose information in the reformulation.

In some cases, the reformulation can be avoided with index notation as used in
tensor calculus, because index notation offers a powerful way of expressing general-
ized matrix multiplications [8]. Index notation is a convenient way to express and
manipulate multi-indexed quantities, including tensors. In its general form, these
quantities are indexed with both upper and lower indices!. The compactness of
index notation is due to two conventions, the range convention and the Einstein
summation convention. Briefly speaking, the range convention implies that “free”
indices shall loop over all values in a clearly understood range. The Einstein summa-
tion convention was introduced by Einstein 1916, see [6]. It implies that whenever
an index in a term is repeated, once as a superindex and once as a subindex, a
summation over that index is understood. With these conventions, matrix vector
multiplication can be written

b= Al (1)

!There is an underlying physical/mathematical motivation to use both upper and lower indices
for tensors, namely to distinguish so called covector components from vector components. See
e.g. [12] for more details. For the present exposition, this is not relevant.

Here, the “matrix” A has one upper and one lower index, and the “column vectors”
x and b use a superindex. The summation convention implies summation over j,
whereas ¢ varies over its index range, in accordance with the range convention.
Compared with matrix algebra, a small advantage with index notation is that the
multiplication order is not critical, as it is for matrix algebra. However, the real
power of index notation is released when the number of indices increase. Consider,
for instance, transformation of a tensor E with two upper and two lower indices,
given a transformation matrix A with components A;:

Eij = N M AN B (2)

With some practice of using index notation, it is easy to interpret this expression.
The indices i, j, k and [are free indices, whereas m, n, p and ¢ are summation indices.
It is cumbersome to express this transformation with matrix algebra, let alone the
difficulties of representing £ at all!

Equations such as (2) are frequent in tensor calculus, the mathematics used
for instance for relativity and differential geometry. We stress that the task of
supporting index notation is motivated not only by its abilities to support generalized
matrix multiplications, but it is also highly motivated by its enormous usefulness
for tensor calculus, see for instance [9, 12].

In this paper, we define a domain specific language for index notation, and we
report on its implementation as a C++ library. In order to lay a firm foundation
for this task, we have studied possible index notation ambiguities and limitations.
There actually exist a few different interpretations of index notation. In practice, the
expressions used in tensor calculus are often quite simple, and the differences between
different interpretations do not become visible. It is, however, utterly important
that the notation is uniform and unambiguous, in order to support the notation in
a computer language. To this end, we develop grammar and semantics for index
notation. We find that expressions written in this language obey usual associative
and commutative rules for summation and multiplication. Index notation support
has also been investigated in [4], where a preprocessor for a less general version of
index notation, intended for computer graphics, is described.

The remainder of this paper is outlined as follows. In Section 2, we present some
challenges for the notation, situations where different index notation descriptions
may yield different interpretations. Specifically, we compare with [4]. In Section 3,
we develop an index notation grammar and describe its semantics. We note that
the usual mathematical rules for summation and multiplication are supported. In
Section 4, we outline our object-oriented design and implementation, and we provide
some code samples. In the concluding remarks, we also point at some future work.

2 Challenges for index notation

In the the same manner as in the above introduction, index notation and the Einstein
summation convention are often described rather intuitively in the literature, see
for instance [1, p. 338] or [12, p. 56]. This is usually good enough for humans,
but in order to develop software support for the notation, we need to study the
notation more carefully. In this subsection we illustrate some cases where different
authors may interpret index notation differently, and we motivate our interpretation

choices. Our interpretation is to a high extent based on Papastavridis [9], the most
comprehensive description of index notation that we have encountered. We also
compare with Barr [4]. Barr states simple and concise rules for index notation, but
he does not distinguish between upper and lower indices. Also, as discussed below,
we believe his rules to be more restrictive than necessary.

The following equations represent a number of situations where different descrip-
tions of index notations may yield different interpretations.

a; = b; (3)
a = b+ (4)
a; = b (5)
a = U (6)
a = bede (7)
a; = b;+4. (8)

Equation (3) is probably a typo. A human can easily detect this, perhaps re-
placing the equation with a; = b;, making more sense. Software for index notation
must of course be employed with error detection mechanisms.

Equation (4) might be a typo as well. In a physics context, it might be strange
to add two tensors where the indices are placed differently. Barr does not address
this issue, since he does not distinguish upper and lower indices, but Papastavridis’
range convention allows it. This is also our choice. ‘

Equation (5) could, according to some definitions, be interpreted as a; = 3=, b;-.
However, this is probably not the intention. It is more likely that one wants to treat
the diagonal elements of the “matrix” as a “vector”. In order to explicitly suppress
summation, many authors provide additional notation. One common alternative is
textual information in the margin, which is not well suited for software support.
Another possible solution is a “no-sum” operator, suggested by Barr [4]. Yet an
alternative, advocated for instance by Papastavridis [9], is to suppress summation
by putting parentheses around a repeated index which is not a summation index.
The latter alternatives are possible to support with software, but is it really needed?
The range convention that Papastavridis describes does actually, for equation (5),
suppress the summation without need of additional information. We find that as
long as we deal with assignments, additional “no sum” notation is not needed. This
is demonstrated by equation (6). In standard treatments, it would be interpreted
as >.; at = Y, bt. But if we regard the statement as an assignment, a summation on
the left hand side makes no sense. It is reasonable to modify the conventions so that
summation is always suppressed on the left hand side. The expression is then read
Vi :al = bi.

Summation convention definitions do sometimes state that summation is un-
derstood for indices repeated ezactly twice, e.g. [4, 6, 12]. In practice, this is the
kind of summations that most often arise in tensor calculus. Barr argues that this
restriction is needed to maintain associativity, since generally (3, b'c;)(3; die?) #
(3;0'd;) (X cie?). Therefore, he rules out equation (7). But Bolton, [5], provides
examples where summation is understood over an index repeated thrice. Papas-
tavridis also acknowledges that summation over indices repeated more than twice
does arise, but he keeps the summation sign for these cases, writing equation (7) as

a=3,;bcdie [9, p. 11]. Summation over multiply repeated indices is the interpre-
tation we support, and we claim that no associativity problems occur.

Our last example, equation (8), is simple for humans to interpret. But suppose
that one, as Barr does, imposes a restriction that addition is allowed only between
terms whose indices match exactly. Even though the restriction seems plausible, it
actually invalidates the assignment. To address this complication, Barr introduces
the notion of an “indexed constant”, and requires equation (8) to be written a; =
b; +4;. Our interpretation of index notation, as described in the next section, allows
terms to be added as long as one without ambiguity can bind all indices. Not only is
equation (8) valid, but also more complicated expressions such as a; = bi+6}+d§j +4.
We also interpret a = b7(c¢; + d;), which has the same effect as a = V¢; + b d;.

3 Formalizing the index notation

In order to develop software for the index notation, it is important that the notation
is consise, unambiguous, and not overly restrictive. In this section, we suggest a
grammar for index notation, and we provide an interpretation of this grammar. We
also note that tensor expressions written in this way obey the usual mathematical
rules for summation and multiplication.

The grammar definitions below provide a syntax for the expressions we can for-
mulate. Here and subsequently, we will use the term “tensor” for quantities that
actually are multi-indexed arrays?.

V:i= alblc // tensor variables
I::= 1] 3j1%k... // index variables

L::= 0 |LI // list

T ::= V(,L) // tensor expression atom
X ::= T | XX | XX | (X) // tensor expression

A ::= T=X // assignment

We assume the usual precedence for addition, multiplication and expressions in
parentheses. () is an empty list.

To formulate interpretation algorithms, we will frequently use sets and pair of
sets. Therefore, we introduce some auxiliary definitions:

S The space of all sets of the index variables: S = P({[1,],k,...]})

For the cartesian product space S x S, we define union and intersection as

(ul, ll) U (Uz, lz) = (Ul U Ua, ll U lg)
(Ul, ll) N (Ug, lg) == (Ul N Uog, ll N lg)

Reduction operators LI, : S x & — S are defined as

U(u,l) =uwUl, M(u,l) =unl.

To avoid drowning in details, we will omit a rigorous description of how an
index i belongs to a certain range, but we will assume that the range is clearly

2Strictly speaking, a multi-indexed array is not a tensor, but every tensor may be represented
in a chosen basis as an array with two multi-indices.

understood. Consequently, if an expression is interpreted as Vs : A where
s € 8, it is a shorthand for the following: For all (integer) values of all indices
i € s, execute statement A. Similarly, summation over s € S, >, x, means
that all indices in the set s shall take all values in their respective range, and
the resulting values x which depends on the values of the indices in s shall
be summed together. Summation over an empty set is defined to yield the
expression summed over, that is > gz = .

We are now ready to define semantics and auxiliary functions:

The A function generates a set from a list: A : L — S.

ALI] = AL]u[I].

[v(u,1)] : T — “math” indicates a tensor component v}* for the tensor variable
v = [v], according to the values of the indices in the upper multi-index u = [u]
and the lower multi-index [= [1]. An attempt to evaluate this expression when
the indices in [u] and [1] are not bound is an error (cf. Definition 1 below).

The ¢ function generates a pair of sets from an expression. ¢ : X — § X S.

olv(w,)] = (Alu], AlR])
¢lab] = ¢[a] U ¢[p]
¢la+b] = ¢[a] N o[b]
olla)] = ¢la].
The ¢ function generates a summation set from an expression. € : X — S.
efz] = Nola].
The E function evaluates an expression, given a set of bound variables. E: X, § —
“math”.
E(v(w1)],s) = > [v(w1)]
efv(u,1)]\s
E([ab],s) = > E([a],sUe[ab])E([b],sUe[ab])
efab]\s
E(la+b],s) = > (E([a],sUe[a+Db])+ E([b],s Ue[a+b])
e[a+b]\s

E([@)],5) = E([a],s).

The sem function generates a mathematical expression from an assignment: sem :
A — “math”.

sem[v(u,1) = x] = Y(Uo[v(u,1)]): v = E(z,e[v(u,1)]).

(Special care has of course to be taken when the tensor to be assigned to is
also present on the right hand side. To keep the presentation simple, we omit
these details, but our implementation do treat this case as well.)

Finally, we note that an expression is valid only if its interpretation binds all
index variables when a specific component is referred to. This rules out assignments
such as (3).

Definition 1 An invalid expression is an expression where the described algorithm
leads to an attempt to evaluate E([v(u,1)], s) when Up[v(u,1)] ¢ (e]v(u,1)] U s).

It is interesting to study the implications of the grammar and its semantics.
In [2], this is done more rigorously. Here, we just note that the familiar mathematical
relations for addition and multiplication holds:

E(Ja+b],s) = E([b+a],s) 9)
E([ab],s) = E([ba],s) (10)
E([(a+b)+c],s) = E([a+ (b+c)],s) (11)
E([(ab)e],s) = E([a((12)

I.s) (I (13)

a(be)], s)
ab + ac], s).

I
m

Our conjecture is that tensor expressions have the properties of a commutative ring.

4 Programming with index notation

In the previous section, we developed a grammar for index notation as a domain
specific language. We have implemented support for index notation as a C++
class library. This allows users to program directly with index notation, avoiding
a notational gap between index notation and standard array or matrix packages.
Compared to a preprocessor step, type safety is increased. In this section, we sketch
our object-oriented design and implementation. We also give program examples,
demonstrating the usefulness of the notation.

4.1 An object-oriented implementation

It is natural to use object-orientation in order to implement software support for
index notation, since we can introduce new data types as classes. We find that
C++ is suitable for our purposes. A crucial point is that C++ allows operator
overloading, necessary in order to obtain code that resembles the original notation.

Inspecting our previous sections, a number of class abstractions are easily found,
for instance index, multi-index, tensor, tensor expression, tensor summation, tensor
product. Figure 1 illustrates the relation between these abstractions. The classes
are summarized below.

An Index represents an index with an explicit identity. An Index can be either in
the state free or bound. A loop over a free index binds the index and loops
over all the values in a specific range. For example, we may declare?

EinIndex I(0,2);

3In our implementation, we prefix all classes with Ein, honoring Einstein as the summation
convention inventor.

2 | Expression

Tensor
2 1
Product Summeation Atom
upper lower
Index n Multilndex

Figure 1: The key structure in the design is an expression tree, as outlined in this
class diagram. Product, Summation, and Atom inherits Expression. Expression
is a recursive aggregate [11] because Product and Summation are binary operators,
having two Expression as operands. Each Atom in the expression tree is connected
to one Tensor and two Multi-indices, one for the upper indices and one for the
lower.

This declaration yields an index I ranging from 0 to 3. A loop over a bound
index executes only over its current value.

A Multi Index contains a list of Indices. In order to facilitate the construction of
Multi Indices, we have overloaded operator|, to construct Multi Indices
from Indices. Thus, given three indices I, J and K, we can declare

EinMultiIndex M = I|JI|KI|I;

as a Multi Index that holds three Indices, one Index repeated twice. A loop
over a Multi Index yields a nested loop over its Indices.

A Tensor is what was called a tensor variable in the grammar. The reason for the
name change is that declaration of tensors becomes more appealing. Given
Indices I, J and K, we may declare a tensor with two upper indices and one
lower index as

EinTensor T(I|J,K);

Note that we do not overload the usual arithmetic operators to take Ten-
sor arguments, because the grammar does not provide arithmetics for tensor
variables. Instead, the arithmetic operators operate on tensor expressions.

An Expression is the base class for tensor expressions. Since all tensor expressions
have the same properties, inheritance is natural. The E function of Section 3

assigns

:Product

right

Figure 2: This instance diagram shows objects and necessary relations between
them, representing equation (1).

is declared as eval() in the base class, deferring its implementation to sub
classes.

Product and Summation have two operands which are Expressions. These objects
are created via arithmetic operators that take Expressions as arguments, thus
building expression trees. We have also implemented inheritors for Subtrac-
tion and Unary Minus. The expression tree is automatically built with the
correct operator precedence [13, Section r.5].

Atoms are the leaves of the expression tree. Atoms are generated by Tensor::
operator (), taking two multi-indices as arguments. For example, T(I|I,K)
would represent T}, assuming proper declarations. In accordance with the
grammar, operator= is implemented for Atoms.

The interpretation of index notation expressions is mainly done in the assignment
operator of Atoms and in the eval () method of Expressions, as illustrated in Fig. 2.
The instance diagram shows relevant associations between objects that carry out a
multiplication (1). Written in code, the assignment would be

b(I,PHI) = A(I,J)*c(J,PHI);

Here, PHI is an empty Multi Index, b, A and c are Tensors and I and J are Indices.
The Atom object associated with b loops over I, assigning the components of b the
real value computed by Product.eval(). This value is for each value of I computed
as a sum over J. Each term in this sum is computed as the product of the real values
returned by the operands’ eval () method.

4.2 Application examples

We have developed various test programs to confirm that the index notation is
interpreted as intended, both with respect to the challenging equations (3) to (8)

of Section 2 and with respect to properties (9) to (13) of Section 3. We have also
developed a few example programs demonstrating the usefulness of index notation,
for instance coordinate transformations (2), computation of cross products, and
numerical quadrature for multi-dimensional domains, discretized with structured
grids. In this presentation, we show a routine that given three linearly independent
vectors constructs an orthonormal base, i.e., a base where the basis vectors are
mutually orthogonal and of length one.

We use the well-known Gram-Schmidt algorithm, which transforms the vectors
a, b, c into an orthonormal base with respect to a metric g;; as follows:

1
ak = 70,]{

\/ gijatal

Vo= bk—gijaibjak

po— —
\/ 9ib' 07
&d o= - gl-jaicjak — gijbicjbk

1
Ck = 7616.

\/gijCiCj

Note that the algorithm actually is not supported by the grammar. The compli-
cation is that the expressions under the root signs are understood to be evaluated
independently. In our implementation, this is taken care of by the type convert-
ing system. The following code is therefore very close to the original mathematical
notation:

void GramSchmidt(const EinTensor &G, // Metric is (0,2) tensor

EinTensor &a, // (1,0) tensor assumed
EinTensor &b, // "
EinTensor &c) // "

EinIndex I(3), J(3), K(3); // Indices in the range [0..2]

a(K,FI) = 1/sqrt(G(FI,I|J)*a(I,FI)*a(J,FI))*a(K,FI);
b(X,FI) = b(X,FI) - (G(FI,I|J)*a(I,FI)*b(J,FI))*a(K,FI);
b(X,FI) = 1/sqrt(G(FI,I|J)*b(I,FI)*b(J,FI))*b(K,FI);

c(K,FI) = c(X,FI) - (G(FI,I|J)*a(I,FI)*c(J,FI))*a(X,FI)
- (G(FI,I|J)*b(I,FI)*c(J,FI))*b(K,FI);
c(X,FI) = 1/sqrt(G(FI,I|J)*c(I,FI)*c(J,FI))*c(X,FI);

5 Concluding remarks

We have developed software that supports index notation, which is used in tensor
calculus. Index notation can also be used for manipulating multi-indexed arrays
in general. It has long been a useful tool for many mathematical and physical
disciplines, for instance differential geometry and relativity. Since many areas of

physics and engineering use index notation and not matrix algebra as the main
mathematical tool, it is of interest to develop class libraries that support the notation
actually used. This achieves more compact code, and it avoids a notational gap
between the mathematical formulas and the program code.

To support index notation as a domain specific language, we need unambiguous
rules for its interpretation. Therefore we propose grammar and semantics for index
notation. Our rules support the range convention, which implies that free indices
implicitly loop over their range, as well as the Einstein summation convention, which
implies that summation is understood for a term with a repeated index. We also
find that usual mathematical rules for summation and multiplication are supported.
Compared with Barr [4], our rules are more general, mainly because we distinguish
between upper and lower indices, we allow indices to be repeated more than twice,
and we allow summation between terms even if the indices do not match exactly,
as long as the expression can be interpreted unambiguously. Our interpretation is
mainly based on Papastavridis comprehensive description of index notation [9], but
we have modified the rules to suit the imperative context of assignments. By only
treating Einstein summation on the right hand side of an assignment, we see no
reason to introduce an explicit “no sum” notation.

We have implemented support for index notation as a C++ class library. With
these classes, a mathematical algorithm written with index notation may easily be
converted into code. When executed, summation according to the Einstein sum-
mation convention as well as loops over free indices are carried out automatically.
Various examples demonstrate the close resemblance between mathematical index
notation and the corresponding code.

This paper represents a first step to support index notation as a domain spe-
cific language. Regarding future work, many directions are interesting. One issue,
which we currently are investigating, is the representation of general symmetries
and anti-symmetries, present in many tensor applications. By carefully exploiting
symmetries, memory requirements can greatly be reduced. A similar issue is the rep-
resentation of “sparse tensors”, which may arise when simulating partial differential
equations [8]. Finally, we acknowledge that index notation as used in tensor calculus
is also equipped with notation for partial derivatives. Support for this extension of
index notation is desirable, but we believe that many other steps remain before this
goal is reached.

Acknowledgements

[am very grateful to Magne Haveraaen for his contributions, in particular concerning
Section 3.

References

[1] R. Abraham, J.E. Marsden, and T. Ratiu. Manifolds, tensor analysis, and
applications, volume 75 of Applied Mathematical Sciences. Springer-Verlag,
2nd edition, 1988.

2] K. Ahlander and M. Haveraaen. Index notation semantics. Report in prepara-
tion.

3]

[10]

[11]

[12]

[13]

[14]

K. Ahlander, M. Haveraaen, and H. Munthe-Kaas. On the role of mathematical
abstractions for scientific computing. To appear in the proceedings of IFIP’s

8th Working Conference on ”Software Architectures for Scientific Computing
Applications”, Ottawa, Ontario, Canada, 24 October 2000.

A. Barr. The Einstein summation notation, introduction to Cartesian tensors
and extensions to the notation. Available on http://www.gg.caltech.edu/
“cs174ta/1998-99/Fall/index.html, as of 11/10 2000.

E. Bolton. A simple notation for differential vector expressions in orthogonal
curvilinear coordinates. Geophysical Journal International, 115(3):654-666, dec

1993.
Encyclopaedia of mathematics. Entry on Einstein rule.

M. Lemke and D. Quinlan. P4+, a parallel C++ array class library for

architecture-independent development of structured grid applications. ACM
SIGPLAN Notices, 28(1):21-23, 1993.

K. Otto. A tensor framework for preconditioners based on fast transforms.
Report in preparation.

J.G. Papastavridis. Tensor calculus and analytical dynamics. Library of engi-
neering mathematics. CRC Press LLC, 1999.

J. Reynders et al. Pooma: A framework for scientific simulations on parallel
architectures. In G. Wilson and P. Lu, editors, Parallel Programming using
C++, pages 553-594. MIT Press, 1996.

J. Rumbaugh et al. Object-Oriented Modeling and Design. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1991.

B. Schutz. Geometrical Methods of Mathematical Physics. Cambridge Univer-
sity Press, 1980.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,
Massachusetts, 2nd edition, 1991.

T. Veldhuizen and K. Ponnambalam. Linear algebra with C+4 template
metaprograms. Dr. Dobb’s Journal, August 1996.

